summaryrefslogtreecommitdiff
path: root/include/llvm/Analysis/Dominators.h
blob: a1cc196eae30ed55a0e5fff76b2f533e7c24c0b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the DominatorTree class, which provides fast and efficient
// dominance queries.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_DOMINATORS_H
#define LLVM_ANALYSIS_DOMINATORS_H

#include "llvm/Pass.h"
#include "llvm/Function.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>

namespace llvm {

//===----------------------------------------------------------------------===//
/// DominatorBase - Base class that other, more interesting dominator analyses
/// inherit from.
///
template <class NodeT>
class DominatorBase {
protected:
  std::vector<NodeT*> Roots;
  const bool IsPostDominators;
  inline explicit DominatorBase(bool isPostDom) :
    Roots(), IsPostDominators(isPostDom) {}
public:

  /// getRoots - Return the root blocks of the current CFG.  This may include
  /// multiple blocks if we are computing post dominators.  For forward
  /// dominators, this will always be a single block (the entry node).
  ///
  inline const std::vector<NodeT*> &getRoots() const { return Roots; }

  /// isPostDominator - Returns true if analysis based of postdoms
  ///
  bool isPostDominator() const { return IsPostDominators; }
};


//===----------------------------------------------------------------------===//
// DomTreeNode - Dominator Tree Node
template<class NodeT> class DominatorTreeBase;
struct PostDominatorTree;
class MachineBasicBlock;

template <class NodeT>
class DomTreeNodeBase {
  NodeT *TheBB;
  DomTreeNodeBase<NodeT> *IDom;
  std::vector<DomTreeNodeBase<NodeT> *> Children;
  int DFSNumIn, DFSNumOut;

  template<class N> friend class DominatorTreeBase;
  friend struct PostDominatorTree;
public:
  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
                   const_iterator;

  iterator begin()             { return Children.begin(); }
  iterator end()               { return Children.end(); }
  const_iterator begin() const { return Children.begin(); }
  const_iterator end()   const { return Children.end(); }

  NodeT *getBlock() const { return TheBB; }
  DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
  const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const {
    return Children;
  }

  DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
    : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }

  DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) {
    Children.push_back(C);
    return C;
  }

  size_t getNumChildren() const {
    return Children.size();
  }

  void clearAllChildren() {
    Children.clear();
  }

  bool compare(DomTreeNodeBase<NodeT> *Other) {
    if (getNumChildren() != Other->getNumChildren())
      return true;

    SmallPtrSet<NodeT *, 4> OtherChildren;
    for (iterator I = Other->begin(), E = Other->end(); I != E; ++I) {
      NodeT *Nd = (*I)->getBlock();
      OtherChildren.insert(Nd);
    }

    for (iterator I = begin(), E = end(); I != E; ++I) {
      NodeT *N = (*I)->getBlock();
      if (OtherChildren.count(N) == 0)
        return true;
    }
    return false;
  }

  void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
    assert(IDom && "No immediate dominator?");
    if (IDom != NewIDom) {
      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
                  std::find(IDom->Children.begin(), IDom->Children.end(), this);
      assert(I != IDom->Children.end() &&
             "Not in immediate dominator children set!");
      // I am no longer your child...
      IDom->Children.erase(I);

      // Switch to new dominator
      IDom = NewIDom;
      IDom->Children.push_back(this);
    }
  }

  /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
  /// not call them.
  unsigned getDFSNumIn() const { return DFSNumIn; }
  unsigned getDFSNumOut() const { return DFSNumOut; }
private:
  // Return true if this node is dominated by other. Use this only if DFS info
  // is valid.
  bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
    return this->DFSNumIn >= other->DFSNumIn &&
      this->DFSNumOut <= other->DFSNumOut;
  }
};

EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<BasicBlock>);
EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<MachineBasicBlock>);

template<class NodeT>
inline raw_ostream &operator<<(raw_ostream &o,
                               const DomTreeNodeBase<NodeT> *Node) {
  if (Node->getBlock())
    WriteAsOperand(o, Node->getBlock(), false);
  else
    o << " <<exit node>>";

  o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";

  return o << "\n";
}

template<class NodeT>
inline void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
                         unsigned Lev) {
  o.indent(2*Lev) << "[" << Lev << "] " << N;
  for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
       E = N->end(); I != E; ++I)
    PrintDomTree<NodeT>(*I, o, Lev+1);
}

typedef DomTreeNodeBase<BasicBlock> DomTreeNode;

//===----------------------------------------------------------------------===//
/// DominatorTree - Calculate the immediate dominator tree for a function.
///

template<class FuncT, class N>
void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
               FuncT& F);

template<class NodeT>
class DominatorTreeBase : public DominatorBase<NodeT> {
  bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
                               const DomTreeNodeBase<NodeT> *B) const {
    assert(A != B);
    assert(isReachableFromEntry(B));
    assert(isReachableFromEntry(A));

    const DomTreeNodeBase<NodeT> *IDom;
    while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B)
      B = IDom;   // Walk up the tree
    return IDom != 0;
  }

protected:
  typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType;
  DomTreeNodeMapType DomTreeNodes;
  DomTreeNodeBase<NodeT> *RootNode;

  bool DFSInfoValid;
  unsigned int SlowQueries;
  // Information record used during immediate dominators computation.
  struct InfoRec {
    unsigned DFSNum;
    unsigned Parent;
    unsigned Semi;
    NodeT *Label;

    InfoRec() : DFSNum(0), Parent(0), Semi(0), Label(0) {}
  };

  DenseMap<NodeT*, NodeT*> IDoms;

  // Vertex - Map the DFS number to the BasicBlock*
  std::vector<NodeT*> Vertex;

  // Info - Collection of information used during the computation of idoms.
  DenseMap<NodeT*, InfoRec> Info;

  void reset() {
    for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(),
           E = DomTreeNodes.end(); I != E; ++I)
      delete I->second;
    DomTreeNodes.clear();
    IDoms.clear();
    this->Roots.clear();
    Vertex.clear();
    RootNode = 0;
  }

  // NewBB is split and now it has one successor. Update dominator tree to
  // reflect this change.
  template<class N, class GraphT>
  void Split(DominatorTreeBase<typename GraphT::NodeType>& DT,
             typename GraphT::NodeType* NewBB) {
    assert(std::distance(GraphT::child_begin(NewBB),
                         GraphT::child_end(NewBB)) == 1 &&
           "NewBB should have a single successor!");
    typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB);

    std::vector<typename GraphT::NodeType*> PredBlocks;
    typedef GraphTraits<Inverse<N> > InvTraits;
    for (typename InvTraits::ChildIteratorType PI =
         InvTraits::child_begin(NewBB),
         PE = InvTraits::child_end(NewBB); PI != PE; ++PI)
      PredBlocks.push_back(*PI);

    assert(!PredBlocks.empty() && "No predblocks?");

    bool NewBBDominatesNewBBSucc = true;
    for (typename InvTraits::ChildIteratorType PI =
         InvTraits::child_begin(NewBBSucc),
         E = InvTraits::child_end(NewBBSucc); PI != E; ++PI) {
      typename InvTraits::NodeType *ND = *PI;
      if (ND != NewBB && !DT.dominates(NewBBSucc, ND) &&
          DT.isReachableFromEntry(ND)) {
        NewBBDominatesNewBBSucc = false;
        break;
      }
    }

    // Find NewBB's immediate dominator and create new dominator tree node for
    // NewBB.
    NodeT *NewBBIDom = 0;
    unsigned i = 0;
    for (i = 0; i < PredBlocks.size(); ++i)
      if (DT.isReachableFromEntry(PredBlocks[i])) {
        NewBBIDom = PredBlocks[i];
        break;
      }

    // It's possible that none of the predecessors of NewBB are reachable;
    // in that case, NewBB itself is unreachable, so nothing needs to be
    // changed.
    if (!NewBBIDom)
      return;

    for (i = i + 1; i < PredBlocks.size(); ++i) {
      if (DT.isReachableFromEntry(PredBlocks[i]))
        NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
    }

    // Create the new dominator tree node... and set the idom of NewBB.
    DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);

    // If NewBB strictly dominates other blocks, then it is now the immediate
    // dominator of NewBBSucc.  Update the dominator tree as appropriate.
    if (NewBBDominatesNewBBSucc) {
      DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
      DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
    }
  }

public:
  explicit DominatorTreeBase(bool isPostDom)
    : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
  virtual ~DominatorTreeBase() { reset(); }

  /// compare - Return false if the other dominator tree base matches this
  /// dominator tree base. Otherwise return true.
  bool compare(DominatorTreeBase &Other) const {

    const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
    if (DomTreeNodes.size() != OtherDomTreeNodes.size())
      return true;

    for (typename DomTreeNodeMapType::const_iterator
           I = this->DomTreeNodes.begin(),
           E = this->DomTreeNodes.end(); I != E; ++I) {
      NodeT *BB = I->first;
      typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB);
      if (OI == OtherDomTreeNodes.end())
        return true;

      DomTreeNodeBase<NodeT>* MyNd = I->second;
      DomTreeNodeBase<NodeT>* OtherNd = OI->second;

      if (MyNd->compare(OtherNd))
        return true;
    }

    return false;
  }

  virtual void releaseMemory() { reset(); }

  /// getNode - return the (Post)DominatorTree node for the specified basic
  /// block.  This is the same as using operator[] on this class.
  ///
  inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
    return DomTreeNodes.lookup(BB);
  }

  /// getRootNode - This returns the entry node for the CFG of the function.  If
  /// this tree represents the post-dominance relations for a function, however,
  /// this root may be a node with the block == NULL.  This is the case when
  /// there are multiple exit nodes from a particular function.  Consumers of
  /// post-dominance information must be capable of dealing with this
  /// possibility.
  ///
  DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
  const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }

  /// properlyDominates - Returns true iff this dominates N and this != N.
  /// Note that this is not a constant time operation!
  ///
  bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
                         const DomTreeNodeBase<NodeT> *B) {
    if (A == 0 || B == 0)
      return false;
    if (A == B)
      return false;
    return dominates(A, B);
  }

  bool properlyDominates(const NodeT *A, const NodeT *B);

  /// isReachableFromEntry - Return true if A is dominated by the entry
  /// block of the function containing it.
  bool isReachableFromEntry(const NodeT* A) const {
    assert(!this->isPostDominator() &&
           "This is not implemented for post dominators");
    return isReachableFromEntry(getNode(const_cast<NodeT *>(A)));
  }

  inline bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const {
    return A;
  }

  /// dominates - Returns true iff A dominates B.  Note that this is not a
  /// constant time operation!
  ///
  inline bool dominates(const DomTreeNodeBase<NodeT> *A,
                        const DomTreeNodeBase<NodeT> *B) {
    // A node trivially dominates itself.
    if (B == A)
      return true;

    // An unreachable node is dominated by anything.
    if (!isReachableFromEntry(B))
      return true;

    // And dominates nothing.
    if (!isReachableFromEntry(A))
      return false;

    // Compare the result of the tree walk and the dfs numbers, if expensive
    // checks are enabled.
#ifdef XDEBUG
    assert((!DFSInfoValid ||
            (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
           "Tree walk disagrees with dfs numbers!");
#endif

    if (DFSInfoValid)
      return B->DominatedBy(A);

    // If we end up with too many slow queries, just update the
    // DFS numbers on the theory that we are going to keep querying.
    SlowQueries++;
    if (SlowQueries > 32) {
      updateDFSNumbers();
      return B->DominatedBy(A);
    }

    return dominatedBySlowTreeWalk(A, B);
  }

  bool dominates(const NodeT *A, const NodeT *B);

  NodeT *getRoot() const {
    assert(this->Roots.size() == 1 && "Should always have entry node!");
    return this->Roots[0];
  }

  /// findNearestCommonDominator - Find nearest common dominator basic block
  /// for basic block A and B. If there is no such block then return NULL.
  NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
    assert(A->getParent() == B->getParent() &&
           "Two blocks are not in same function");

    // If either A or B is a entry block then it is nearest common dominator
    // (for forward-dominators).
    if (!this->isPostDominator()) {
      NodeT &Entry = A->getParent()->front();
      if (A == &Entry || B == &Entry)
        return &Entry;
    }

    // If B dominates A then B is nearest common dominator.
    if (dominates(B, A))
      return B;

    // If A dominates B then A is nearest common dominator.
    if (dominates(A, B))
      return A;

    DomTreeNodeBase<NodeT> *NodeA = getNode(A);
    DomTreeNodeBase<NodeT> *NodeB = getNode(B);

    // Collect NodeA dominators set.
    SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms;
    NodeADoms.insert(NodeA);
    DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
    while (IDomA) {
      NodeADoms.insert(IDomA);
      IDomA = IDomA->getIDom();
    }

    // Walk NodeB immediate dominators chain and find common dominator node.
    DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
    while (IDomB) {
      if (NodeADoms.count(IDomB) != 0)
        return IDomB->getBlock();

      IDomB = IDomB->getIDom();
    }

    return NULL;
  }

  const NodeT *findNearestCommonDominator(const NodeT *A, const NodeT *B) {
    // Cast away the const qualifiers here. This is ok since
    // const is re-introduced on the return type.
    return findNearestCommonDominator(const_cast<NodeT *>(A),
                                      const_cast<NodeT *>(B));
  }

  //===--------------------------------------------------------------------===//
  // API to update (Post)DominatorTree information based on modifications to
  // the CFG...

  /// addNewBlock - Add a new node to the dominator tree information.  This
  /// creates a new node as a child of DomBB dominator node,linking it into
  /// the children list of the immediate dominator.
  DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
    assert(getNode(BB) == 0 && "Block already in dominator tree!");
    DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
    assert(IDomNode && "Not immediate dominator specified for block!");
    DFSInfoValid = false;
    return DomTreeNodes[BB] =
      IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode));
  }

  /// changeImmediateDominator - This method is used to update the dominator
  /// tree information when a node's immediate dominator changes.
  ///
  void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
                                DomTreeNodeBase<NodeT> *NewIDom) {
    assert(N && NewIDom && "Cannot change null node pointers!");
    DFSInfoValid = false;
    N->setIDom(NewIDom);
  }

  void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
    changeImmediateDominator(getNode(BB), getNode(NewBB));
  }

  /// eraseNode - Removes a node from the dominator tree. Block must not
  /// dominate any other blocks. Removes node from its immediate dominator's
  /// children list. Deletes dominator node associated with basic block BB.
  void eraseNode(NodeT *BB) {
    DomTreeNodeBase<NodeT> *Node = getNode(BB);
    assert(Node && "Removing node that isn't in dominator tree.");
    assert(Node->getChildren().empty() && "Node is not a leaf node.");

      // Remove node from immediate dominator's children list.
    DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
    if (IDom) {
      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
        std::find(IDom->Children.begin(), IDom->Children.end(), Node);
      assert(I != IDom->Children.end() &&
             "Not in immediate dominator children set!");
      // I am no longer your child...
      IDom->Children.erase(I);
    }

    DomTreeNodes.erase(BB);
    delete Node;
  }

  /// removeNode - Removes a node from the dominator tree.  Block must not
  /// dominate any other blocks.  Invalidates any node pointing to removed
  /// block.
  void removeNode(NodeT *BB) {
    assert(getNode(BB) && "Removing node that isn't in dominator tree.");
    DomTreeNodes.erase(BB);
  }

  /// splitBlock - BB is split and now it has one successor. Update dominator
  /// tree to reflect this change.
  void splitBlock(NodeT* NewBB) {
    if (this->IsPostDominators)
      this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB);
    else
      this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB);
  }

  /// print - Convert to human readable form
  ///
  void print(raw_ostream &o) const {
    o << "=============================--------------------------------\n";
    if (this->isPostDominator())
      o << "Inorder PostDominator Tree: ";
    else
      o << "Inorder Dominator Tree: ";
    if (!this->DFSInfoValid)
      o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
    o << "\n";

    // The postdom tree can have a null root if there are no returns.
    if (getRootNode())
      PrintDomTree<NodeT>(getRootNode(), o, 1);
  }

protected:
  template<class GraphT>
  friend typename GraphT::NodeType* Eval(
                               DominatorTreeBase<typename GraphT::NodeType>& DT,
                                         typename GraphT::NodeType* V,
                                         unsigned LastLinked);

  template<class GraphT>
  friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
                          typename GraphT::NodeType* V,
                          unsigned N);

  template<class FuncT, class N>
  friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
                        FuncT& F);

  /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
  /// dominator tree in dfs order.
  void updateDFSNumbers() {
    unsigned DFSNum = 0;

    SmallVector<std::pair<DomTreeNodeBase<NodeT>*,
                typename DomTreeNodeBase<NodeT>::iterator>, 32> WorkStack;

    DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();

    if (!ThisRoot)
      return;

    // Even in the case of multiple exits that form the post dominator root
    // nodes, do not iterate over all exits, but start from the virtual root
    // node. Otherwise bbs, that are not post dominated by any exit but by the
    // virtual root node, will never be assigned a DFS number.
    WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
    ThisRoot->DFSNumIn = DFSNum++;

    while (!WorkStack.empty()) {
      DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
      typename DomTreeNodeBase<NodeT>::iterator ChildIt =
        WorkStack.back().second;

      // If we visited all of the children of this node, "recurse" back up the
      // stack setting the DFOutNum.
      if (ChildIt == Node->end()) {
        Node->DFSNumOut = DFSNum++;
        WorkStack.pop_back();
      } else {
        // Otherwise, recursively visit this child.
        DomTreeNodeBase<NodeT> *Child = *ChildIt;
        ++WorkStack.back().second;

        WorkStack.push_back(std::make_pair(Child, Child->begin()));
        Child->DFSNumIn = DFSNum++;
      }
    }

    SlowQueries = 0;
    DFSInfoValid = true;
  }

  DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
    if (DomTreeNodeBase<NodeT> *Node = getNode(BB))
      return Node;

    // Haven't calculated this node yet?  Get or calculate the node for the
    // immediate dominator.
    NodeT *IDom = getIDom(BB);

    assert(IDom || this->DomTreeNodes[NULL]);
    DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);

    // Add a new tree node for this BasicBlock, and link it as a child of
    // IDomNode
    DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode);
    return this->DomTreeNodes[BB] = IDomNode->addChild(C);
  }

  inline NodeT *getIDom(NodeT *BB) const {
    return IDoms.lookup(BB);
  }

  inline void addRoot(NodeT* BB) {
    this->Roots.push_back(BB);
  }

public:
  /// recalculate - compute a dominator tree for the given function
  template<class FT>
  void recalculate(FT& F) {
    typedef GraphTraits<FT*> TraitsTy;
    reset();
    this->Vertex.push_back(0);

    if (!this->IsPostDominators) {
      // Initialize root
      NodeT *entry = TraitsTy::getEntryNode(&F);
      this->Roots.push_back(entry);
      this->IDoms[entry] = 0;
      this->DomTreeNodes[entry] = 0;

      Calculate<FT, NodeT*>(*this, F);
    } else {
      // Initialize the roots list
      for (typename TraitsTy::nodes_iterator I = TraitsTy::nodes_begin(&F),
                                        E = TraitsTy::nodes_end(&F); I != E; ++I) {
        if (std::distance(TraitsTy::child_begin(I),
                          TraitsTy::child_end(I)) == 0)
          addRoot(I);

        // Prepopulate maps so that we don't get iterator invalidation issues later.
        this->IDoms[I] = 0;
        this->DomTreeNodes[I] = 0;
      }

      Calculate<FT, Inverse<NodeT*> >(*this, F);
    }
  }
};

// These two functions are declared out of line as a workaround for building
// with old (< r147295) versions of clang because of pr11642.
template<class NodeT>
bool DominatorTreeBase<NodeT>::dominates(const NodeT *A, const NodeT *B) {
  if (A == B)
    return true;

  // Cast away the const qualifiers here. This is ok since
  // this function doesn't actually return the values returned
  // from getNode.
  return dominates(getNode(const_cast<NodeT *>(A)),
                   getNode(const_cast<NodeT *>(B)));
}
template<class NodeT>
bool
DominatorTreeBase<NodeT>::properlyDominates(const NodeT *A, const NodeT *B) {
  if (A == B)
    return false;

  // Cast away the const qualifiers here. This is ok since
  // this function doesn't actually return the values returned
  // from getNode.
  return dominates(getNode(const_cast<NodeT *>(A)),
                   getNode(const_cast<NodeT *>(B)));
}

EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>);

class BasicBlockEdge {
  const BasicBlock *Start;
  const BasicBlock *End;
public:
  BasicBlockEdge(const BasicBlock *Start_, const BasicBlock *End_) :
    Start(Start_), End(End_) { }
  const BasicBlock *getStart() const {
    return Start;
  }
  const BasicBlock *getEnd() const {
    return End;
  }
  bool isSingleEdge() const;
};

//===-------------------------------------
/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
/// compute a normal dominator tree.
///
class DominatorTree : public FunctionPass {
public:
  static char ID; // Pass ID, replacement for typeid
  DominatorTreeBase<BasicBlock>* DT;

  DominatorTree() : FunctionPass(ID) {
    initializeDominatorTreePass(*PassRegistry::getPassRegistry());
    DT = new DominatorTreeBase<BasicBlock>(false);
  }

  ~DominatorTree() {
    delete DT;
  }

  DominatorTreeBase<BasicBlock>& getBase() { return *DT; }

  /// getRoots - Return the root blocks of the current CFG.  This may include
  /// multiple blocks if we are computing post dominators.  For forward
  /// dominators, this will always be a single block (the entry node).
  ///
  inline const std::vector<BasicBlock*> &getRoots() const {
    return DT->getRoots();
  }

  inline BasicBlock *getRoot() const {
    return DT->getRoot();
  }

  inline DomTreeNode *getRootNode() const {
    return DT->getRootNode();
  }

  /// compare - Return false if the other dominator tree matches this
  /// dominator tree. Otherwise return true.
  inline bool compare(DominatorTree &Other) const {
    DomTreeNode *R = getRootNode();
    DomTreeNode *OtherR = Other.getRootNode();

    if (!R || !OtherR || R->getBlock() != OtherR->getBlock())
      return true;

    if (DT->compare(Other.getBase()))
      return true;

    return false;
  }

  virtual bool runOnFunction(Function &F);

  virtual void verifyAnalysis() const;

  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    AU.setPreservesAll();
  }

  inline bool dominates(const DomTreeNode* A, const DomTreeNode* B) const {
    return DT->dominates(A, B);
  }

  inline bool dominates(const BasicBlock* A, const BasicBlock* B) const {
    return DT->dominates(A, B);
  }

  // dominates - Return true if Def dominates a use in User. This performs
  // the special checks necessary if Def and User are in the same basic block.
  // Note that Def doesn't dominate a use in Def itself!
  bool dominates(const Instruction *Def, const Use &U) const;
  bool dominates(const Instruction *Def, const Instruction *User) const;
  bool dominates(const Instruction *Def, const BasicBlock *BB) const;
  bool dominates(const BasicBlockEdge &BBE, const Use &U) const;
  bool dominates(const BasicBlockEdge &BBE, const BasicBlock *BB) const;

  bool properlyDominates(const DomTreeNode *A, const DomTreeNode *B) const {
    return DT->properlyDominates(A, B);
  }

  bool properlyDominates(const BasicBlock *A, const BasicBlock *B) const {
    return DT->properlyDominates(A, B);
  }

  /// findNearestCommonDominator - Find nearest common dominator basic block
  /// for basic block A and B. If there is no such block then return NULL.
  inline BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B) {
    return DT->findNearestCommonDominator(A, B);
  }

  inline const BasicBlock *findNearestCommonDominator(const BasicBlock *A,
                                                      const BasicBlock *B) {
    return DT->findNearestCommonDominator(A, B);
  }

  inline DomTreeNode *operator[](BasicBlock *BB) const {
    return DT->getNode(BB);
  }

  /// getNode - return the (Post)DominatorTree node for the specified basic
  /// block.  This is the same as using operator[] on this class.
  ///
  inline DomTreeNode *getNode(BasicBlock *BB) const {
    return DT->getNode(BB);
  }

  /// addNewBlock - Add a new node to the dominator tree information.  This
  /// creates a new node as a child of DomBB dominator node,linking it into
  /// the children list of the immediate dominator.
  inline DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) {
    return DT->addNewBlock(BB, DomBB);
  }

  /// changeImmediateDominator - This method is used to update the dominator
  /// tree information when a node's immediate dominator changes.
  ///
  inline void changeImmediateDominator(BasicBlock *N, BasicBlock* NewIDom) {
    DT->changeImmediateDominator(N, NewIDom);
  }

  inline void changeImmediateDominator(DomTreeNode *N, DomTreeNode* NewIDom) {
    DT->changeImmediateDominator(N, NewIDom);
  }

  /// eraseNode - Removes a node from the dominator tree. Block must not
  /// dominate any other blocks. Removes node from its immediate dominator's
  /// children list. Deletes dominator node associated with basic block BB.
  inline void eraseNode(BasicBlock *BB) {
    DT->eraseNode(BB);
  }

  /// splitBlock - BB is split and now it has one successor. Update dominator
  /// tree to reflect this change.
  inline void splitBlock(BasicBlock* NewBB) {
    DT->splitBlock(NewBB);
  }

  bool isReachableFromEntry(const BasicBlock* A) const {
    return DT->isReachableFromEntry(A);
  }

  bool isReachableFromEntry(const Use &U) const;


  virtual void releaseMemory() {
    DT->releaseMemory();
  }

  virtual void print(raw_ostream &OS, const Module* M= 0) const;
};

//===-------------------------------------
/// DominatorTree GraphTraits specialization so the DominatorTree can be
/// iterable by generic graph iterators.
///
template <> struct GraphTraits<DomTreeNode*> {
  typedef DomTreeNode NodeType;
  typedef NodeType::iterator  ChildIteratorType;

  static NodeType *getEntryNode(NodeType *N) {
    return N;
  }
  static inline ChildIteratorType child_begin(NodeType *N) {
    return N->begin();
  }
  static inline ChildIteratorType child_end(NodeType *N) {
    return N->end();
  }

  typedef df_iterator<DomTreeNode*> nodes_iterator;

  static nodes_iterator nodes_begin(DomTreeNode *N) {
    return df_begin(getEntryNode(N));
  }

  static nodes_iterator nodes_end(DomTreeNode *N) {
    return df_end(getEntryNode(N));
  }
};

template <> struct GraphTraits<DominatorTree*>
  : public GraphTraits<DomTreeNode*> {
  static NodeType *getEntryNode(DominatorTree *DT) {
    return DT->getRootNode();
  }

  static nodes_iterator nodes_begin(DominatorTree *N) {
    return df_begin(getEntryNode(N));
  }

  static nodes_iterator nodes_end(DominatorTree *N) {
    return df_end(getEntryNode(N));
  }
};


} // End llvm namespace

#endif