//===- LoopIndexSplit.cpp - Loop Index Splitting Pass ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements Loop Index Splitting Pass. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "loop-index-split" #include "llvm/Transforms/Scalar.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Support/Compiler.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/Statistic.h" using namespace llvm; STATISTIC(NumIndexSplit, "Number of loops index split"); namespace { class VISIBILITY_HIDDEN LoopIndexSplit : public LoopPass { public: static char ID; // Pass ID, replacement for typeid LoopIndexSplit() : LoopPass((intptr_t)&ID) {} // Index split Loop L. Return true if loop is split. bool runOnLoop(Loop *L, LPPassManager &LPM); void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addPreserved(); AU.addRequiredID(LCSSAID); AU.addPreservedID(LCSSAID); AU.addRequired(); AU.addPreserved(); AU.addRequiredID(LoopSimplifyID); AU.addPreservedID(LoopSimplifyID); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); } private: class SplitInfo { public: SplitInfo() : SplitValue(NULL), SplitCondition(NULL), UseTrueBranchFirst(true), A_ExitValue(NULL), B_StartValue(NULL) {} // Induction variable's range is split at this value. Value *SplitValue; // This instruction compares IndVar against SplitValue. Instruction *SplitCondition; // True if after loop index split, first loop will execute split condition's // true branch. bool UseTrueBranchFirst; // Exit value for first loop after loop split. Value *A_ExitValue; // Start value for second loop after loop split. Value *B_StartValue; // Clear split info. void clear() { SplitValue = NULL; SplitCondition = NULL; UseTrueBranchFirst = true; A_ExitValue = NULL; B_StartValue = NULL; } }; private: // safeIcmpInst - CI is considered safe instruction if one of the operand // is SCEVAddRecExpr based on induction variable and other operand is // loop invariant. If CI is safe then populate SplitInfo object SD appropriately // and return true; bool safeICmpInst(ICmpInst *CI, SplitInfo &SD); /// Find condition inside a loop that is suitable candidate for index split. void findSplitCondition(); /// Find loop's exit condition. void findLoopConditionals(); /// Return induction variable associated with value V. void findIndVar(Value *V, Loop *L); /// processOneIterationLoop - Current loop L contains compare instruction /// that compares induction variable, IndVar, agains loop invariant. If /// entire (i.e. meaningful) loop body is dominated by this compare /// instruction then loop body is executed only for one iteration. In /// such case eliminate loop structure surrounding this loop body. For bool processOneIterationLoop(SplitInfo &SD); void updateLoopBounds(ICmpInst *CI); /// updateLoopIterationSpace - Current loop body is covered by an AND /// instruction whose operands compares induction variables with loop /// invariants. If possible, hoist this check outside the loop by /// updating appropriate start and end values for induction variable. bool updateLoopIterationSpace(SplitInfo &SD); /// If loop header includes loop variant instruction operands then /// this loop may not be eliminated. bool safeHeader(SplitInfo &SD, BasicBlock *BB); /// If Exiting block includes loop variant instructions then this /// loop may not be eliminated. bool safeExitingBlock(SplitInfo &SD, BasicBlock *BB); /// removeBlocks - Remove basic block DeadBB and all blocks dominated by DeadBB. /// This routine is used to remove split condition's dead branch, dominated by /// DeadBB. LiveBB dominates split conidition's other branch. void removeBlocks(BasicBlock *DeadBB, Loop *LP, BasicBlock *LiveBB); /// safeSplitCondition - Return true if it is possible to /// split loop using given split condition. bool safeSplitCondition(SplitInfo &SD); /// calculateLoopBounds - ALoop exit value and BLoop start values are calculated /// based on split value. void calculateLoopBounds(SplitInfo &SD); /// updatePHINodes - CFG has been changed. /// Before /// - ExitBB's single predecessor was Latch /// - Latch's second successor was Header /// Now /// - ExitBB's single predecessor was Header /// - Latch's one and only successor was Header /// /// Update ExitBB PHINodes' to reflect this change. void updatePHINodes(BasicBlock *ExitBB, BasicBlock *Latch, BasicBlock *Header, PHINode *IV, Instruction *IVIncrement, Loop *LP); /// moveExitCondition - Move exit condition EC into split condition block CondBB. void moveExitCondition(BasicBlock *CondBB, BasicBlock *ActiveBB, BasicBlock *ExitBB, ICmpInst *EC, ICmpInst *SC, PHINode *IV, Instruction *IVAdd, Loop *LP); /// splitLoop - Split current loop L in two loops using split information /// SD. Update dominator information. Maintain LCSSA form. bool splitLoop(SplitInfo &SD); void initialize() { IndVar = NULL; IndVarIncrement = NULL; ExitCondition = NULL; StartValue = NULL; ExitValueNum = 0; SplitData.clear(); } private: // Current Loop. Loop *L; LPPassManager *LPM; LoopInfo *LI; ScalarEvolution *SE; DominatorTree *DT; DominanceFrontier *DF; SmallVector SplitData; // Induction variable whose range is being split by this transformation. PHINode *IndVar; Instruction *IndVarIncrement; // Loop exit condition. ICmpInst *ExitCondition; // Induction variable's initial value. Value *StartValue; // Induction variable's final loop exit value operand number in exit condition.. unsigned ExitValueNum; }; } char LoopIndexSplit::ID = 0; static RegisterPass X("loop-index-split", "Index Split Loops"); LoopPass *llvm::createLoopIndexSplitPass() { return new LoopIndexSplit(); } // Index split Loop L. Return true if loop is split. bool LoopIndexSplit::runOnLoop(Loop *IncomingLoop, LPPassManager &LPM_Ref) { bool Changed = false; L = IncomingLoop; LPM = &LPM_Ref; // FIXME - Nested loops make dominator info updates tricky. if (!L->getSubLoops().empty()) return false; SE = &getAnalysis(); DT = &getAnalysis(); LI = &getAnalysis(); DF = &getAnalysis(); initialize(); findLoopConditionals(); if (!ExitCondition) return false; findSplitCondition(); if (SplitData.empty()) return false; // First see if it is possible to eliminate loop itself or not. for (SmallVector::iterator SI = SplitData.begin(); SI != SplitData.end();) { SplitInfo &SD = *SI; ICmpInst *CI = dyn_cast(SD.SplitCondition); if (SD.SplitCondition->getOpcode() == Instruction::And) { Changed = updateLoopIterationSpace(SD); if (Changed) { ++NumIndexSplit; // If is loop is eliminated then nothing else to do here. return Changed; } else { SmallVector::iterator Delete_SI = SI; SI = SplitData.erase(Delete_SI); } } else if (CI && CI->getPredicate() == ICmpInst::ICMP_EQ) { Changed = processOneIterationLoop(SD); if (Changed) { ++NumIndexSplit; // If is loop is eliminated then nothing else to do here. return Changed; } else { SmallVector::iterator Delete_SI = SI; SI = SplitData.erase(Delete_SI); } } else ++SI; } if (SplitData.empty()) return false; // Split most profitiable condition. // FIXME : Implement cost analysis. unsigned MostProfitableSDIndex = 0; Changed = splitLoop(SplitData[MostProfitableSDIndex]); if (Changed) ++NumIndexSplit; return Changed; } /// Return true if V is a induction variable or induction variable's /// increment for loop L. void LoopIndexSplit::findIndVar(Value *V, Loop *L) { Instruction *I = dyn_cast(V); if (!I) return; // Check if I is a phi node from loop header or not. if (PHINode *PN = dyn_cast(V)) { if (PN->getParent() == L->getHeader()) { IndVar = PN; return; } } // Check if I is a add instruction whose one operand is // phi node from loop header and second operand is constant. if (I->getOpcode() != Instruction::Add) return; Value *Op0 = I->getOperand(0); Value *Op1 = I->getOperand(1); if (PHINode *PN = dyn_cast(Op0)) if (PN->getParent() == L->getHeader()) if (ConstantInt *CI = dyn_cast(Op1)) if (CI->isOne()) { IndVar = PN; IndVarIncrement = I; return; } if (PHINode *PN = dyn_cast(Op1)) if (PN->getParent() == L->getHeader()) if (ConstantInt *CI = dyn_cast(Op0)) if (CI->isOne()) { IndVar = PN; IndVarIncrement = I; return; } return; } // Find loop's exit condition and associated induction variable. void LoopIndexSplit::findLoopConditionals() { BasicBlock *ExitingBlock = NULL; for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E; ++I) { BasicBlock *BB = *I; if (!L->isLoopExit(BB)) continue; if (ExitingBlock) return; ExitingBlock = BB; } if (!ExitingBlock) return; // If exiting block is neither loop header nor loop latch then this loop is // not suitable. if (ExitingBlock != L->getHeader() && ExitingBlock != L->getLoopLatch()) return; // If exit block's terminator is conditional branch inst then we have found // exit condition. BranchInst *BR = dyn_cast(ExitingBlock->getTerminator()); if (!BR || BR->isUnconditional()) return; ICmpInst *CI = dyn_cast(BR->getCondition()); if (!CI) return; // FIXME if (CI->getPredicate() == ICmpInst::ICMP_EQ || CI->getPredicate() == ICmpInst::ICMP_NE) return; ExitCondition = CI; // Exit condition's one operand is loop invariant exit value and second // operand is SCEVAddRecExpr based on induction variable. Value *V0 = CI->getOperand(0); Value *V1 = CI->getOperand(1); SCEVHandle SH0 = SE->getSCEV(V0); SCEVHandle SH1 = SE->getSCEV(V1); if (SH0->isLoopInvariant(L) && isa(SH1)) { ExitValueNum = 0; findIndVar(V1, L); } else if (SH1->isLoopInvariant(L) && isa(SH0)) { ExitValueNum = 1; findIndVar(V0, L); } if (!IndVar) ExitCondition = NULL; else if (IndVar) { BasicBlock *Preheader = L->getLoopPreheader(); StartValue = IndVar->getIncomingValueForBlock(Preheader); } } /// Find condition inside a loop that is suitable candidate for index split. void LoopIndexSplit::findSplitCondition() { SplitInfo SD; // Check all basic block's terminators. for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E; ++I) { SD.clear(); BasicBlock *BB = *I; // If this basic block does not terminate in a conditional branch // then terminator is not a suitable split condition. BranchInst *BR = dyn_cast(BB->getTerminator()); if (!BR) continue; if (BR->isUnconditional()) continue; if (Instruction *AndI = dyn_cast(BR->getCondition())) { if (AndI->getOpcode() == Instruction::And) { ICmpInst *Op0 = dyn_cast(AndI->getOperand(0)); ICmpInst *Op1 = dyn_cast(AndI->getOperand(1)); if (!Op0 || !Op1) continue; if (!safeICmpInst(Op0, SD)) continue; SD.clear(); if (!safeICmpInst(Op1, SD)) continue; SD.clear(); SD.SplitCondition = AndI; SplitData.push_back(SD); continue; } } ICmpInst *CI = dyn_cast(BR->getCondition()); if (!CI || CI == ExitCondition) continue; if (CI->getPredicate() == ICmpInst::ICMP_NE) continue; // If split condition predicate is GT or GE then first execute // false branch of split condition. if (CI->getPredicate() == ICmpInst::ICMP_UGT || CI->getPredicate() == ICmpInst::ICMP_SGT || CI->getPredicate() == ICmpInst::ICMP_UGE || CI->getPredicate() == ICmpInst::ICMP_SGE) SD.UseTrueBranchFirst = false; // If one operand is loop invariant and second operand is SCEVAddRecExpr // based on induction variable then CI is a candidate split condition. if (safeICmpInst(CI, SD)) SplitData.push_back(SD); } } // safeIcmpInst - CI is considered safe instruction if one of the operand // is SCEVAddRecExpr based on induction variable and other operand is // loop invariant. If CI is safe then populate SplitInfo object SD appropriately // and return true; bool LoopIndexSplit::safeICmpInst(ICmpInst *CI, SplitInfo &SD) { Value *V0 = CI->getOperand(0); Value *V1 = CI->getOperand(1); SCEVHandle SH0 = SE->getSCEV(V0); SCEVHandle SH1 = SE->getSCEV(V1); if (SH0->isLoopInvariant(L) && isa(SH1)) { SD.SplitValue = V0; SD.SplitCondition = CI; if (PHINode *PN = dyn_cast(V1)) { if (PN == IndVar) return true; } else if (Instruction *Insn = dyn_cast(V1)) { if (IndVarIncrement && IndVarIncrement == Insn) return true; } } else if (SH1->isLoopInvariant(L) && isa(SH0)) { SD.SplitValue = V1; SD.SplitCondition = CI; if (PHINode *PN = dyn_cast(V0)) { if (PN == IndVar) return true; } else if (Instruction *Insn = dyn_cast(V0)) { if (IndVarIncrement && IndVarIncrement == Insn) return true; } } return false; } /// processOneIterationLoop - Current loop L contains compare instruction /// that compares induction variable, IndVar, against loop invariant. If /// entire (i.e. meaningful) loop body is dominated by this compare /// instruction then loop body is executed only once. In such case eliminate /// loop structure surrounding this loop body. For example, /// for (int i = start; i < end; ++i) { /// if ( i == somevalue) { /// loop_body /// } /// } /// can be transformed into /// if (somevalue >= start && somevalue < end) { /// i = somevalue; /// loop_body /// } bool LoopIndexSplit::processOneIterationLoop(SplitInfo &SD) { BasicBlock *Header = L->getHeader(); // First of all, check if SplitCondition dominates entire loop body // or not. // If SplitCondition is not in loop header then this loop is not suitable // for this transformation. if (SD.SplitCondition->getParent() != Header) return false; // If loop header includes loop variant instruction operands then // this loop may not be eliminated. if (!safeHeader(SD, Header)) return false; // If Exiting block includes loop variant instructions then this // loop may not be eliminated. if (!safeExitingBlock(SD, ExitCondition->getParent())) return false; // Filter loops where split condition's false branch is not empty. if (ExitCondition->getParent() != Header->getTerminator()->getSuccessor(1)) return false; // If split condition is not safe then do not process this loop. // For example, // for(int i = 0; i < N; i++) { // if ( i == XYZ) { // A; // else // B; // } // C; // D; // } if (!safeSplitCondition(SD)) return false; BasicBlock *Latch = L->getLoopLatch(); BranchInst *BR = dyn_cast(Latch->getTerminator()); if (!BR) return false; // Update CFG. // Replace index variable with split value in loop body. Loop body is executed // only when index variable is equal to split value. IndVar->replaceAllUsesWith(SD.SplitValue); // Remove Latch to Header edge. BasicBlock *LatchSucc = NULL; Header->removePredecessor(Latch); for (succ_iterator SI = succ_begin(Latch), E = succ_end(Latch); SI != E; ++SI) { if (Header != *SI) LatchSucc = *SI; } BR->setUnconditionalDest(LatchSucc); Instruction *Terminator = Header->getTerminator(); Value *ExitValue = ExitCondition->getOperand(ExitValueNum); // Replace split condition in header. // Transform // SplitCondition : icmp eq i32 IndVar, SplitValue // into // c1 = icmp uge i32 SplitValue, StartValue // c2 = icmp ult i32 SplitValue, ExitValue // and i32 c1, c2 bool SignedPredicate = ExitCondition->isSignedPredicate(); Instruction *C1 = new ICmpInst(SignedPredicate ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, SD.SplitValue, StartValue, "lisplit", Terminator); Instruction *C2 = new ICmpInst(SignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, SD.SplitValue, ExitValue, "lisplit", Terminator); Instruction *NSplitCond = BinaryOperator::createAnd(C1, C2, "lisplit", Terminator); SD.SplitCondition->replaceAllUsesWith(NSplitCond); SD.SplitCondition->eraseFromParent(); // Now, clear latch block. Remove instructions that are responsible // to increment induction variable. Instruction *LTerminator = Latch->getTerminator(); for (BasicBlock::iterator LB = Latch->begin(), LE = Latch->end(); LB != LE; ) { Instruction *I = LB; ++LB; if (isa(I) || I == LTerminator) continue; if (I == IndVarIncrement) I->replaceAllUsesWith(ExitValue); else I->replaceAllUsesWith(UndefValue::get(I->getType())); I->eraseFromParent(); } LPM->deleteLoopFromQueue(L); // Update Dominator Info. // Only CFG change done is to remove Latch to Header edge. This // does not change dominator tree because Latch did not dominate // Header. if (DF) { DominanceFrontier::iterator HeaderDF = DF->find(Header); if (HeaderDF != DF->end()) DF->removeFromFrontier(HeaderDF, Header); DominanceFrontier::iterator LatchDF = DF->find(Latch); if (LatchDF != DF->end()) DF->removeFromFrontier(LatchDF, Header); } return true; } // If loop header includes loop variant instruction operands then // this loop can not be eliminated. This is used by processOneIterationLoop(). bool LoopIndexSplit::safeHeader(SplitInfo &SD, BasicBlock *Header) { Instruction *Terminator = Header->getTerminator(); for(BasicBlock::iterator BI = Header->begin(), BE = Header->end(); BI != BE; ++BI) { Instruction *I = BI; // PHI Nodes are OK. if (isa(I)) continue; // SplitCondition itself is OK. if (I == SD.SplitCondition) continue; // Induction variable is OK. if (I == IndVar) continue; // Induction variable increment is OK. if (I == IndVarIncrement) continue; // Terminator is also harmless. if (I == Terminator) continue; // Otherwise we have a instruction that may not be safe. return false; } return true; } // If Exiting block includes loop variant instructions then this // loop may not be eliminated. This is used by processOneIterationLoop(). bool LoopIndexSplit::safeExitingBlock(SplitInfo &SD, BasicBlock *ExitingBlock) { for (BasicBlock::iterator BI = ExitingBlock->begin(), BE = ExitingBlock->end(); BI != BE; ++BI) { Instruction *I = BI; // PHI Nodes are OK. if (isa(I)) continue; // Induction variable increment is OK. if (IndVarIncrement && IndVarIncrement == I) continue; // Check if I is induction variable increment instruction. if (I->getOpcode() == Instruction::Add) { Value *Op0 = I->getOperand(0); Value *Op1 = I->getOperand(1); PHINode *PN = NULL; ConstantInt *CI = NULL; if ((PN = dyn_cast(Op0))) { if ((CI = dyn_cast(Op1))) if (CI->isOne()) { if (!IndVarIncrement && PN == IndVar) IndVarIncrement = I; // else this is another loop induction variable continue; } } else if ((PN = dyn_cast(Op1))) { if ((CI = dyn_cast(Op0))) if (CI->isOne()) { if (!IndVarIncrement && PN == IndVar) IndVarIncrement = I; // else this is another loop induction variable continue; } } } // I is an Exit condition if next instruction is block terminator. // Exit condition is OK if it compares loop invariant exit value, // which is checked below. else if (ICmpInst *EC = dyn_cast(I)) { if (EC == ExitCondition) continue; } if (I == ExitingBlock->getTerminator()) continue; // Otherwise we have instruction that may not be safe. return false; } // We could not find any reason to consider ExitingBlock unsafe. return true; } void LoopIndexSplit::updateLoopBounds(ICmpInst *CI) { Value *V0 = CI->getOperand(0); Value *V1 = CI->getOperand(1); Value *NV = NULL; SCEVHandle SH0 = SE->getSCEV(V0); if (SH0->isLoopInvariant(L)) NV = V0; else NV = V1; if (ExitCondition->getPredicate() == ICmpInst::ICMP_SGT || ExitCondition->getPredicate() == ICmpInst::ICMP_UGT || ExitCondition->getPredicate() == ICmpInst::ICMP_SGE || ExitCondition->getPredicate() == ICmpInst::ICMP_UGE) { ExitCondition->swapOperands(); if (ExitValueNum) ExitValueNum = 0; else ExitValueNum = 1; } Value *NUB = NULL; Value *NLB = NULL; Value *UB = ExitCondition->getOperand(ExitValueNum); const Type *Ty = NV->getType(); bool Sign = ExitCondition->isSignedPredicate(); BasicBlock *Preheader = L->getLoopPreheader(); Instruction *PHTerminator = Preheader->getTerminator(); assert (NV && "Unexpected value"); switch (CI->getPredicate()) { case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_SLE: // for (i = LB; i < UB; ++i) // if (i <= NV && ...) // LOOP_BODY // // is transformed into // NUB = min (NV+1, UB) // for (i = LB; i < NUB ; ++i) // LOOP_BODY // if (ExitCondition->getPredicate() == ICmpInst::ICMP_SLT || ExitCondition->getPredicate() == ICmpInst::ICMP_ULT) { Value *A = BinaryOperator::createAdd(NV, ConstantInt::get(Ty, 1, Sign), "lsplit.add", PHTerminator); Value *C = new ICmpInst(Sign ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, A, UB,"lsplit,c", PHTerminator); NUB = SelectInst::Create(C, A, UB, "lsplit.nub", PHTerminator); } // for (i = LB; i <= UB; ++i) // if (i <= NV && ...) // LOOP_BODY // // is transformed into // NUB = min (NV, UB) // for (i = LB; i <= NUB ; ++i) // LOOP_BODY // else if (ExitCondition->getPredicate() == ICmpInst::ICMP_SLE || ExitCondition->getPredicate() == ICmpInst::ICMP_ULE) { Value *C = new ICmpInst(Sign ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, NV, UB, "lsplit.c", PHTerminator); NUB = SelectInst::Create(C, NV, UB, "lsplit.nub", PHTerminator); } break; case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_SLT: // for (i = LB; i < UB; ++i) // if (i < NV && ...) // LOOP_BODY // // is transformed into // NUB = min (NV, UB) // for (i = LB; i < NUB ; ++i) // LOOP_BODY // if (ExitCondition->getPredicate() == ICmpInst::ICMP_SLT || ExitCondition->getPredicate() == ICmpInst::ICMP_ULT) { Value *C = new ICmpInst(Sign ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, NV, UB, "lsplit.c", PHTerminator); NUB = SelectInst::Create(C, NV, UB, "lsplit.nub", PHTerminator); } // for (i = LB; i <= UB; ++i) // if (i < NV && ...) // LOOP_BODY // // is transformed into // NUB = min (NV -1 , UB) // for (i = LB; i <= NUB ; ++i) // LOOP_BODY // else if (ExitCondition->getPredicate() == ICmpInst::ICMP_SLE || ExitCondition->getPredicate() == ICmpInst::ICMP_ULE) { Value *S = BinaryOperator::createSub(NV, ConstantInt::get(Ty, 1, Sign), "lsplit.add", PHTerminator); Value *C = new ICmpInst(Sign ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, S, UB, "lsplit.c", PHTerminator); NUB = SelectInst::Create(C, S, UB, "lsplit.nub", PHTerminator); } break; case ICmpInst::ICMP_UGE: case ICmpInst::ICMP_SGE: // for (i = LB; i (< or <=) UB; ++i) // if (i >= NV && ...) // LOOP_BODY // // is transformed into // NLB = max (NV, LB) // for (i = NLB; i (< or <=) UB ; ++i) // LOOP_BODY // { Value *C = new ICmpInst(Sign ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, NV, StartValue, "lsplit.c", PHTerminator); NLB = SelectInst::Create(C, StartValue, NV, "lsplit.nlb", PHTerminator); } break; case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_SGT: // for (i = LB; i (< or <=) UB; ++i) // if (i > NV && ...) // LOOP_BODY // // is transformed into // NLB = max (NV+1, LB) // for (i = NLB; i (< or <=) UB ; ++i) // LOOP_BODY // { Value *A = BinaryOperator::createAdd(NV, ConstantInt::get(Ty, 1, Sign), "lsplit.add", PHTerminator); Value *C = new ICmpInst(Sign ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, A, StartValue, "lsplit.c", PHTerminator); NLB = SelectInst::Create(C, StartValue, A, "lsplit.nlb", PHTerminator); } break; default: assert ( 0 && "Unexpected split condition predicate"); } if (NLB) { unsigned i = IndVar->getBasicBlockIndex(Preheader); IndVar->setIncomingValue(i, NLB); } if (NUB) { ExitCondition->setOperand(ExitValueNum, NUB); } } /// updateLoopIterationSpace - Current loop body is covered by an AND /// instruction whose operands compares induction variables with loop /// invariants. If possible, hoist this check outside the loop by /// updating appropriate start and end values for induction variable. bool LoopIndexSplit::updateLoopIterationSpace(SplitInfo &SD) { BasicBlock *Header = L->getHeader(); BasicBlock *ExitingBlock = ExitCondition->getParent(); BasicBlock *SplitCondBlock = SD.SplitCondition->getParent(); ICmpInst *Op0 = cast(SD.SplitCondition->getOperand(0)); ICmpInst *Op1 = cast(SD.SplitCondition->getOperand(1)); if (Op0->getPredicate() == ICmpInst::ICMP_EQ || Op0->getPredicate() == ICmpInst::ICMP_NE || Op0->getPredicate() == ICmpInst::ICMP_EQ || Op0->getPredicate() == ICmpInst::ICMP_NE) return false; // Check if SplitCondition dominates entire loop body // or not. // If SplitCondition is not in loop header then this loop is not suitable // for this transformation. if (SD.SplitCondition->getParent() != Header) return false; // If loop header includes loop variant instruction operands then // this loop may not be eliminated. Instruction *Terminator = Header->getTerminator(); for(BasicBlock::iterator BI = Header->begin(), BE = Header->end(); BI != BE; ++BI) { Instruction *I = BI; // PHI Nodes are OK. if (isa(I)) continue; // SplitCondition itself is OK. if (I == SD.SplitCondition) continue; if (I == Op0 || I == Op1) continue; // Induction variable is OK. if (I == IndVar) continue; // Induction variable increment is OK. if (I == IndVarIncrement) continue; // Terminator is also harmless. if (I == Terminator) continue; // Otherwise we have a instruction that may not be safe. return false; } // If Exiting block includes loop variant instructions then this // loop may not be eliminated. if (!safeExitingBlock(SD, ExitCondition->getParent())) return false; // Verify that loop exiting block has only two predecessor, where one predecessor // is split condition block. The other predecessor will become exiting block's // dominator after CFG is updated. TODO : Handle CFG's where exiting block has // more then two predecessors. This requires extra work in updating dominator // information. BasicBlock *ExitingBBPred = NULL; for (pred_iterator PI = pred_begin(ExitingBlock), PE = pred_end(ExitingBlock); PI != PE; ++PI) { BasicBlock *BB = *PI; if (SplitCondBlock == BB) continue; if (ExitingBBPred) return false; else ExitingBBPred = BB; } // Update loop bounds to absorb Op0 check. updateLoopBounds(Op0); // Update loop bounds to absorb Op1 check. updateLoopBounds(Op1); // Update CFG // Unconditionally connect split block to its remaining successor. BranchInst *SplitTerminator = cast(SplitCondBlock->getTerminator()); BasicBlock *Succ0 = SplitTerminator->getSuccessor(0); BasicBlock *Succ1 = SplitTerminator->getSuccessor(1); if (Succ0 == ExitCondition->getParent()) SplitTerminator->setUnconditionalDest(Succ1); else SplitTerminator->setUnconditionalDest(Succ0); // Remove split condition. SD.SplitCondition->eraseFromParent(); if (Op0->use_begin() == Op0->use_end()) Op0->eraseFromParent(); if (Op1->use_begin() == Op1->use_end()) Op1->eraseFromParent(); BranchInst *ExitInsn = dyn_cast(ExitingBlock->getTerminator()); assert (ExitInsn && "Unable to find suitable loop exit branch"); BasicBlock *ExitBlock = ExitInsn->getSuccessor(1); if (L->contains(ExitBlock)) ExitBlock = ExitInsn->getSuccessor(0); // Update domiantor info. Now, ExitingBlock has only one predecessor, // ExitingBBPred, and it is ExitingBlock's immediate domiantor. DT->changeImmediateDominator(ExitingBlock, ExitingBBPred); // If ExitingBlock is a member of loop BB's DF list then replace it with // loop header and exit block. for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E; ++I) { BasicBlock *BB = *I; if (BB == Header || BB == ExitingBlock) continue; DominanceFrontier::iterator BBDF = DF->find(BB); DominanceFrontier::DomSetType::iterator DomSetI = BBDF->second.begin(); DominanceFrontier::DomSetType::iterator DomSetE = BBDF->second.end(); while (DomSetI != DomSetE) { DominanceFrontier::DomSetType::iterator CurrentItr = DomSetI; ++DomSetI; BasicBlock *DFBB = *CurrentItr; if (DFBB == ExitingBlock) { BBDF->second.erase(DFBB); BBDF->second.insert(Header); if (Header != ExitingBlock) BBDF->second.insert(ExitBlock); } } } return true; } /// removeBlocks - Remove basic block DeadBB and all blocks dominated by DeadBB. /// This routine is used to remove split condition's dead branch, dominated by /// DeadBB. LiveBB dominates split conidition's other branch. void LoopIndexSplit::removeBlocks(BasicBlock *DeadBB, Loop *LP, BasicBlock *LiveBB) { // First update DeadBB's dominance frontier. SmallVector FrontierBBs; DominanceFrontier::iterator DeadBBDF = DF->find(DeadBB); if (DeadBBDF != DF->end()) { SmallVector PredBlocks; DominanceFrontier::DomSetType DeadBBSet = DeadBBDF->second; for (DominanceFrontier::DomSetType::iterator DeadBBSetI = DeadBBSet.begin(), DeadBBSetE = DeadBBSet.end(); DeadBBSetI != DeadBBSetE; ++DeadBBSetI) { BasicBlock *FrontierBB = *DeadBBSetI; FrontierBBs.push_back(FrontierBB); // Rremove any PHI incoming edge from blocks dominated by DeadBB. PredBlocks.clear(); for(pred_iterator PI = pred_begin(FrontierBB), PE = pred_end(FrontierBB); PI != PE; ++PI) { BasicBlock *P = *PI; if (P == DeadBB || DT->dominates(DeadBB, P)) PredBlocks.push_back(P); } for(BasicBlock::iterator FBI = FrontierBB->begin(), FBE = FrontierBB->end(); FBI != FBE; ++FBI) { if (PHINode *PN = dyn_cast(FBI)) { for(SmallVector::iterator PI = PredBlocks.begin(), PE = PredBlocks.end(); PI != PE; ++PI) { BasicBlock *P = *PI; PN->removeIncomingValue(P); } } else break; } } } // Now remove DeadBB and all nodes dominated by DeadBB in df order. SmallVector WorkList; DomTreeNode *DN = DT->getNode(DeadBB); for (df_iterator DI = df_begin(DN), E = df_end(DN); DI != E; ++DI) { BasicBlock *BB = DI->getBlock(); WorkList.push_back(BB); BB->replaceAllUsesWith(UndefValue::get(Type::LabelTy)); } while (!WorkList.empty()) { BasicBlock *BB = WorkList.back(); WorkList.pop_back(); for(BasicBlock::iterator BBI = BB->begin(), BBE = BB->end(); BBI != BBE; ) { Instruction *I = BBI; ++BBI; I->replaceAllUsesWith(UndefValue::get(I->getType())); I->eraseFromParent(); } LPM->deleteSimpleAnalysisValue(BB, LP); DT->eraseNode(BB); DF->removeBlock(BB); LI->removeBlock(BB); BB->eraseFromParent(); } // Update Frontier BBs' dominator info. while (!FrontierBBs.empty()) { BasicBlock *FBB = FrontierBBs.back(); FrontierBBs.pop_back(); BasicBlock *NewDominator = FBB->getSinglePredecessor(); if (!NewDominator) { pred_iterator PI = pred_begin(FBB), PE = pred_end(FBB); NewDominator = *PI; ++PI; if (NewDominator != LiveBB) { for(; PI != PE; ++PI) { BasicBlock *P = *PI; if (P == LiveBB) { NewDominator = LiveBB; break; } NewDominator = DT->findNearestCommonDominator(NewDominator, P); } } } assert (NewDominator && "Unable to fix dominator info."); DT->changeImmediateDominator(FBB, NewDominator); DF->changeImmediateDominator(FBB, NewDominator, DT); } } /// safeSplitCondition - Return true if it is possible to /// split loop using given split condition. bool LoopIndexSplit::safeSplitCondition(SplitInfo &SD) { BasicBlock *SplitCondBlock = SD.SplitCondition->getParent(); BasicBlock *Latch = L->getLoopLatch(); BranchInst *SplitTerminator = cast(SplitCondBlock->getTerminator()); BasicBlock *Succ0 = SplitTerminator->getSuccessor(0); BasicBlock *Succ1 = SplitTerminator->getSuccessor(1); // If split block does not dominate the latch then this is not a diamond. // Such loop may not benefit from index split. if (!DT->dominates(SplitCondBlock, Latch)) return false; // Finally this split condition is safe only if merge point for // split condition branch is loop latch. This check along with previous // check, to ensure that exit condition is in either loop latch or header, // filters all loops with non-empty loop body between merge point // and exit condition. DominanceFrontier::iterator Succ0DF = DF->find(Succ0); assert (Succ0DF != DF->end() && "Unable to find Succ0 dominance frontier"); if (Succ0DF->second.count(Latch)) return true; DominanceFrontier::iterator Succ1DF = DF->find(Succ1); assert (Succ1DF != DF->end() && "Unable to find Succ1 dominance frontier"); if (Succ1DF->second.count(Latch)) return true; return false; } /// calculateLoopBounds - ALoop exit value and BLoop start values are calculated /// based on split value. void LoopIndexSplit::calculateLoopBounds(SplitInfo &SD) { ICmpInst *SC = cast(SD.SplitCondition); ICmpInst::Predicate SP = SC->getPredicate(); const Type *Ty = SD.SplitValue->getType(); bool Sign = ExitCondition->isSignedPredicate(); BasicBlock *Preheader = L->getLoopPreheader(); Instruction *PHTerminator = Preheader->getTerminator(); // Initially use split value as upper loop bound for first loop and lower loop // bound for second loop. Value *AEV = SD.SplitValue; Value *BSV = SD.SplitValue; if (ExitCondition->getPredicate() == ICmpInst::ICMP_SGT || ExitCondition->getPredicate() == ICmpInst::ICMP_UGT || ExitCondition->getPredicate() == ICmpInst::ICMP_SGE || ExitCondition->getPredicate() == ICmpInst::ICMP_UGE) { ExitCondition->swapOperands(); if (ExitValueNum) ExitValueNum = 0; else ExitValueNum = 1; } switch (ExitCondition->getPredicate()) { case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_SGE: case ICmpInst::ICMP_UGE: default: assert (0 && "Unexpected exit condition predicate"); case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_ULT: { switch (SP) { case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_ULT: // // for (i = LB; i < UB; ++i) { if (i < SV) A; else B; } // // is transformed into // AEV = BSV = SV // for (i = LB; i < min(UB, AEV); ++i) // A; // for (i = max(LB, BSV); i < UB; ++i); // B; break; case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_ULE: { // // for (i = LB; i < UB; ++i) { if (i <= SV) A; else B; } // // is transformed into // // AEV = SV + 1 // BSV = SV + 1 // for (i = LB; i < min(UB, AEV); ++i) // A; // for (i = max(LB, BSV); i < UB; ++i) // B; BSV = BinaryOperator::createAdd(SD.SplitValue, ConstantInt::get(Ty, 1, Sign), "lsplit.add", PHTerminator); AEV = BSV; } break; case ICmpInst::ICMP_SGE: case ICmpInst::ICMP_UGE: // // for (i = LB; i < UB; ++i) { if (i >= SV) A; else B; } // // is transformed into // AEV = BSV = SV // for (i = LB; i < min(UB, AEV); ++i) // B; // for (i = max(BSV, LB); i < UB; ++i) // A; break; case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_UGT: { // // for (i = LB; i < UB; ++i) { if (i > SV) A; else B; } // // is transformed into // // BSV = AEV = SV + 1 // for (i = LB; i < min(UB, AEV); ++i) // B; // for (i = max(LB, BSV); i < UB; ++i) // A; BSV = BinaryOperator::createAdd(SD.SplitValue, ConstantInt::get(Ty, 1, Sign), "lsplit.add", PHTerminator); AEV = BSV; } break; default: assert (0 && "Unexpected split condition predicate"); break; } // end switch (SP) } break; case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_ULE: { switch (SP) { case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_ULT: // // for (i = LB; i <= UB; ++i) { if (i < SV) A; else B; } // // is transformed into // AEV = SV - 1; // BSV = SV; // for (i = LB; i <= min(UB, AEV); ++i) // A; // for (i = max(LB, BSV); i <= UB; ++i) // B; AEV = BinaryOperator::createSub(SD.SplitValue, ConstantInt::get(Ty, 1, Sign), "lsplit.sub", PHTerminator); break; case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_ULE: // // for (i = LB; i <= UB; ++i) { if (i <= SV) A; else B; } // // is transformed into // AEV = SV; // BSV = SV + 1; // for (i = LB; i <= min(UB, AEV); ++i) // A; // for (i = max(LB, BSV); i <= UB; ++i) // B; BSV = BinaryOperator::createAdd(SD.SplitValue, ConstantInt::get(Ty, 1, Sign), "lsplit.add", PHTerminator); break; case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_UGT: // // for (i = LB; i <= UB; ++i) { if (i > SV) A; else B; } // // is transformed into // AEV = SV; // BSV = SV + 1; // for (i = LB; i <= min(AEV, UB); ++i) // B; // for (i = max(LB, BSV); i <= UB; ++i) // A; BSV = BinaryOperator::createAdd(SD.SplitValue, ConstantInt::get(Ty, 1, Sign), "lsplit.add", PHTerminator); break; case ICmpInst::ICMP_SGE: case ICmpInst::ICMP_UGE: // ** TODO ** // // for (i = LB; i <= UB; ++i) { if (i >= SV) A; else B; } // // is transformed into // AEV = SV - 1; // BSV = SV; // for (i = LB; i <= min(AEV, UB); ++i) // B; // for (i = max(LB, BSV); i <= UB; ++i) // A; AEV = BinaryOperator::createSub(SD.SplitValue, ConstantInt::get(Ty, 1, Sign), "lsplit.sub", PHTerminator); break; default: assert (0 && "Unexpected split condition predicate"); break; } // end switch (SP) } break; } // Calculate ALoop induction variable's new exiting value and // BLoop induction variable's new starting value. Calculuate these // values in original loop's preheader. // A_ExitValue = min(SplitValue, OrignalLoopExitValue) // B_StartValue = max(SplitValue, OriginalLoopStartValue) Instruction *InsertPt = L->getHeader()->getFirstNonPHI(); // If ExitValue operand is also defined in Loop header then // insert new ExitValue after this operand definition. if (Instruction *EVN = dyn_cast(ExitCondition->getOperand(ExitValueNum))) { if (!isa(EVN)) if (InsertPt->getParent() == EVN->getParent()) { BasicBlock::iterator LHBI = L->getHeader()->begin(); BasicBlock::iterator LHBE = L->getHeader()->end(); for(;LHBI != LHBE; ++LHBI) { Instruction *I = LHBI; if (I == EVN) break; } InsertPt = ++LHBI; } } Value *C1 = new ICmpInst(Sign ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, AEV, ExitCondition->getOperand(ExitValueNum), "lsplit.ev", InsertPt); SD.A_ExitValue = SelectInst::Create(C1, AEV, ExitCondition->getOperand(ExitValueNum), "lsplit.ev", InsertPt); Value *C2 = new ICmpInst(Sign ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, BSV, StartValue, "lsplit.sv", PHTerminator); SD.B_StartValue = SelectInst::Create(C2, StartValue, BSV, "lsplit.sv", PHTerminator); } /// splitLoop - Split current loop L in two loops using split information /// SD. Update dominator information. Maintain LCSSA form. bool LoopIndexSplit::splitLoop(SplitInfo &SD) { if (!safeSplitCondition(SD)) return false; BasicBlock *SplitCondBlock = SD.SplitCondition->getParent(); // Unable to handle triange loops at the moment. // In triangle loop, split condition is in header and one of the // the split destination is loop latch. If split condition is EQ // then such loops are already handle in processOneIterationLoop(). BasicBlock *Latch = L->getLoopLatch(); BranchInst *SplitTerminator = cast(SplitCondBlock->getTerminator()); BasicBlock *Succ0 = SplitTerminator->getSuccessor(0); BasicBlock *Succ1 = SplitTerminator->getSuccessor(1); if (L->getHeader() == SplitCondBlock && (Latch == Succ0 || Latch == Succ1)) return false; // If split condition branches heads do not have single predecessor, // SplitCondBlock, then is not possible to remove inactive branch. if (!Succ0->getSinglePredecessor() || !Succ1->getSinglePredecessor()) return false; // If Exiting block includes loop variant instructions then this // loop may not be split safely. if (!safeExitingBlock(SD, ExitCondition->getParent())) return false; // After loop is cloned there are two loops. // // First loop, referred as ALoop, executes first part of loop's iteration // space split. Second loop, referred as BLoop, executes remaining // part of loop's iteration space. // // ALoop's exit edge enters BLoop's header through a forwarding block which // acts as a BLoop's preheader. BasicBlock *Preheader = L->getLoopPreheader(); // Calculate ALoop induction variable's new exiting value and // BLoop induction variable's new starting value. calculateLoopBounds(SD); //[*] Clone loop. DenseMap ValueMap; Loop *BLoop = CloneLoop(L, LPM, LI, ValueMap, this); Loop *ALoop = L; BasicBlock *B_Header = BLoop->getHeader(); //[*] ALoop's exiting edge BLoop's header. // ALoop's original exit block becomes BLoop's exit block. PHINode *B_IndVar = cast(ValueMap[IndVar]); BasicBlock *A_ExitingBlock = ExitCondition->getParent(); BranchInst *A_ExitInsn = dyn_cast(A_ExitingBlock->getTerminator()); assert (A_ExitInsn && "Unable to find suitable loop exit branch"); BasicBlock *B_ExitBlock = A_ExitInsn->getSuccessor(1); if (L->contains(B_ExitBlock)) { B_ExitBlock = A_ExitInsn->getSuccessor(0); A_ExitInsn->setSuccessor(0, B_Header); } else A_ExitInsn->setSuccessor(1, B_Header); //[*] Update ALoop's exit value using new exit value. ExitCondition->setOperand(ExitValueNum, SD.A_ExitValue); // [*] Update BLoop's header phi nodes. Remove incoming PHINode's from // original loop's preheader. Add incoming PHINode values from // ALoop's exiting block. Update BLoop header's domiantor info. // Collect inverse map of Header PHINodes. DenseMap InverseMap; for (BasicBlock::iterator BI = L->getHeader()->begin(), BE = L->getHeader()->end(); BI != BE; ++BI) { if (PHINode *PN = dyn_cast(BI)) { PHINode *PNClone = cast(ValueMap[PN]); InverseMap[PNClone] = PN; } else break; } for (BasicBlock::iterator BI = B_Header->begin(), BE = B_Header->end(); BI != BE; ++BI) { if (PHINode *PN = dyn_cast(BI)) { // Remove incoming value from original preheader. PN->removeIncomingValue(Preheader); // Add incoming value from A_ExitingBlock. if (PN == B_IndVar) PN->addIncoming(SD.B_StartValue, A_ExitingBlock); else { PHINode *OrigPN = cast(InverseMap[PN]); Value *V2 = NULL; // If loop header is also loop exiting block then // OrigPN is incoming value for B loop header. if (A_ExitingBlock == L->getHeader()) V2 = OrigPN; else V2 = OrigPN->getIncomingValueForBlock(A_ExitingBlock); PN->addIncoming(V2, A_ExitingBlock); } } else break; } DT->changeImmediateDominator(B_Header, A_ExitingBlock); DF->changeImmediateDominator(B_Header, A_ExitingBlock, DT); // [*] Update BLoop's exit block. Its new predecessor is BLoop's exit // block. Remove incoming PHINode values from ALoop's exiting block. // Add new incoming values from BLoop's incoming exiting value. // Update BLoop exit block's dominator info.. BasicBlock *B_ExitingBlock = cast(ValueMap[A_ExitingBlock]); for (BasicBlock::iterator BI = B_ExitBlock->begin(), BE = B_ExitBlock->end(); BI != BE; ++BI) { if (PHINode *PN = dyn_cast(BI)) { PN->addIncoming(ValueMap[PN->getIncomingValueForBlock(A_ExitingBlock)], B_ExitingBlock); PN->removeIncomingValue(A_ExitingBlock); } else break; } DT->changeImmediateDominator(B_ExitBlock, B_ExitingBlock); DF->changeImmediateDominator(B_ExitBlock, B_ExitingBlock, DT); //[*] Split ALoop's exit edge. This creates a new block which // serves two purposes. First one is to hold PHINode defnitions // to ensure that ALoop's LCSSA form. Second use it to act // as a preheader for BLoop. BasicBlock *A_ExitBlock = SplitEdge(A_ExitingBlock, B_Header, this); //[*] Preserve ALoop's LCSSA form. Create new forwarding PHINodes // in A_ExitBlock to redefine outgoing PHI definitions from ALoop. for(BasicBlock::iterator BI = B_Header->begin(), BE = B_Header->end(); BI != BE; ++BI) { if (PHINode *PN = dyn_cast(BI)) { Value *V1 = PN->getIncomingValueForBlock(A_ExitBlock); PHINode *newPHI = PHINode::Create(PN->getType(), PN->getName()); newPHI->addIncoming(V1, A_ExitingBlock); A_ExitBlock->getInstList().push_front(newPHI); PN->removeIncomingValue(A_ExitBlock); PN->addIncoming(newPHI, A_ExitBlock); } else break; } //[*] Eliminate split condition's inactive branch from ALoop. BasicBlock *A_SplitCondBlock = SD.SplitCondition->getParent(); BranchInst *A_BR = cast(A_SplitCondBlock->getTerminator()); BasicBlock *A_InactiveBranch = NULL; BasicBlock *A_ActiveBranch = NULL; if (SD.UseTrueBranchFirst) { A_ActiveBranch = A_BR->getSuccessor(0); A_InactiveBranch = A_BR->getSuccessor(1); } else { A_ActiveBranch = A_BR->getSuccessor(1); A_InactiveBranch = A_BR->getSuccessor(0); } A_BR->setUnconditionalDest(A_ActiveBranch); removeBlocks(A_InactiveBranch, L, A_ActiveBranch); //[*] Eliminate split condition's inactive branch in from BLoop. BasicBlock *B_SplitCondBlock = cast(ValueMap[A_SplitCondBlock]); BranchInst *B_BR = cast(B_SplitCondBlock->getTerminator()); BasicBlock *B_InactiveBranch = NULL; BasicBlock *B_ActiveBranch = NULL; if (SD.UseTrueBranchFirst) { B_ActiveBranch = B_BR->getSuccessor(1); B_InactiveBranch = B_BR->getSuccessor(0); } else { B_ActiveBranch = B_BR->getSuccessor(0); B_InactiveBranch = B_BR->getSuccessor(1); } B_BR->setUnconditionalDest(B_ActiveBranch); removeBlocks(B_InactiveBranch, BLoop, B_ActiveBranch); BasicBlock *A_Header = L->getHeader(); if (A_ExitingBlock == A_Header) return true; //[*] Move exit condition into split condition block to avoid // executing dead loop iteration. ICmpInst *B_ExitCondition = cast(ValueMap[ExitCondition]); Instruction *B_IndVarIncrement = cast(ValueMap[IndVarIncrement]); ICmpInst *B_SplitCondition = cast(ValueMap[SD.SplitCondition]); moveExitCondition(A_SplitCondBlock, A_ActiveBranch, A_ExitBlock, ExitCondition, cast(SD.SplitCondition), IndVar, IndVarIncrement, ALoop); moveExitCondition(B_SplitCondBlock, B_ActiveBranch, B_ExitBlock, B_ExitCondition, B_SplitCondition, B_IndVar, B_IndVarIncrement, BLoop); return true; } // moveExitCondition - Move exit condition EC into split condition block CondBB. void LoopIndexSplit::moveExitCondition(BasicBlock *CondBB, BasicBlock *ActiveBB, BasicBlock *ExitBB, ICmpInst *EC, ICmpInst *SC, PHINode *IV, Instruction *IVAdd, Loop *LP) { BasicBlock *ExitingBB = EC->getParent(); Instruction *CurrentBR = CondBB->getTerminator(); // Move exit condition into split condition block. EC->moveBefore(CurrentBR); EC->setOperand(ExitValueNum == 0 ? 1 : 0, IV); // Move exiting block's branch into split condition block. Update its branch // destination. BranchInst *ExitingBR = cast(ExitingBB->getTerminator()); ExitingBR->moveBefore(CurrentBR); BasicBlock *OrigDestBB = NULL; if (ExitingBR->getSuccessor(0) == ExitBB) { OrigDestBB = ExitingBR->getSuccessor(1); ExitingBR->setSuccessor(1, ActiveBB); } else { OrigDestBB = ExitingBR->getSuccessor(0); ExitingBR->setSuccessor(0, ActiveBB); } // Remove split condition and current split condition branch. SC->eraseFromParent(); CurrentBR->eraseFromParent(); // Connect exiting block to original destination. BranchInst::Create(OrigDestBB, ExitingBB); // Update PHINodes updatePHINodes(ExitBB, ExitingBB, CondBB, IV, IVAdd, LP); // Fix dominator info. // ExitBB is now dominated by CondBB DT->changeImmediateDominator(ExitBB, CondBB); DF->changeImmediateDominator(ExitBB, CondBB, DT); // Basicblocks dominated by ActiveBB may have ExitingBB or // a basic block outside the loop in their DF list. If so, // replace it with CondBB. DomTreeNode *Node = DT->getNode(ActiveBB); for (df_iterator DI = df_begin(Node), DE = df_end(Node); DI != DE; ++DI) { BasicBlock *BB = DI->getBlock(); DominanceFrontier::iterator BBDF = DF->find(BB); DominanceFrontier::DomSetType::iterator DomSetI = BBDF->second.begin(); DominanceFrontier::DomSetType::iterator DomSetE = BBDF->second.end(); while (DomSetI != DomSetE) { DominanceFrontier::DomSetType::iterator CurrentItr = DomSetI; ++DomSetI; BasicBlock *DFBB = *CurrentItr; if (DFBB == ExitingBB || !L->contains(DFBB)) { BBDF->second.erase(DFBB); BBDF->second.insert(CondBB); } } } } /// updatePHINodes - CFG has been changed. /// Before /// - ExitBB's single predecessor was Latch /// - Latch's second successor was Header /// Now /// - ExitBB's single predecessor is Header /// - Latch's one and only successor is Header /// /// Update ExitBB PHINodes' to reflect this change. void LoopIndexSplit::updatePHINodes(BasicBlock *ExitBB, BasicBlock *Latch, BasicBlock *Header, PHINode *IV, Instruction *IVIncrement, Loop *LP) { for (BasicBlock::iterator BI = ExitBB->begin(), BE = ExitBB->end(); BI != BE; ) { PHINode *PN = dyn_cast(BI); ++BI; if (!PN) break; Value *V = PN->getIncomingValueForBlock(Latch); if (PHINode *PHV = dyn_cast(V)) { // PHV is in Latch. PHV has one use is in ExitBB PHINode. And one use // in Header which is new incoming value for PN. Value *NewV = NULL; for (Value::use_iterator UI = PHV->use_begin(), E = PHV->use_end(); UI != E; ++UI) if (PHINode *U = dyn_cast(*UI)) if (LP->contains(U->getParent())) { NewV = U; break; } // Add incoming value from header only if PN has any use inside the loop. if (NewV) PN->addIncoming(NewV, Header); } else if (Instruction *PHI = dyn_cast(V)) { // If this instruction is IVIncrement then IV is new incoming value // from header otherwise this instruction must be incoming value from // header because loop is in LCSSA form. if (PHI == IVIncrement) PN->addIncoming(IV, Header); else PN->addIncoming(V, Header); } else // Otherwise this is an incoming value from header because loop is in // LCSSA form. PN->addIncoming(V, Header); // Remove incoming value from Latch. PN->removeIncomingValue(Latch); } }