//===-- R600Instructions.td - R600 Instruction defs -------*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // R600 Tablegen instruction definitions // //===----------------------------------------------------------------------===// include "R600Intrinsics.td" include "R600InstrFormats.td" class InstR600ISA pattern> : InstR600 { let Namespace = "AMDGPU"; } def MEMxi : Operand { let MIOperandInfo = (ops R600_TReg32_X:$ptr, i32imm:$index); let PrintMethod = "printMemOperand"; } def MEMrr : Operand { let MIOperandInfo = (ops R600_Reg32:$ptr, R600_Reg32:$index); } // Operands for non-registers class InstFlag : OperandWithDefaultOps { let PrintMethod = PM; } // src_sel for ALU src operands, see also ALU_CONST, ALU_PARAM registers def SEL : OperandWithDefaultOps { let PrintMethod = "printSel"; } def BANK_SWIZZLE : OperandWithDefaultOps { let PrintMethod = "printBankSwizzle"; } def LITERAL : InstFlag<"printLiteral">; def WRITE : InstFlag <"printWrite", 1>; def OMOD : InstFlag <"printOMOD">; def REL : InstFlag <"printRel">; def CLAMP : InstFlag <"printClamp">; def NEG : InstFlag <"printNeg">; def ABS : InstFlag <"printAbs">; def UEM : InstFlag <"printUpdateExecMask">; def UP : InstFlag <"printUpdatePred">; // XXX: The r600g finalizer in Mesa expects last to be one in most cases. // Once we start using the packetizer in this backend we should have this // default to 0. def LAST : InstFlag<"printLast", 1>; def RSel : Operand { let PrintMethod = "printRSel"; } def CT: Operand { let PrintMethod = "printCT"; } def FRAMEri : Operand { let MIOperandInfo = (ops R600_Reg32:$ptr, i32imm:$index); } def ADDRParam : ComplexPattern; def ADDRDWord : ComplexPattern; def ADDRVTX_READ : ComplexPattern; def ADDRGA_CONST_OFFSET : ComplexPattern; def ADDRGA_VAR_OFFSET : ComplexPattern; def ADDRIndirect : ComplexPattern; def R600_Pred : PredicateOperand; let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in { // Class for instructions with only one source register. // If you add new ins to this instruction, make sure they are listed before // $literal, because the backend currently assumes that the last operand is // a literal. Also be sure to update the enum R600Op1OperandIndex::ROI in // R600Defines.h, R600InstrInfo::buildDefaultInstruction(), // and R600InstrInfo::getOperandIdx(). class R600_1OP inst, string opName, list pattern, InstrItinClass itin = AnyALU> : InstR600 <(outs R600_Reg32:$dst), (ins WRITE:$write, OMOD:$omod, REL:$dst_rel, CLAMP:$clamp, R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, ABS:$src0_abs, SEL:$src0_sel, LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal, BANK_SWIZZLE:$bank_swizzle), !strconcat(" ", opName, "$clamp $last $dst$write$dst_rel$omod, " "$src0_neg$src0_abs$src0$src0_abs$src0_rel, " "$pred_sel $bank_swizzle"), pattern, itin>, R600ALU_Word0, R600ALU_Word1_OP2 { let src1 = 0; let src1_rel = 0; let src1_neg = 0; let src1_abs = 0; let update_exec_mask = 0; let update_pred = 0; let HasNativeOperands = 1; let Op1 = 1; let DisableEncoding = "$literal"; let Inst{31-0} = Word0; let Inst{63-32} = Word1; } class R600_1OP_Helper inst, string opName, SDPatternOperator node, InstrItinClass itin = AnyALU> : R600_1OP ; // If you add our change the operands for R600_2OP instructions, you must // also update the R600Op2OperandIndex::ROI enum in R600Defines.h, // R600InstrInfo::buildDefaultInstruction(), and R600InstrInfo::getOperandIdx(). class R600_2OP inst, string opName, list pattern, InstrItinClass itin = AnyALU> : InstR600 <(outs R600_Reg32:$dst), (ins UEM:$update_exec_mask, UP:$update_pred, WRITE:$write, OMOD:$omod, REL:$dst_rel, CLAMP:$clamp, R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, ABS:$src0_abs, SEL:$src0_sel, R600_Reg32:$src1, NEG:$src1_neg, REL:$src1_rel, ABS:$src1_abs, SEL:$src1_sel, LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal, BANK_SWIZZLE:$bank_swizzle), !strconcat(" ", opName, "$clamp $last $update_exec_mask$update_pred$dst$write$dst_rel$omod, " "$src0_neg$src0_abs$src0$src0_abs$src0_rel, " "$src1_neg$src1_abs$src1$src1_abs$src1_rel, " "$pred_sel $bank_swizzle"), pattern, itin>, R600ALU_Word0, R600ALU_Word1_OP2 { let HasNativeOperands = 1; let Op2 = 1; let DisableEncoding = "$literal"; let Inst{31-0} = Word0; let Inst{63-32} = Word1; } class R600_2OP_Helper inst, string opName, SDPatternOperator node, InstrItinClass itim = AnyALU> : R600_2OP ; // If you add our change the operands for R600_3OP instructions, you must // also update the R600Op3OperandIndex::ROI enum in R600Defines.h, // R600InstrInfo::buildDefaultInstruction(), and // R600InstrInfo::getOperandIdx(). class R600_3OP inst, string opName, list pattern, InstrItinClass itin = AnyALU> : InstR600 <(outs R600_Reg32:$dst), (ins REL:$dst_rel, CLAMP:$clamp, R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, SEL:$src0_sel, R600_Reg32:$src1, NEG:$src1_neg, REL:$src1_rel, SEL:$src1_sel, R600_Reg32:$src2, NEG:$src2_neg, REL:$src2_rel, SEL:$src2_sel, LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal, BANK_SWIZZLE:$bank_swizzle), !strconcat(" ", opName, "$clamp $last $dst$dst_rel, " "$src0_neg$src0$src0_rel, " "$src1_neg$src1$src1_rel, " "$src2_neg$src2$src2_rel, " "$pred_sel" "$bank_swizzle"), pattern, itin>, R600ALU_Word0, R600ALU_Word1_OP3{ let HasNativeOperands = 1; let DisableEncoding = "$literal"; let Op3 = 1; let Inst{31-0} = Word0; let Inst{63-32} = Word1; } class R600_REDUCTION inst, dag ins, string asm, list pattern, InstrItinClass itin = VecALU> : InstR600 <(outs R600_Reg32:$dst), ins, asm, pattern, itin>; } // End mayLoad = 1, mayStore = 0, hasSideEffects = 0 def TEX_SHADOW : PatLeaf< (imm), [{uint32_t TType = (uint32_t)N->getZExtValue(); return (TType >= 6 && TType <= 8) || (TType >= 11 && TType <= 13); }] >; def TEX_RECT : PatLeaf< (imm), [{uint32_t TType = (uint32_t)N->getZExtValue(); return TType == 5; }] >; def TEX_ARRAY : PatLeaf< (imm), [{uint32_t TType = (uint32_t)N->getZExtValue(); return TType == 9 || TType == 10 || TType == 15 || TType == 16; }] >; def TEX_SHADOW_ARRAY : PatLeaf< (imm), [{uint32_t TType = (uint32_t)N->getZExtValue(); return TType == 11 || TType == 12 || TType == 17; }] >; class EG_CF_RAT cfinst, bits <6> ratinst, bits<4> mask, dag outs, dag ins, string asm, list pattern> : InstR600ISA , CF_ALLOC_EXPORT_WORD0_RAT, CF_ALLOC_EXPORT_WORD1_BUF { let rat_id = 0; let rat_inst = ratinst; let rim = 0; // XXX: Have a separate instruction for non-indexed writes. let type = 1; let rw_rel = 0; let elem_size = 0; let array_size = 0; let comp_mask = mask; let burst_count = 0; let vpm = 0; let cf_inst = cfinst; let mark = 0; let barrier = 1; let Inst{31-0} = Word0; let Inst{63-32} = Word1; } class VTX_READ buffer_id, dag outs, list pattern> : InstR600ISA , VTX_WORD1_GPR { // Static fields let DST_REL = 0; // The docs say that if this bit is set, then DATA_FORMAT, NUM_FORMAT_ALL, // FORMAT_COMP_ALL, SRF_MODE_ALL, and ENDIAN_SWAP fields will be ignored, // however, based on my testing if USE_CONST_FIELDS is set, then all // these fields need to be set to 0. let USE_CONST_FIELDS = 0; let NUM_FORMAT_ALL = 1; let FORMAT_COMP_ALL = 0; let SRF_MODE_ALL = 0; let Inst{63-32} = Word1; // LLVM can only encode 64-bit instructions, so these fields are manually // encoded in R600CodeEmitter // // bits<16> OFFSET; // bits<2> ENDIAN_SWAP = 0; // bits<1> CONST_BUF_NO_STRIDE = 0; // bits<1> MEGA_FETCH = 0; // bits<1> ALT_CONST = 0; // bits<2> BUFFER_INDEX_MODE = 0; // VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding // is done in R600CodeEmitter // // Inst{79-64} = OFFSET; // Inst{81-80} = ENDIAN_SWAP; // Inst{82} = CONST_BUF_NO_STRIDE; // Inst{83} = MEGA_FETCH; // Inst{84} = ALT_CONST; // Inst{86-85} = BUFFER_INDEX_MODE; // Inst{95-86} = 0; Reserved // VTX_WORD3 (Padding) // // Inst{127-96} = 0; let VTXInst = 1; } class LoadParamFrag : PatFrag < (ops node:$ptr), (load_type node:$ptr), [{ return isParamLoad(dyn_cast(N)); }] >; def load_param : LoadParamFrag; def load_param_zexti8 : LoadParamFrag; def load_param_zexti16 : LoadParamFrag; def isR600 : Predicate<"Subtarget.device()" "->getGeneration() == AMDGPUDeviceInfo::HD4XXX">; def isR700 : Predicate<"Subtarget.device()" "->getGeneration() == AMDGPUDeviceInfo::HD4XXX &&" "Subtarget.device()->getDeviceFlag()" ">= OCL_DEVICE_RV710">; def isEG : Predicate< "Subtarget.device()->getGeneration() >= AMDGPUDeviceInfo::HD5XXX && " "Subtarget.device()->getGeneration() < AMDGPUDeviceInfo::HD7XXX && " "Subtarget.device()->getDeviceFlag() != OCL_DEVICE_CAYMAN">; def isCayman : Predicate<"Subtarget.device()" "->getDeviceFlag() == OCL_DEVICE_CAYMAN">; def isEGorCayman : Predicate<"Subtarget.device()" "->getGeneration() == AMDGPUDeviceInfo::HD5XXX" "|| Subtarget.device()->getGeneration() ==" "AMDGPUDeviceInfo::HD6XXX">; def isR600toCayman : Predicate< "Subtarget.device()->getGeneration() <= AMDGPUDeviceInfo::HD6XXX">; //===----------------------------------------------------------------------===// // R600 SDNodes //===----------------------------------------------------------------------===// def INTERP_PAIR_XY : AMDGPUShaderInst < (outs R600_TReg32_X:$dst0, R600_TReg32_Y:$dst1), (ins i32imm:$src0, R600_TReg32_Y:$src1, R600_TReg32_X:$src2), "INTERP_PAIR_XY $src0 $src1 $src2 : $dst0 dst1", []>; def INTERP_PAIR_ZW : AMDGPUShaderInst < (outs R600_TReg32_Z:$dst0, R600_TReg32_W:$dst1), (ins i32imm:$src0, R600_TReg32_Y:$src1, R600_TReg32_X:$src2), "INTERP_PAIR_ZW $src0 $src1 $src2 : $dst0 dst1", []>; def CONST_ADDRESS: SDNode<"AMDGPUISD::CONST_ADDRESS", SDTypeProfile<1, -1, [SDTCisInt<0>, SDTCisPtrTy<1>]>, [SDNPVariadic] >; def DOT4 : SDNode<"AMDGPUISD::DOT4", SDTypeProfile<1, 8, [SDTCisFP<0>, SDTCisVT<1, f32>, SDTCisVT<2, f32>, SDTCisVT<3, f32>, SDTCisVT<4, f32>, SDTCisVT<5, f32>, SDTCisVT<6, f32>, SDTCisVT<7, f32>, SDTCisVT<8, f32>]>, [] >; def TEXTURE_FETCH_Type : SDTypeProfile<1, 19, [SDTCisFP<0>]>; def TEXTURE_FETCH: SDNode<"AMDGPUISD::TEXTURE_FETCH", TEXTURE_FETCH_Type, []>; multiclass TexPattern TextureOp, Instruction inst, ValueType vt = v4f32> { def : Pat<(TEXTURE_FETCH (i32 TextureOp), vt:$SRC_GPR, (i32 imm:$srcx), (i32 imm:$srcy), (i32 imm:$srcz), (i32 imm:$srcw), (i32 imm:$offsetx), (i32 imm:$offsety), (i32 imm:$offsetz), (i32 imm:$DST_SEL_X), (i32 imm:$DST_SEL_Y), (i32 imm:$DST_SEL_Z), (i32 imm:$DST_SEL_W), (i32 imm:$RESOURCE_ID), (i32 imm:$SAMPLER_ID), (i32 imm:$COORD_TYPE_X), (i32 imm:$COORD_TYPE_Y), (i32 imm:$COORD_TYPE_Z), (i32 imm:$COORD_TYPE_W)), (inst R600_Reg128:$SRC_GPR, imm:$srcx, imm:$srcy, imm:$srcz, imm:$srcw, imm:$offsetx, imm:$offsety, imm:$offsetz, imm:$DST_SEL_X, imm:$DST_SEL_Y, imm:$DST_SEL_Z, imm:$DST_SEL_W, imm:$RESOURCE_ID, imm:$SAMPLER_ID, imm:$COORD_TYPE_X, imm:$COORD_TYPE_Y, imm:$COORD_TYPE_Z, imm:$COORD_TYPE_W)>; } //===----------------------------------------------------------------------===// // Interpolation Instructions //===----------------------------------------------------------------------===// def INTERP_VEC_LOAD : AMDGPUShaderInst < (outs R600_Reg128:$dst), (ins i32imm:$src0), "INTERP_LOAD $src0 : $dst", []>; def INTERP_XY : R600_2OP <0xD6, "INTERP_XY", []> { let bank_swizzle = 5; } def INTERP_ZW : R600_2OP <0xD7, "INTERP_ZW", []> { let bank_swizzle = 5; } def INTERP_LOAD_P0 : R600_1OP <0xE0, "INTERP_LOAD_P0", []>; //===----------------------------------------------------------------------===// // Export Instructions //===----------------------------------------------------------------------===// def ExportType : SDTypeProfile<0, 7, [SDTCisFP<0>, SDTCisInt<1>]>; def EXPORT: SDNode<"AMDGPUISD::EXPORT", ExportType, [SDNPHasChain, SDNPSideEffect]>; class ExportWord0 { field bits<32> Word0; bits<13> arraybase; bits<2> type; bits<7> gpr; bits<2> elem_size; let Word0{12-0} = arraybase; let Word0{14-13} = type; let Word0{21-15} = gpr; let Word0{22} = 0; // RW_REL let Word0{29-23} = 0; // INDEX_GPR let Word0{31-30} = elem_size; } class ExportSwzWord1 { field bits<32> Word1; bits<3> sw_x; bits<3> sw_y; bits<3> sw_z; bits<3> sw_w; bits<1> eop; bits<8> inst; let Word1{2-0} = sw_x; let Word1{5-3} = sw_y; let Word1{8-6} = sw_z; let Word1{11-9} = sw_w; } class ExportBufWord1 { field bits<32> Word1; bits<12> arraySize; bits<4> compMask; bits<1> eop; bits<8> inst; let Word1{11-0} = arraySize; let Word1{15-12} = compMask; } multiclass ExportPattern cf_inst> { def : Pat<(int_R600_store_pixel_depth R600_Reg32:$reg), (ExportInst (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), R600_Reg32:$reg, sub0), 0, 61, 0, 7, 7, 7, cf_inst, 0) >; def : Pat<(int_R600_store_pixel_stencil R600_Reg32:$reg), (ExportInst (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), R600_Reg32:$reg, sub0), 0, 61, 7, 0, 7, 7, cf_inst, 0) >; def : Pat<(int_R600_store_dummy (i32 imm:$type)), (ExportInst (v4f32 (IMPLICIT_DEF)), imm:$type, 0, 7, 7, 7, 7, cf_inst, 0) >; def : Pat<(int_R600_store_dummy 1), (ExportInst (v4f32 (IMPLICIT_DEF)), 1, 60, 7, 7, 7, 7, cf_inst, 0) >; def : Pat<(EXPORT (v4f32 R600_Reg128:$src), (i32 imm:$base), (i32 imm:$type), (i32 imm:$swz_x), (i32 imm:$swz_y), (i32 imm:$swz_z), (i32 imm:$swz_w)), (ExportInst R600_Reg128:$src, imm:$type, imm:$base, imm:$swz_x, imm:$swz_y, imm:$swz_z, imm:$swz_w, cf_inst, 0) >; } multiclass SteamOutputExportPattern buf0inst, bits<8> buf1inst, bits<8> buf2inst, bits<8> buf3inst> { // Stream0 def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src), (i32 imm:$arraybase), (i32 0), (i32 imm:$mask)), (ExportInst R600_Reg128:$src, 0, imm:$arraybase, 4095, imm:$mask, buf0inst, 0)>; // Stream1 def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src), (i32 imm:$arraybase), (i32 1), (i32 imm:$mask)), (ExportInst R600_Reg128:$src, 0, imm:$arraybase, 4095, imm:$mask, buf1inst, 0)>; // Stream2 def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src), (i32 imm:$arraybase), (i32 2), (i32 imm:$mask)), (ExportInst R600_Reg128:$src, 0, imm:$arraybase, 4095, imm:$mask, buf2inst, 0)>; // Stream3 def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src), (i32 imm:$arraybase), (i32 3), (i32 imm:$mask)), (ExportInst R600_Reg128:$src, 0, imm:$arraybase, 4095, imm:$mask, buf3inst, 0)>; } // Export Instructions should not be duplicated by TailDuplication pass // (which assumes that duplicable instruction are affected by exec mask) let usesCustomInserter = 1, isNotDuplicable = 1 in { class ExportSwzInst : InstR600ISA<( outs), (ins R600_Reg128:$gpr, i32imm:$type, i32imm:$arraybase, i32imm:$sw_x, i32imm:$sw_y, i32imm:$sw_z, i32imm:$sw_w, i32imm:$inst, i32imm:$eop), !strconcat("EXPORT", " $gpr"), []>, ExportWord0, ExportSwzWord1 { let elem_size = 3; let Inst{31-0} = Word0; let Inst{63-32} = Word1; } } // End usesCustomInserter = 1 class ExportBufInst : InstR600ISA<( outs), (ins R600_Reg128:$gpr, i32imm:$type, i32imm:$arraybase, i32imm:$arraySize, i32imm:$compMask, i32imm:$inst, i32imm:$eop), !strconcat("EXPORT", " $gpr"), []>, ExportWord0, ExportBufWord1 { let elem_size = 0; let Inst{31-0} = Word0; let Inst{63-32} = Word1; } //===----------------------------------------------------------------------===// // Control Flow Instructions //===----------------------------------------------------------------------===// def KCACHE : InstFlag<"printKCache">; class ALU_CLAUSE inst, string OpName> : AMDGPUInst <(outs), (ins i32imm:$ADDR, i32imm:$KCACHE_BANK0, i32imm:$KCACHE_BANK1, KCACHE:$KCACHE_MODE0, KCACHE:$KCACHE_MODE1, i32imm:$KCACHE_ADDR0, i32imm:$KCACHE_ADDR1, i32imm:$COUNT), !strconcat(OpName, " $COUNT, @$ADDR, " "KC0[$KCACHE_MODE0], KC1[$KCACHE_MODE1]"), [] >, CF_ALU_WORD0, CF_ALU_WORD1 { field bits<64> Inst; let CF_INST = inst; let ALT_CONST = 0; let WHOLE_QUAD_MODE = 0; let BARRIER = 1; let Inst{31-0} = Word0; let Inst{63-32} = Word1; } class CF_WORD0_R600 { field bits<32> Word0; bits<32> ADDR; let Word0 = ADDR; } class CF_CLAUSE_R600 inst, dag ins, string AsmPrint> : AMDGPUInst <(outs), ins, AsmPrint, [] >, CF_WORD0_R600, CF_WORD1_R600 { field bits<64> Inst; let CF_INST = inst; let BARRIER = 1; let CF_CONST = 0; let VALID_PIXEL_MODE = 0; let COND = 0; let CALL_COUNT = 0; let COUNT_3 = 0; let END_OF_PROGRAM = 0; let WHOLE_QUAD_MODE = 0; let Inst{31-0} = Word0; let Inst{63-32} = Word1; } class CF_CLAUSE_EG inst, dag ins, string AsmPrint> : AMDGPUInst <(outs), ins, AsmPrint, [] >, CF_WORD0_EG, CF_WORD1_EG { field bits<64> Inst; let CF_INST = inst; let BARRIER = 1; let JUMPTABLE_SEL = 0; let CF_CONST = 0; let VALID_PIXEL_MODE = 0; let COND = 0; let END_OF_PROGRAM = 0; let Inst{31-0} = Word0; let Inst{63-32} = Word1; } def CF_ALU : ALU_CLAUSE<8, "ALU">; def CF_ALU_PUSH_BEFORE : ALU_CLAUSE<9, "ALU_PUSH_BEFORE">; def FETCH_CLAUSE : AMDGPUInst <(outs), (ins i32imm:$addr), "Fetch clause starting at $addr:", [] > { field bits<8> Inst; bits<8> num; let Inst = num; } def ALU_CLAUSE : AMDGPUInst <(outs), (ins i32imm:$addr), "ALU clause starting at $addr:", [] > { field bits<8> Inst; bits<8> num; let Inst = num; } def LITERALS : AMDGPUInst <(outs), (ins LITERAL:$literal1, LITERAL:$literal2), "$literal1, $literal2", [] > { field bits<64> Inst; bits<32> literal1; bits<32> literal2; let Inst{31-0} = literal1; let Inst{63-32} = literal2; } def PAD : AMDGPUInst <(outs), (ins), "PAD", [] > { field bits<64> Inst; } let Predicates = [isR600toCayman] in { //===----------------------------------------------------------------------===// // Common Instructions R600, R700, Evergreen, Cayman //===----------------------------------------------------------------------===// def ADD : R600_2OP_Helper <0x0, "ADD", fadd>; // Non-IEEE MUL: 0 * anything = 0 def MUL : R600_2OP_Helper <0x1, "MUL NON-IEEE", int_AMDGPU_mul>; def MUL_IEEE : R600_2OP_Helper <0x2, "MUL_IEEE", fmul>; def MAX : R600_2OP_Helper <0x3, "MAX", AMDGPUfmax>; def MIN : R600_2OP_Helper <0x4, "MIN", AMDGPUfmin>; // For the SET* instructions there is a naming conflict in TargetSelectionDAG.td, // so some of the instruction names don't match the asm string. // XXX: Use the defs in TargetSelectionDAG.td instead of intrinsics. def SETE : R600_2OP < 0x08, "SETE", [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_EQ))] >; def SGT : R600_2OP < 0x09, "SETGT", [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_GT))] >; def SGE : R600_2OP < 0xA, "SETGE", [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_GE))] >; def SNE : R600_2OP < 0xB, "SETNE", [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_NE))] >; def SETE_DX10 : R600_2OP < 0xC, "SETE_DX10", [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_EQ))] >; def SETGT_DX10 : R600_2OP < 0xD, "SETGT_DX10", [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_GT))] >; def SETGE_DX10 : R600_2OP < 0xE, "SETGE_DX10", [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_GE))] >; def SETNE_DX10 : R600_2OP < 0xF, "SETNE_DX10", [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_NE))] >; def FRACT : R600_1OP_Helper <0x10, "FRACT", AMDGPUfract>; def TRUNC : R600_1OP_Helper <0x11, "TRUNC", int_AMDGPU_trunc>; def CEIL : R600_1OP_Helper <0x12, "CEIL", fceil>; def RNDNE : R600_1OP_Helper <0x13, "RNDNE", frint>; def FLOOR : R600_1OP_Helper <0x14, "FLOOR", ffloor>; def MOV : R600_1OP <0x19, "MOV", []>; let isPseudo = 1, isCodeGenOnly = 1, usesCustomInserter = 1 in { class MOV_IMM : AMDGPUInst < (outs R600_Reg32:$dst), (ins immType:$imm), "", [] >; } // end let isPseudo = 1, isCodeGenOnly = 1, usesCustomInserter = 1 def MOV_IMM_I32 : MOV_IMM; def : Pat < (imm:$val), (MOV_IMM_I32 imm:$val) >; def MOV_IMM_F32 : MOV_IMM; def : Pat < (fpimm:$val), (MOV_IMM_F32 fpimm:$val) >; def PRED_SETE : R600_2OP <0x20, "PRED_SETE", []>; def PRED_SETGT : R600_2OP <0x21, "PRED_SETGT", []>; def PRED_SETGE : R600_2OP <0x22, "PRED_SETGE", []>; def PRED_SETNE : R600_2OP <0x23, "PRED_SETNE", []>; let hasSideEffects = 1 in { def KILLGT : R600_2OP <0x2D, "KILLGT", []>; } // end hasSideEffects def AND_INT : R600_2OP_Helper <0x30, "AND_INT", and>; def OR_INT : R600_2OP_Helper <0x31, "OR_INT", or>; def XOR_INT : R600_2OP_Helper <0x32, "XOR_INT", xor>; def NOT_INT : R600_1OP_Helper <0x33, "NOT_INT", not>; def ADD_INT : R600_2OP_Helper <0x34, "ADD_INT", add>; def SUB_INT : R600_2OP_Helper <0x35, "SUB_INT", sub>; def MAX_INT : R600_2OP_Helper <0x36, "MAX_INT", AMDGPUsmax>; def MIN_INT : R600_2OP_Helper <0x37, "MIN_INT", AMDGPUsmin>; def MAX_UINT : R600_2OP_Helper <0x38, "MAX_UINT", AMDGPUumax>; def MIN_UINT : R600_2OP_Helper <0x39, "MIN_UINT", AMDGPUumin>; def SETE_INT : R600_2OP < 0x3A, "SETE_INT", [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETEQ))] >; def SETGT_INT : R600_2OP < 0x3B, "SETGT_INT", [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETGT))] >; def SETGE_INT : R600_2OP < 0x3C, "SETGE_INT", [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETGE))] >; def SETNE_INT : R600_2OP < 0x3D, "SETNE_INT", [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETNE))] >; def SETGT_UINT : R600_2OP < 0x3E, "SETGT_UINT", [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETUGT))] >; def SETGE_UINT : R600_2OP < 0x3F, "SETGE_UINT", [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETUGE))] >; def PRED_SETE_INT : R600_2OP <0x42, "PRED_SETE_INT", []>; def PRED_SETGT_INT : R600_2OP <0x43, "PRED_SETGE_INT", []>; def PRED_SETGE_INT : R600_2OP <0x44, "PRED_SETGE_INT", []>; def PRED_SETNE_INT : R600_2OP <0x45, "PRED_SETNE_INT", []>; def CNDE_INT : R600_3OP < 0x1C, "CNDE_INT", [(set i32:$dst, (selectcc i32:$src0, 0, i32:$src1, i32:$src2, COND_EQ))] >; def CNDGE_INT : R600_3OP < 0x1E, "CNDGE_INT", [(set i32:$dst, (selectcc i32:$src0, 0, i32:$src1, i32:$src2, COND_GE))] >; def CNDGT_INT : R600_3OP < 0x1D, "CNDGT_INT", [(set i32:$dst, (selectcc i32:$src0, 0, i32:$src1, i32:$src2, COND_GT))] >; //===----------------------------------------------------------------------===// // Texture instructions //===----------------------------------------------------------------------===// let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in { class R600_TEX inst, string opName> : InstR600 <(outs R600_Reg128:$DST_GPR), (ins R600_Reg128:$SRC_GPR, RSel:$srcx, RSel:$srcy, RSel:$srcz, RSel:$srcw, i32imm:$offsetx, i32imm:$offsety, i32imm:$offsetz, RSel:$DST_SEL_X, RSel:$DST_SEL_Y, RSel:$DST_SEL_Z, RSel:$DST_SEL_W, i32imm:$RESOURCE_ID, i32imm:$SAMPLER_ID, CT:$COORD_TYPE_X, CT:$COORD_TYPE_Y, CT:$COORD_TYPE_Z, CT:$COORD_TYPE_W), !strconcat(opName, " $DST_GPR.$DST_SEL_X$DST_SEL_Y$DST_SEL_Z$DST_SEL_W, " "$SRC_GPR.$srcx$srcy$srcz$srcw " "RID:$RESOURCE_ID SID:$SAMPLER_ID " "CT:$COORD_TYPE_X$COORD_TYPE_Y$COORD_TYPE_Z$COORD_TYPE_W"), [], NullALU>, TEX_WORD0, TEX_WORD1, TEX_WORD2 { let Inst{31-0} = Word0; let Inst{63-32} = Word1; let TEX_INST = inst{4-0}; let SRC_REL = 0; let DST_REL = 0; let LOD_BIAS = 0; let INST_MOD = 0; let FETCH_WHOLE_QUAD = 0; let ALT_CONST = 0; let SAMPLER_INDEX_MODE = 0; let RESOURCE_INDEX_MODE = 0; let TEXInst = 1; } } // End mayLoad = 0, mayStore = 0, hasSideEffects = 0 def TEX_SAMPLE : R600_TEX <0x10, "TEX_SAMPLE">; def TEX_SAMPLE_C : R600_TEX <0x18, "TEX_SAMPLE_C">; def TEX_SAMPLE_L : R600_TEX <0x11, "TEX_SAMPLE_L">; def TEX_SAMPLE_C_L : R600_TEX <0x19, "TEX_SAMPLE_C_L">; def TEX_SAMPLE_LB : R600_TEX <0x12, "TEX_SAMPLE_LB">; def TEX_SAMPLE_C_LB : R600_TEX <0x1A, "TEX_SAMPLE_C_LB">; def TEX_LD : R600_TEX <0x03, "TEX_LD">; def TEX_GET_TEXTURE_RESINFO : R600_TEX <0x04, "TEX_GET_TEXTURE_RESINFO">; def TEX_GET_GRADIENTS_H : R600_TEX <0x07, "TEX_GET_GRADIENTS_H">; def TEX_GET_GRADIENTS_V : R600_TEX <0x08, "TEX_GET_GRADIENTS_V">; def TEX_SET_GRADIENTS_H : R600_TEX <0x0B, "TEX_SET_GRADIENTS_H">; def TEX_SET_GRADIENTS_V : R600_TEX <0x0C, "TEX_SET_GRADIENTS_V">; def TEX_SAMPLE_G : R600_TEX <0x14, "TEX_SAMPLE_G">; def TEX_SAMPLE_C_G : R600_TEX <0x1C, "TEX_SAMPLE_C_G">; defm : TexPattern<0, TEX_SAMPLE>; defm : TexPattern<1, TEX_SAMPLE_C>; defm : TexPattern<2, TEX_SAMPLE_L>; defm : TexPattern<3, TEX_SAMPLE_C_L>; defm : TexPattern<4, TEX_SAMPLE_LB>; defm : TexPattern<5, TEX_SAMPLE_C_LB>; defm : TexPattern<6, TEX_LD, v4i32>; defm : TexPattern<7, TEX_GET_TEXTURE_RESINFO, v4i32>; defm : TexPattern<8, TEX_GET_GRADIENTS_H>; defm : TexPattern<9, TEX_GET_GRADIENTS_V>; //===----------------------------------------------------------------------===// // Helper classes for common instructions //===----------------------------------------------------------------------===// class MUL_LIT_Common inst> : R600_3OP < inst, "MUL_LIT", [] >; class MULADD_Common inst> : R600_3OP < inst, "MULADD", [] >; class MULADD_IEEE_Common inst> : R600_3OP < inst, "MULADD_IEEE", [(set f32:$dst, (fadd (fmul f32:$src0, f32:$src1), f32:$src2))] >; class CNDE_Common inst> : R600_3OP < inst, "CNDE", [(set f32:$dst, (selectcc f32:$src0, FP_ZERO, f32:$src1, f32:$src2, COND_EQ))] >; class CNDGT_Common inst> : R600_3OP < inst, "CNDGT", [(set f32:$dst, (selectcc f32:$src0, FP_ZERO, f32:$src1, f32:$src2, COND_GT))] >; class CNDGE_Common inst> : R600_3OP < inst, "CNDGE", [(set f32:$dst, (selectcc f32:$src0, FP_ZERO, f32:$src1, f32:$src2, COND_GE))] >; let isCodeGenOnly = 1, isPseudo = 1, Namespace = "AMDGPU" in { class R600_VEC2OP pattern> : InstR600 <(outs R600_Reg32:$dst), (ins // Slot X UEM:$update_exec_mask_X, UP:$update_pred_X, WRITE:$write_X, OMOD:$omod_X, REL:$dst_rel_X, CLAMP:$clamp_X, R600_TReg32_X:$src0_X, NEG:$src0_neg_X, REL:$src0_rel_X, ABS:$src0_abs_X, SEL:$src0_sel_X, R600_TReg32_X:$src1_X, NEG:$src1_neg_X, REL:$src1_rel_X, ABS:$src1_abs_X, SEL:$src1_sel_X, R600_Pred:$pred_sel_X, // Slot Y UEM:$update_exec_mask_Y, UP:$update_pred_Y, WRITE:$write_Y, OMOD:$omod_Y, REL:$dst_rel_Y, CLAMP:$clamp_Y, R600_TReg32_Y:$src0_Y, NEG:$src0_neg_Y, REL:$src0_rel_Y, ABS:$src0_abs_Y, SEL:$src0_sel_Y, R600_TReg32_Y:$src1_Y, NEG:$src1_neg_Y, REL:$src1_rel_Y, ABS:$src1_abs_Y, SEL:$src1_sel_Y, R600_Pred:$pred_sel_Y, // Slot Z UEM:$update_exec_mask_Z, UP:$update_pred_Z, WRITE:$write_Z, OMOD:$omod_Z, REL:$dst_rel_Z, CLAMP:$clamp_Z, R600_TReg32_Z:$src0_Z, NEG:$src0_neg_Z, REL:$src0_rel_Z, ABS:$src0_abs_Z, SEL:$src0_sel_Z, R600_TReg32_Z:$src1_Z, NEG:$src1_neg_Z, REL:$src1_rel_Z, ABS:$src1_abs_Z, SEL:$src1_sel_Z, R600_Pred:$pred_sel_Z, // Slot W UEM:$update_exec_mask_W, UP:$update_pred_W, WRITE:$write_W, OMOD:$omod_W, REL:$dst_rel_W, CLAMP:$clamp_W, R600_TReg32_W:$src0_W, NEG:$src0_neg_W, REL:$src0_rel_W, ABS:$src0_abs_W, SEL:$src0_sel_W, R600_TReg32_W:$src1_W, NEG:$src1_neg_W, REL:$src1_rel_W, ABS:$src1_abs_W, SEL:$src1_sel_W, R600_Pred:$pred_sel_W, LITERAL:$literal0, LITERAL:$literal1), "", pattern, AnyALU> {} } def DOT_4 : R600_VEC2OP<[(set R600_Reg32:$dst, (DOT4 R600_TReg32_X:$src0_X, R600_TReg32_X:$src1_X, R600_TReg32_Y:$src0_Y, R600_TReg32_Y:$src1_Y, R600_TReg32_Z:$src0_Z, R600_TReg32_Z:$src1_Z, R600_TReg32_W:$src0_W, R600_TReg32_W:$src1_W))]>; class DOT4_Common inst> : R600_2OP ; let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in { multiclass CUBE_Common inst> { def _pseudo : InstR600 < (outs R600_Reg128:$dst), (ins R600_Reg128:$src), "CUBE $dst $src", [(set v4f32:$dst, (int_AMDGPU_cube v4f32:$src))], VecALU > { let isPseudo = 1; } def _real : R600_2OP ; } } // End mayLoad = 0, mayStore = 0, hasSideEffects = 0 class EXP_IEEE_Common inst> : R600_1OP_Helper < inst, "EXP_IEEE", fexp2 > { let TransOnly = 1; let Itinerary = TransALU; } class FLT_TO_INT_Common inst> : R600_1OP_Helper < inst, "FLT_TO_INT", fp_to_sint > { let TransOnly = 1; let Itinerary = TransALU; } class INT_TO_FLT_Common inst> : R600_1OP_Helper < inst, "INT_TO_FLT", sint_to_fp > { let TransOnly = 1; let Itinerary = TransALU; } class FLT_TO_UINT_Common inst> : R600_1OP_Helper < inst, "FLT_TO_UINT", fp_to_uint > { let TransOnly = 1; let Itinerary = TransALU; } class UINT_TO_FLT_Common inst> : R600_1OP_Helper < inst, "UINT_TO_FLT", uint_to_fp > { let TransOnly = 1; let Itinerary = TransALU; } class LOG_CLAMPED_Common inst> : R600_1OP < inst, "LOG_CLAMPED", [] >; class LOG_IEEE_Common inst> : R600_1OP_Helper < inst, "LOG_IEEE", flog2 > { let TransOnly = 1; let Itinerary = TransALU; } class LSHL_Common inst> : R600_2OP_Helper ; class LSHR_Common inst> : R600_2OP_Helper ; class ASHR_Common inst> : R600_2OP_Helper ; class MULHI_INT_Common inst> : R600_2OP_Helper < inst, "MULHI_INT", mulhs > { let TransOnly = 1; let Itinerary = TransALU; } class MULHI_UINT_Common inst> : R600_2OP_Helper < inst, "MULHI", mulhu > { let TransOnly = 1; let Itinerary = TransALU; } class MULLO_INT_Common inst> : R600_2OP_Helper < inst, "MULLO_INT", mul > { let TransOnly = 1; let Itinerary = TransALU; } class MULLO_UINT_Common inst> : R600_2OP { let TransOnly = 1; let Itinerary = TransALU; } class RECIP_CLAMPED_Common inst> : R600_1OP < inst, "RECIP_CLAMPED", [] > { let TransOnly = 1; let Itinerary = TransALU; } class RECIP_IEEE_Common inst> : R600_1OP < inst, "RECIP_IEEE", [(set f32:$dst, (fdiv FP_ONE, f32:$src0))] > { let TransOnly = 1; let Itinerary = TransALU; } class RECIP_UINT_Common inst> : R600_1OP_Helper < inst, "RECIP_UINT", AMDGPUurecip > { let TransOnly = 1; let Itinerary = TransALU; } class RECIPSQRT_CLAMPED_Common inst> : R600_1OP_Helper < inst, "RECIPSQRT_CLAMPED", int_AMDGPU_rsq > { let TransOnly = 1; let Itinerary = TransALU; } class RECIPSQRT_IEEE_Common inst> : R600_1OP < inst, "RECIPSQRT_IEEE", [] > { let TransOnly = 1; let Itinerary = TransALU; } class SIN_Common inst> : R600_1OP < inst, "SIN", []>{ let Trig = 1; let TransOnly = 1; let Itinerary = TransALU; } class COS_Common inst> : R600_1OP < inst, "COS", []> { let Trig = 1; let TransOnly = 1; let Itinerary = TransALU; } //===----------------------------------------------------------------------===// // Helper patterns for complex intrinsics //===----------------------------------------------------------------------===// multiclass DIV_Common { def : Pat< (int_AMDGPU_div f32:$src0, f32:$src1), (MUL_IEEE $src0, (recip_ieee $src1)) >; def : Pat< (fdiv f32:$src0, f32:$src1), (MUL_IEEE $src0, (recip_ieee $src1)) >; } class TGSI_LIT_Z_Common : Pat < (int_TGSI_lit_z f32:$src_x, f32:$src_y, f32:$src_w), (exp_ieee (mul_lit (log_clamped (MAX $src_y, (f32 ZERO))), $src_w, $src_x)) >; //===----------------------------------------------------------------------===// // R600 / R700 Instructions //===----------------------------------------------------------------------===// let Predicates = [isR600] in { def MUL_LIT_r600 : MUL_LIT_Common<0x0C>; def MULADD_r600 : MULADD_Common<0x10>; def MULADD_IEEE_r600 : MULADD_IEEE_Common<0x14>; def CNDE_r600 : CNDE_Common<0x18>; def CNDGT_r600 : CNDGT_Common<0x19>; def CNDGE_r600 : CNDGE_Common<0x1A>; def DOT4_r600 : DOT4_Common<0x50>; defm CUBE_r600 : CUBE_Common<0x52>; def EXP_IEEE_r600 : EXP_IEEE_Common<0x61>; def LOG_CLAMPED_r600 : LOG_CLAMPED_Common<0x62>; def LOG_IEEE_r600 : LOG_IEEE_Common<0x63>; def RECIP_CLAMPED_r600 : RECIP_CLAMPED_Common<0x64>; def RECIP_IEEE_r600 : RECIP_IEEE_Common<0x66>; def RECIPSQRT_CLAMPED_r600 : RECIPSQRT_CLAMPED_Common<0x67>; def RECIPSQRT_IEEE_r600 : RECIPSQRT_IEEE_Common<0x69>; def FLT_TO_INT_r600 : FLT_TO_INT_Common<0x6b>; def INT_TO_FLT_r600 : INT_TO_FLT_Common<0x6c>; def FLT_TO_UINT_r600 : FLT_TO_UINT_Common<0x79>; def UINT_TO_FLT_r600 : UINT_TO_FLT_Common<0x6d>; def SIN_r600 : SIN_Common<0x6E>; def COS_r600 : COS_Common<0x6F>; def ASHR_r600 : ASHR_Common<0x70>; def LSHR_r600 : LSHR_Common<0x71>; def LSHL_r600 : LSHL_Common<0x72>; def MULLO_INT_r600 : MULLO_INT_Common<0x73>; def MULHI_INT_r600 : MULHI_INT_Common<0x74>; def MULLO_UINT_r600 : MULLO_UINT_Common<0x75>; def MULHI_UINT_r600 : MULHI_UINT_Common<0x76>; def RECIP_UINT_r600 : RECIP_UINT_Common <0x78>; defm DIV_r600 : DIV_Common; def : POW_Common ; def TGSI_LIT_Z_r600 : TGSI_LIT_Z_Common; def : Pat<(fsqrt f32:$src), (MUL $src, (RECIPSQRT_CLAMPED_r600 $src))>; def R600_ExportSwz : ExportSwzInst { let Word1{20-17} = 0; // BURST_COUNT let Word1{21} = eop; let Word1{22} = 1; // VALID_PIXEL_MODE let Word1{30-23} = inst; let Word1{31} = 1; // BARRIER } defm : ExportPattern; def R600_ExportBuf : ExportBufInst { let Word1{20-17} = 0; // BURST_COUNT let Word1{21} = eop; let Word1{22} = 1; // VALID_PIXEL_MODE let Word1{30-23} = inst; let Word1{31} = 1; // BARRIER } defm : SteamOutputExportPattern; def CF_TC_R600 : CF_CLAUSE_R600<1, (ins i32imm:$ADDR, i32imm:$COUNT), "TEX $COUNT @$ADDR"> { let POP_COUNT = 0; } def CF_VC_R600 : CF_CLAUSE_R600<2, (ins i32imm:$ADDR, i32imm:$COUNT), "VTX $COUNT @$ADDR"> { let POP_COUNT = 0; } def WHILE_LOOP_R600 : CF_CLAUSE_R600<6, (ins i32imm:$ADDR), "LOOP_START_DX10 @$ADDR"> { let POP_COUNT = 0; let COUNT = 0; } def END_LOOP_R600 : CF_CLAUSE_R600<5, (ins i32imm:$ADDR), "END_LOOP @$ADDR"> { let POP_COUNT = 0; let COUNT = 0; } def LOOP_BREAK_R600 : CF_CLAUSE_R600<9, (ins i32imm:$ADDR), "LOOP_BREAK @$ADDR"> { let POP_COUNT = 0; let COUNT = 0; } def CF_CONTINUE_R600 : CF_CLAUSE_R600<8, (ins i32imm:$ADDR), "CONTINUE @$ADDR"> { let POP_COUNT = 0; let COUNT = 0; } def CF_JUMP_R600 : CF_CLAUSE_R600<10, (ins i32imm:$ADDR, i32imm:$POP_COUNT), "JUMP @$ADDR POP:$POP_COUNT"> { let COUNT = 0; } def CF_ELSE_R600 : CF_CLAUSE_R600<13, (ins i32imm:$ADDR, i32imm:$POP_COUNT), "ELSE @$ADDR POP:$POP_COUNT"> { let COUNT = 0; } def CF_CALL_FS_R600 : CF_CLAUSE_R600<19, (ins), "CALL_FS"> { let ADDR = 0; let COUNT = 0; let POP_COUNT = 0; } def POP_R600 : CF_CLAUSE_R600<14, (ins i32imm:$ADDR, i32imm:$POP_COUNT), "POP @$ADDR POP:$POP_COUNT"> { let COUNT = 0; } def CF_END_R600 : CF_CLAUSE_R600<0, (ins), "CF_END"> { let COUNT = 0; let POP_COUNT = 0; let ADDR = 0; let END_OF_PROGRAM = 1; } } // Helper pattern for normalizing inputs to triginomic instructions for R700+ // cards. class COS_PAT : Pat< (fcos f32:$src), (trig (MUL_IEEE (MOV_IMM_I32 CONST.TWO_PI_INV), $src)) >; class SIN_PAT : Pat< (fsin f32:$src), (trig (MUL_IEEE (MOV_IMM_I32 CONST.TWO_PI_INV), $src)) >; //===----------------------------------------------------------------------===// // R700 Only instructions //===----------------------------------------------------------------------===// let Predicates = [isR700] in { def SIN_r700 : SIN_Common<0x6E>; def COS_r700 : COS_Common<0x6F>; // R700 normalizes inputs to SIN/COS the same as EG def : SIN_PAT ; def : COS_PAT ; } //===----------------------------------------------------------------------===// // Evergreen Only instructions //===----------------------------------------------------------------------===// let Predicates = [isEG] in { def RECIP_IEEE_eg : RECIP_IEEE_Common<0x86>; defm DIV_eg : DIV_Common; def MULLO_INT_eg : MULLO_INT_Common<0x8F>; def MULHI_INT_eg : MULHI_INT_Common<0x90>; def MULLO_UINT_eg : MULLO_UINT_Common<0x91>; def MULHI_UINT_eg : MULHI_UINT_Common<0x92>; def RECIP_UINT_eg : RECIP_UINT_Common<0x94>; def RECIPSQRT_CLAMPED_eg : RECIPSQRT_CLAMPED_Common<0x87>; def EXP_IEEE_eg : EXP_IEEE_Common<0x81>; def LOG_IEEE_eg : LOG_IEEE_Common<0x83>; def RECIP_CLAMPED_eg : RECIP_CLAMPED_Common<0x84>; def RECIPSQRT_IEEE_eg : RECIPSQRT_IEEE_Common<0x89>; def SIN_eg : SIN_Common<0x8D>; def COS_eg : COS_Common<0x8E>; def : POW_Common ; def : SIN_PAT ; def : COS_PAT ; def : Pat<(fsqrt f32:$src), (MUL $src, (RECIPSQRT_CLAMPED_eg $src))>; //===----------------------------------------------------------------------===// // Memory read/write instructions //===----------------------------------------------------------------------===// let usesCustomInserter = 1 in { class RAT_WRITE_CACHELESS_eg mask, string name, list pattern> : EG_CF_RAT <0x57, 0x2, mask, (outs), ins, name, pattern> { } } // End usesCustomInserter = 1 // 32-bit store def RAT_WRITE_CACHELESS_32_eg : RAT_WRITE_CACHELESS_eg < (ins R600_TReg32_X:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop), 0x1, "RAT_WRITE_CACHELESS_32_eg $rw_gpr, $index_gpr, $eop", [(global_store i32:$rw_gpr, i32:$index_gpr)] >; //128-bit store def RAT_WRITE_CACHELESS_128_eg : RAT_WRITE_CACHELESS_eg < (ins R600_Reg128:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop), 0xf, "RAT_WRITE_CACHELESS_128 $rw_gpr.XYZW, $index_gpr, $eop", [(global_store v4i32:$rw_gpr, i32:$index_gpr)] >; class VTX_READ_eg buffer_id, dag outs, list pattern> : VTX_WORD0_eg, VTX_READ { // Static fields let VC_INST = 0; let FETCH_TYPE = 2; let FETCH_WHOLE_QUAD = 0; let BUFFER_ID = buffer_id; let SRC_REL = 0; // XXX: We can infer this field based on the SRC_GPR. This would allow us // to store vertex addresses in any channel, not just X. let SRC_SEL_X = 0; let Inst{31-0} = Word0; } class VTX_READ_8_eg buffer_id, list pattern> : VTX_READ_eg <"VTX_READ_8 $dst, $ptr", buffer_id, (outs R600_TReg32_X:$dst), pattern> { let MEGA_FETCH_COUNT = 1; let DST_SEL_X = 0; let DST_SEL_Y = 7; // Masked let DST_SEL_Z = 7; // Masked let DST_SEL_W = 7; // Masked let DATA_FORMAT = 1; // FMT_8 } class VTX_READ_16_eg buffer_id, list pattern> : VTX_READ_eg <"VTX_READ_16 $dst, $ptr", buffer_id, (outs R600_TReg32_X:$dst), pattern> { let MEGA_FETCH_COUNT = 2; let DST_SEL_X = 0; let DST_SEL_Y = 7; // Masked let DST_SEL_Z = 7; // Masked let DST_SEL_W = 7; // Masked let DATA_FORMAT = 5; // FMT_16 } class VTX_READ_32_eg buffer_id, list pattern> : VTX_READ_eg <"VTX_READ_32 $dst, $ptr", buffer_id, (outs R600_TReg32_X:$dst), pattern> { let MEGA_FETCH_COUNT = 4; let DST_SEL_X = 0; let DST_SEL_Y = 7; // Masked let DST_SEL_Z = 7; // Masked let DST_SEL_W = 7; // Masked let DATA_FORMAT = 0xD; // COLOR_32 // This is not really necessary, but there were some GPU hangs that appeared // to be caused by ALU instructions in the next instruction group that wrote // to the $ptr registers of the VTX_READ. // e.g. // %T3_X = VTX_READ_PARAM_32_eg %T2_X, 24 // %T2_X = MOV %ZERO //Adding this constraint prevents this from happening. let Constraints = "$ptr.ptr = $dst"; } class VTX_READ_128_eg buffer_id, list pattern> : VTX_READ_eg <"VTX_READ_128 $dst.XYZW, $ptr", buffer_id, (outs R600_Reg128:$dst), pattern> { let MEGA_FETCH_COUNT = 16; let DST_SEL_X = 0; let DST_SEL_Y = 1; let DST_SEL_Z = 2; let DST_SEL_W = 3; let DATA_FORMAT = 0x22; // COLOR_32_32_32_32 // XXX: Need to force VTX_READ_128 instructions to write to the same register // that holds its buffer address to avoid potential hangs. We can't use // the same constraint as VTX_READ_32_eg, because the $ptr.ptr and $dst // registers are different sizes. } //===----------------------------------------------------------------------===// // VTX Read from parameter memory space //===----------------------------------------------------------------------===// def VTX_READ_PARAM_8_eg : VTX_READ_8_eg <0, [(set i32:$dst, (load_param_zexti8 ADDRVTX_READ:$ptr))] >; def VTX_READ_PARAM_16_eg : VTX_READ_16_eg <0, [(set i32:$dst, (load_param_zexti16 ADDRVTX_READ:$ptr))] >; def VTX_READ_PARAM_32_eg : VTX_READ_32_eg <0, [(set i32:$dst, (load_param ADDRVTX_READ:$ptr))] >; def VTX_READ_PARAM_128_eg : VTX_READ_128_eg <0, [(set v4i32:$dst, (load_param ADDRVTX_READ:$ptr))] >; //===----------------------------------------------------------------------===// // VTX Read from global memory space //===----------------------------------------------------------------------===// // 8-bit reads def VTX_READ_GLOBAL_8_eg : VTX_READ_8_eg <1, [(set i32:$dst, (zextloadi8_global ADDRVTX_READ:$ptr))] >; // 32-bit reads def VTX_READ_GLOBAL_32_eg : VTX_READ_32_eg <1, [(set i32:$dst, (global_load ADDRVTX_READ:$ptr))] >; // 128-bit reads def VTX_READ_GLOBAL_128_eg : VTX_READ_128_eg <1, [(set v4i32:$dst, (global_load ADDRVTX_READ:$ptr))] >; //===----------------------------------------------------------------------===// // Constant Loads // XXX: We are currently storing all constants in the global address space. //===----------------------------------------------------------------------===// def CONSTANT_LOAD_eg : VTX_READ_32_eg <1, [(set i32:$dst, (constant_load ADDRVTX_READ:$ptr))] >; } // End Predicates = [isEG] //===----------------------------------------------------------------------===// // Evergreen / Cayman Instructions //===----------------------------------------------------------------------===// let Predicates = [isEGorCayman] in { // BFE_UINT - bit_extract, an optimization for mask and shift // Src0 = Input // Src1 = Offset // Src2 = Width // // bit_extract = (Input << (32 - Offset - Width)) >> (32 - Width) // // Example Usage: // (Offset, Width) // // (0, 8) = (Input << 24) >> 24 = (Input & 0xff) >> 0 // (8, 8) = (Input << 16) >> 24 = (Input & 0xffff) >> 8 // (16,8) = (Input << 8) >> 24 = (Input & 0xffffff) >> 16 // (24,8) = (Input << 0) >> 24 = (Input & 0xffffffff) >> 24 def BFE_UINT_eg : R600_3OP <0x4, "BFE_UINT", [(set i32:$dst, (int_AMDIL_bit_extract_u32 i32:$src0, i32:$src1, i32:$src2))], VecALU >; def : BFEPattern ; def BFI_INT_eg : R600_3OP <0x06, "BFI_INT", [], VecALU>; defm : BFIPatterns ; def BIT_ALIGN_INT_eg : R600_3OP <0xC, "BIT_ALIGN_INT", [], VecALU>; def : ROTRPattern ; def MULADD_eg : MULADD_Common<0x14>; def MULADD_IEEE_eg : MULADD_IEEE_Common<0x18>; def ASHR_eg : ASHR_Common<0x15>; def LSHR_eg : LSHR_Common<0x16>; def LSHL_eg : LSHL_Common<0x17>; def CNDE_eg : CNDE_Common<0x19>; def CNDGT_eg : CNDGT_Common<0x1A>; def CNDGE_eg : CNDGE_Common<0x1B>; def MUL_LIT_eg : MUL_LIT_Common<0x1F>; def LOG_CLAMPED_eg : LOG_CLAMPED_Common<0x82>; def DOT4_eg : DOT4_Common<0xBE>; defm CUBE_eg : CUBE_Common<0xC0>; let hasSideEffects = 1 in { def MOVA_INT_eg : R600_1OP <0xCC, "MOVA_INT", []>; } def TGSI_LIT_Z_eg : TGSI_LIT_Z_Common; def FLT_TO_INT_eg : FLT_TO_INT_Common<0x50> { let Pattern = []; } def INT_TO_FLT_eg : INT_TO_FLT_Common<0x9B>; def FLT_TO_UINT_eg : FLT_TO_UINT_Common<0x9A> { let Pattern = []; } def UINT_TO_FLT_eg : UINT_TO_FLT_Common<0x9C>; // TRUNC is used for the FLT_TO_INT instructions to work around a // perceived problem where the rounding modes are applied differently // depending on the instruction and the slot they are in. // See: // https://bugs.freedesktop.org/show_bug.cgi?id=50232 // Mesa commit: a1a0974401c467cb86ef818f22df67c21774a38c // // XXX: Lowering SELECT_CC will sometimes generate fp_to_[su]int nodes, // which do not need to be truncated since the fp values are 0.0f or 1.0f. // We should look into handling these cases separately. def : Pat<(fp_to_sint f32:$src0), (FLT_TO_INT_eg (TRUNC $src0))>; def : Pat<(fp_to_uint f32:$src0), (FLT_TO_UINT_eg (TRUNC $src0))>; // SHA-256 Patterns def : SHA256MaPattern ; def EG_ExportSwz : ExportSwzInst { let Word1{19-16} = 0; // BURST_COUNT let Word1{20} = 1; // VALID_PIXEL_MODE let Word1{21} = eop; let Word1{29-22} = inst; let Word1{30} = 0; // MARK let Word1{31} = 1; // BARRIER } defm : ExportPattern; def EG_ExportBuf : ExportBufInst { let Word1{19-16} = 0; // BURST_COUNT let Word1{20} = 1; // VALID_PIXEL_MODE let Word1{21} = eop; let Word1{29-22} = inst; let Word1{30} = 0; // MARK let Word1{31} = 1; // BARRIER } defm : SteamOutputExportPattern; def CF_TC_EG : CF_CLAUSE_EG<1, (ins i32imm:$ADDR, i32imm:$COUNT), "TEX $COUNT @$ADDR"> { let POP_COUNT = 0; } def CF_VC_EG : CF_CLAUSE_EG<2, (ins i32imm:$ADDR, i32imm:$COUNT), "VTX $COUNT @$ADDR"> { let POP_COUNT = 0; } def WHILE_LOOP_EG : CF_CLAUSE_EG<6, (ins i32imm:$ADDR), "LOOP_START_DX10 @$ADDR"> { let POP_COUNT = 0; let COUNT = 0; } def END_LOOP_EG : CF_CLAUSE_EG<5, (ins i32imm:$ADDR), "END_LOOP @$ADDR"> { let POP_COUNT = 0; let COUNT = 0; } def LOOP_BREAK_EG : CF_CLAUSE_EG<9, (ins i32imm:$ADDR), "LOOP_BREAK @$ADDR"> { let POP_COUNT = 0; let COUNT = 0; } def CF_CONTINUE_EG : CF_CLAUSE_EG<8, (ins i32imm:$ADDR), "CONTINUE @$ADDR"> { let POP_COUNT = 0; let COUNT = 0; } def CF_JUMP_EG : CF_CLAUSE_EG<10, (ins i32imm:$ADDR, i32imm:$POP_COUNT), "JUMP @$ADDR POP:$POP_COUNT"> { let COUNT = 0; } def CF_ELSE_EG : CF_CLAUSE_EG<13, (ins i32imm:$ADDR, i32imm:$POP_COUNT), "ELSE @$ADDR POP:$POP_COUNT"> { let COUNT = 0; } def CF_CALL_FS_EG : CF_CLAUSE_EG<19, (ins), "CALL_FS"> { let ADDR = 0; let COUNT = 0; let POP_COUNT = 0; } def POP_EG : CF_CLAUSE_EG<14, (ins i32imm:$ADDR, i32imm:$POP_COUNT), "POP @$ADDR POP:$POP_COUNT"> { let COUNT = 0; } def CF_END_EG : CF_CLAUSE_EG<0, (ins), "CF_END"> { let COUNT = 0; let POP_COUNT = 0; let ADDR = 0; let END_OF_PROGRAM = 1; } } // End Predicates = [isEGorCayman] //===----------------------------------------------------------------------===// // Regist loads and stores - for indirect addressing //===----------------------------------------------------------------------===// defm R600_ : RegisterLoadStore ; //===----------------------------------------------------------------------===// // Cayman Instructions //===----------------------------------------------------------------------===// let Predicates = [isCayman] in { let isVector = 1 in { def RECIP_IEEE_cm : RECIP_IEEE_Common<0x86>; def MULLO_INT_cm : MULLO_INT_Common<0x8F>; def MULHI_INT_cm : MULHI_INT_Common<0x90>; def MULLO_UINT_cm : MULLO_UINT_Common<0x91>; def MULHI_UINT_cm : MULHI_UINT_Common<0x92>; def RECIPSQRT_CLAMPED_cm : RECIPSQRT_CLAMPED_Common<0x87>; def EXP_IEEE_cm : EXP_IEEE_Common<0x81>; def LOG_IEEE_cm : LOG_IEEE_Common<0x83>; def RECIP_CLAMPED_cm : RECIP_CLAMPED_Common<0x84>; def RECIPSQRT_IEEE_cm : RECIPSQRT_IEEE_Common<0x89>; def SIN_cm : SIN_Common<0x8D>; def COS_cm : COS_Common<0x8E>; } // End isVector = 1 def : POW_Common ; def : SIN_PAT ; def : COS_PAT ; defm DIV_cm : DIV_Common; // RECIP_UINT emulation for Cayman // The multiplication scales from [0,1] to the unsigned integer range def : Pat < (AMDGPUurecip i32:$src0), (FLT_TO_UINT_eg (MUL_IEEE (RECIP_IEEE_cm (UINT_TO_FLT_eg $src0)), (MOV_IMM_I32 CONST.FP_UINT_MAX_PLUS_1))) >; def CF_END_CM : CF_CLAUSE_EG<32, (ins), "CF_END"> { let ADDR = 0; let POP_COUNT = 0; let COUNT = 0; } def : Pat<(fsqrt f32:$src), (MUL R600_Reg32:$src, (RECIPSQRT_CLAMPED_cm $src))>; def RAT_STORE_DWORD_cm : EG_CF_RAT < 0x57, 0x14, 0x1, (outs), (ins R600_TReg32_X:$rw_gpr, R600_TReg32_X:$index_gpr), "EXPORT_RAT_INST_STORE_DWORD $rw_gpr, $index_gpr", [(global_store i32:$rw_gpr, i32:$index_gpr)] > { let eop = 0; // This bit is not used on Cayman. } class VTX_READ_cm buffer_id, dag outs, list pattern> : VTX_WORD0_cm, VTX_READ { // Static fields let VC_INST = 0; let FETCH_TYPE = 2; let FETCH_WHOLE_QUAD = 0; let BUFFER_ID = buffer_id; let SRC_REL = 0; // XXX: We can infer this field based on the SRC_GPR. This would allow us // to store vertex addresses in any channel, not just X. let SRC_SEL_X = 0; let SRC_SEL_Y = 0; let STRUCTURED_READ = 0; let LDS_REQ = 0; let COALESCED_READ = 0; let Inst{31-0} = Word0; } class VTX_READ_8_cm buffer_id, list pattern> : VTX_READ_cm <"VTX_READ_8 $dst, $ptr", buffer_id, (outs R600_TReg32_X:$dst), pattern> { let DST_SEL_X = 0; let DST_SEL_Y = 7; // Masked let DST_SEL_Z = 7; // Masked let DST_SEL_W = 7; // Masked let DATA_FORMAT = 1; // FMT_8 } class VTX_READ_16_cm buffer_id, list pattern> : VTX_READ_cm <"VTX_READ_16 $dst, $ptr", buffer_id, (outs R600_TReg32_X:$dst), pattern> { let DST_SEL_X = 0; let DST_SEL_Y = 7; // Masked let DST_SEL_Z = 7; // Masked let DST_SEL_W = 7; // Masked let DATA_FORMAT = 5; // FMT_16 } class VTX_READ_32_cm buffer_id, list pattern> : VTX_READ_cm <"VTX_READ_32 $dst, $ptr", buffer_id, (outs R600_TReg32_X:$dst), pattern> { let DST_SEL_X = 0; let DST_SEL_Y = 7; // Masked let DST_SEL_Z = 7; // Masked let DST_SEL_W = 7; // Masked let DATA_FORMAT = 0xD; // COLOR_32 // This is not really necessary, but there were some GPU hangs that appeared // to be caused by ALU instructions in the next instruction group that wrote // to the $ptr registers of the VTX_READ. // e.g. // %T3_X = VTX_READ_PARAM_32_eg %T2_X, 24 // %T2_X = MOV %ZERO //Adding this constraint prevents this from happening. let Constraints = "$ptr.ptr = $dst"; } class VTX_READ_128_cm buffer_id, list pattern> : VTX_READ_cm <"VTX_READ_128 $dst.XYZW, $ptr", buffer_id, (outs R600_Reg128:$dst), pattern> { let DST_SEL_X = 0; let DST_SEL_Y = 1; let DST_SEL_Z = 2; let DST_SEL_W = 3; let DATA_FORMAT = 0x22; // COLOR_32_32_32_32 // XXX: Need to force VTX_READ_128 instructions to write to the same register // that holds its buffer address to avoid potential hangs. We can't use // the same constraint as VTX_READ_32_eg, because the $ptr.ptr and $dst // registers are different sizes. } //===----------------------------------------------------------------------===// // VTX Read from parameter memory space //===----------------------------------------------------------------------===// def VTX_READ_PARAM_8_cm : VTX_READ_8_cm <0, [(set i32:$dst, (load_param_zexti8 ADDRVTX_READ:$ptr))] >; def VTX_READ_PARAM_16_cm : VTX_READ_16_cm <0, [(set i32:$dst, (load_param_zexti16 ADDRVTX_READ:$ptr))] >; def VTX_READ_PARAM_32_cm : VTX_READ_32_cm <0, [(set i32:$dst, (load_param ADDRVTX_READ:$ptr))] >; def VTX_READ_PARAM_128_cm : VTX_READ_128_cm <0, [(set v4i32:$dst, (load_param ADDRVTX_READ:$ptr))] >; //===----------------------------------------------------------------------===// // VTX Read from global memory space //===----------------------------------------------------------------------===// // 8-bit reads def VTX_READ_GLOBAL_8_cm : VTX_READ_8_cm <1, [(set i32:$dst, (zextloadi8_global ADDRVTX_READ:$ptr))] >; // 32-bit reads def VTX_READ_GLOBAL_32_cm : VTX_READ_32_cm <1, [(set i32:$dst, (global_load ADDRVTX_READ:$ptr))] >; // 128-bit reads def VTX_READ_GLOBAL_128_cm : VTX_READ_128_cm <1, [(set v4i32:$dst, (global_load ADDRVTX_READ:$ptr))] >; } // End isCayman //===----------------------------------------------------------------------===// // Branch Instructions //===----------------------------------------------------------------------===// def IF_PREDICATE_SET : ILFormat<(outs), (ins GPRI32:$src), "IF_PREDICATE_SET $src", []>; def PREDICATED_BREAK : ILFormat<(outs), (ins GPRI32:$src), "PREDICATED_BREAK $src", []>; //===----------------------------------------------------------------------===// // Pseudo instructions //===----------------------------------------------------------------------===// let isPseudo = 1 in { def PRED_X : InstR600 < (outs R600_Predicate_Bit:$dst), (ins R600_Reg32:$src0, i32imm:$src1, i32imm:$flags), "", [], NullALU> { let FlagOperandIdx = 3; } let isTerminator = 1, isBranch = 1 in { def JUMP_COND : InstR600 < (outs), (ins brtarget:$target, R600_Predicate_Bit:$p), "JUMP $target ($p)", [], AnyALU >; def JUMP : InstR600 < (outs), (ins brtarget:$target), "JUMP $target", [], AnyALU > { let isPredicable = 1; let isBarrier = 1; } } // End isTerminator = 1, isBranch = 1 let usesCustomInserter = 1 in { let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in { def MASK_WRITE : AMDGPUShaderInst < (outs), (ins R600_Reg32:$src), "MASK_WRITE $src", [] >; } // End mayLoad = 0, mayStore = 0, hasSideEffects = 1 def TXD: InstR600 < (outs R600_Reg128:$dst), (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, i32imm:$resourceId, i32imm:$samplerId, i32imm:$textureTarget), "TXD $dst, $src0, $src1, $src2, $resourceId, $samplerId, $textureTarget", [(set v4f32:$dst, (int_AMDGPU_txd v4f32:$src0, v4f32:$src1, v4f32:$src2, imm:$resourceId, imm:$samplerId, imm:$textureTarget))], NullALU > { let TEXInst = 1; } def TXD_SHADOW: InstR600 < (outs R600_Reg128:$dst), (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2, i32imm:$resourceId, i32imm:$samplerId, i32imm:$textureTarget), "TXD_SHADOW $dst, $src0, $src1, $src2, $resourceId, $samplerId, $textureTarget", [(set v4f32:$dst, (int_AMDGPU_txd v4f32:$src0, v4f32:$src1, v4f32:$src2, imm:$resourceId, imm:$samplerId, TEX_SHADOW:$textureTarget))], NullALU > { let TEXInst = 1; } } // End isPseudo = 1 } // End usesCustomInserter = 1 def CLAMP_R600 : CLAMP ; def FABS_R600 : FABS; def FNEG_R600 : FNEG; //===---------------------------------------------------------------------===// // Return instruction //===---------------------------------------------------------------------===// let isTerminator = 1, isReturn = 1, hasCtrlDep = 1, usesCustomInserter = 1 in { def RETURN : ILFormat<(outs), (ins variable_ops), "RETURN", [(IL_retflag)]>; } //===----------------------------------------------------------------------===// // Constant Buffer Addressing Support //===----------------------------------------------------------------------===// let usesCustomInserter = 1, isCodeGenOnly = 1, isPseudo = 1, Namespace = "AMDGPU" in { def CONST_COPY : Instruction { let OutOperandList = (outs R600_Reg32:$dst); let InOperandList = (ins i32imm:$src); let Pattern = [(set R600_Reg32:$dst, (CONST_ADDRESS ADDRGA_CONST_OFFSET:$src))]; let AsmString = "CONST_COPY"; let neverHasSideEffects = 1; let isAsCheapAsAMove = 1; let Itinerary = NullALU; } } // end usesCustomInserter = 1, isCodeGenOnly = 1, isPseudo = 1, Namespace = "AMDGPU" def TEX_VTX_CONSTBUF : InstR600ISA <(outs R600_Reg128:$dst), (ins MEMxi:$ptr, i32imm:$BUFFER_ID), "VTX_READ_eg $dst, $ptr", [(set v4i32:$dst, (CONST_ADDRESS ADDRGA_VAR_OFFSET:$ptr, (i32 imm:$BUFFER_ID)))]>, VTX_WORD1_GPR, VTX_WORD0_eg { let VC_INST = 0; let FETCH_TYPE = 2; let FETCH_WHOLE_QUAD = 0; let SRC_REL = 0; let SRC_SEL_X = 0; let DST_REL = 0; let USE_CONST_FIELDS = 0; let NUM_FORMAT_ALL = 2; let FORMAT_COMP_ALL = 1; let SRF_MODE_ALL = 1; let MEGA_FETCH_COUNT = 16; let DST_SEL_X = 0; let DST_SEL_Y = 1; let DST_SEL_Z = 2; let DST_SEL_W = 3; let DATA_FORMAT = 35; let Inst{31-0} = Word0; let Inst{63-32} = Word1; // LLVM can only encode 64-bit instructions, so these fields are manually // encoded in R600CodeEmitter // // bits<16> OFFSET; // bits<2> ENDIAN_SWAP = 0; // bits<1> CONST_BUF_NO_STRIDE = 0; // bits<1> MEGA_FETCH = 0; // bits<1> ALT_CONST = 0; // bits<2> BUFFER_INDEX_MODE = 0; // VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding // is done in R600CodeEmitter // // Inst{79-64} = OFFSET; // Inst{81-80} = ENDIAN_SWAP; // Inst{82} = CONST_BUF_NO_STRIDE; // Inst{83} = MEGA_FETCH; // Inst{84} = ALT_CONST; // Inst{86-85} = BUFFER_INDEX_MODE; // Inst{95-86} = 0; Reserved // VTX_WORD3 (Padding) // // Inst{127-96} = 0; let VTXInst = 1; } def TEX_VTX_TEXBUF: InstR600ISA <(outs R600_Reg128:$dst), (ins MEMxi:$ptr, i32imm:$BUFFER_ID), "TEX_VTX_EXPLICIT_READ $dst, $ptr", [(set v4f32:$dst, (int_R600_load_texbuf ADDRGA_VAR_OFFSET:$ptr, imm:$BUFFER_ID))]>, VTX_WORD1_GPR, VTX_WORD0_eg { let VC_INST = 0; let FETCH_TYPE = 2; let FETCH_WHOLE_QUAD = 0; let SRC_REL = 0; let SRC_SEL_X = 0; let DST_REL = 0; let USE_CONST_FIELDS = 1; let NUM_FORMAT_ALL = 0; let FORMAT_COMP_ALL = 0; let SRF_MODE_ALL = 1; let MEGA_FETCH_COUNT = 16; let DST_SEL_X = 0; let DST_SEL_Y = 1; let DST_SEL_Z = 2; let DST_SEL_W = 3; let DATA_FORMAT = 0; let Inst{31-0} = Word0; let Inst{63-32} = Word1; // LLVM can only encode 64-bit instructions, so these fields are manually // encoded in R600CodeEmitter // // bits<16> OFFSET; // bits<2> ENDIAN_SWAP = 0; // bits<1> CONST_BUF_NO_STRIDE = 0; // bits<1> MEGA_FETCH = 0; // bits<1> ALT_CONST = 0; // bits<2> BUFFER_INDEX_MODE = 0; // VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding // is done in R600CodeEmitter // // Inst{79-64} = OFFSET; // Inst{81-80} = ENDIAN_SWAP; // Inst{82} = CONST_BUF_NO_STRIDE; // Inst{83} = MEGA_FETCH; // Inst{84} = ALT_CONST; // Inst{86-85} = BUFFER_INDEX_MODE; // Inst{95-86} = 0; Reserved // VTX_WORD3 (Padding) // // Inst{127-96} = 0; let VTXInst = 1; } //===--------------------------------------------------------------------===// // Instructions support //===--------------------------------------------------------------------===// //===---------------------------------------------------------------------===// // Custom Inserter for Branches and returns, this eventually will be a // seperate pass //===---------------------------------------------------------------------===// let isTerminator = 1, usesCustomInserter = 1, isBranch = 1, isBarrier = 1 in { def BRANCH : ILFormat<(outs), (ins brtarget:$target), "; Pseudo unconditional branch instruction", [(br bb:$target)]>; defm BRANCH_COND : BranchConditional; } //===---------------------------------------------------------------------===// // Flow and Program control Instructions //===---------------------------------------------------------------------===// let isTerminator=1 in { def SWITCH : ILFormat< (outs), (ins GPRI32:$src), !strconcat("SWITCH", " $src"), []>; def CASE : ILFormat< (outs), (ins GPRI32:$src), !strconcat("CASE", " $src"), []>; def BREAK : ILFormat< (outs), (ins), "BREAK", []>; def CONTINUE : ILFormat< (outs), (ins), "CONTINUE", []>; def DEFAULT : ILFormat< (outs), (ins), "DEFAULT", []>; def ELSE : ILFormat< (outs), (ins), "ELSE", []>; def ENDSWITCH : ILFormat< (outs), (ins), "ENDSWITCH", []>; def ENDMAIN : ILFormat< (outs), (ins), "ENDMAIN", []>; def END : ILFormat< (outs), (ins), "END", []>; def ENDFUNC : ILFormat< (outs), (ins), "ENDFUNC", []>; def ENDIF : ILFormat< (outs), (ins), "ENDIF", []>; def WHILELOOP : ILFormat< (outs), (ins), "WHILE", []>; def ENDLOOP : ILFormat< (outs), (ins), "ENDLOOP", []>; def FUNC : ILFormat< (outs), (ins), "FUNC", []>; def RETDYN : ILFormat< (outs), (ins), "RET_DYN", []>; // This opcode has custom swizzle pattern encoded in Swizzle Encoder defm IF_LOGICALNZ : BranchInstr<"IF_LOGICALNZ">; // This opcode has custom swizzle pattern encoded in Swizzle Encoder defm IF_LOGICALZ : BranchInstr<"IF_LOGICALZ">; // This opcode has custom swizzle pattern encoded in Swizzle Encoder defm BREAK_LOGICALNZ : BranchInstr<"BREAK_LOGICALNZ">; // This opcode has custom swizzle pattern encoded in Swizzle Encoder defm BREAK_LOGICALZ : BranchInstr<"BREAK_LOGICALZ">; // This opcode has custom swizzle pattern encoded in Swizzle Encoder defm CONTINUE_LOGICALNZ : BranchInstr<"CONTINUE_LOGICALNZ">; // This opcode has custom swizzle pattern encoded in Swizzle Encoder defm CONTINUE_LOGICALZ : BranchInstr<"CONTINUE_LOGICALZ">; defm IFC : BranchInstr2<"IFC">; defm BREAKC : BranchInstr2<"BREAKC">; defm CONTINUEC : BranchInstr2<"CONTINUEC">; } //===----------------------------------------------------------------------===// // ISel Patterns //===----------------------------------------------------------------------===// // CND*_INT Pattterns for f32 True / False values class CND_INT_f32 : Pat < (selectcc i32:$src0, 0, f32:$src1, f32:$src2, cc), (cnd $src0, $src1, $src2) >; def : CND_INT_f32 ; def : CND_INT_f32 ; def : CND_INT_f32 ; //CNDGE_INT extra pattern def : Pat < (selectcc i32:$src0, -1, i32:$src1, i32:$src2, COND_GT), (CNDGE_INT $src0, $src1, $src2) >; // KIL Patterns def KILP : Pat < (int_AMDGPU_kilp), (MASK_WRITE (KILLGT (f32 ONE), (f32 ZERO))) >; def KIL : Pat < (int_AMDGPU_kill f32:$src0), (MASK_WRITE (KILLGT (f32 ZERO), $src0)) >; // SGT Reverse args def : Pat < (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_LT), (SGT $src1, $src0) >; // SGE Reverse args def : Pat < (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_LE), (SGE $src1, $src0) >; // SETGT_DX10 reverse args def : Pat < (selectcc f32:$src0, f32:$src1, -1, 0, COND_LT), (SETGT_DX10 $src1, $src0) >; // SETGE_DX10 reverse args def : Pat < (selectcc f32:$src0, f32:$src1, -1, 0, COND_LE), (SETGE_DX10 $src1, $src0) >; // SETGT_INT reverse args def : Pat < (selectcc i32:$src0, i32:$src1, -1, 0, SETLT), (SETGT_INT $src1, $src0) >; // SETGE_INT reverse args def : Pat < (selectcc i32:$src0, i32:$src1, -1, 0, SETLE), (SETGE_INT $src1, $src0) >; // SETGT_UINT reverse args def : Pat < (selectcc i32:$src0, i32:$src1, -1, 0, SETULT), (SETGT_UINT $src1, $src0) >; // SETGE_UINT reverse args def : Pat < (selectcc i32:$src0, i32:$src1, -1, 0, SETULE), (SETGE_UINT $src1, $src0) >; // The next two patterns are special cases for handling 'true if ordered' and // 'true if unordered' conditionals. The assumption here is that the behavior of // SETE and SNE conforms to the Direct3D 10 rules for floating point values // described here: // http://msdn.microsoft.com/en-us/library/windows/desktop/cc308050.aspx#alpha_32_bit // We assume that SETE returns false when one of the operands is NAN and // SNE returns true when on of the operands is NAN //SETE - 'true if ordered' def : Pat < (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, SETO), (SETE $src0, $src1) >; //SETE_DX10 - 'true if ordered' def : Pat < (selectcc f32:$src0, f32:$src1, -1, 0, SETO), (SETE_DX10 $src0, $src1) >; //SNE - 'true if unordered' def : Pat < (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, SETUO), (SNE $src0, $src1) >; //SETNE_DX10 - 'true if ordered' def : Pat < (selectcc f32:$src0, f32:$src1, -1, 0, SETUO), (SETNE_DX10 $src0, $src1) >; def : Extract_Element ; def : Extract_Element ; def : Extract_Element ; def : Extract_Element ; def : Insert_Element ; def : Insert_Element ; def : Insert_Element ; def : Insert_Element ; def : Extract_Element ; def : Extract_Element ; def : Extract_Element ; def : Extract_Element ; def : Insert_Element ; def : Insert_Element ; def : Insert_Element ; def : Insert_Element ; def : Vector4_Build ; def : Vector4_Build ; // bitconvert patterns def : BitConvert ; def : BitConvert ; def : BitConvert ; def : BitConvert ; // DWORDADDR pattern def : DwordAddrPat ; } // End isR600toCayman Predicate