//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the Mips implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Mips profiles and nodes //===----------------------------------------------------------------------===// def SDT_MipsJmpLink : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>; def SDT_MipsCMov : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisSameAs<3, 4>, SDTCisInt<4>]>; def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>; def SDT_MipsCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; def SDT_ExtractLOHI : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisVT<1, untyped>, SDTCisVT<2, i32>]>; def SDT_InsertLOHI : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>; def SDT_MipsMultDiv : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>, SDTCisInt<1>, SDTCisSameAs<1, 2>]>; def SDT_MipsMAddMSub : SDTypeProfile<1, 3, [SDTCisVT<0, untyped>, SDTCisSameAs<0, 3>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>; def SDT_MipsDivRem16 : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>; def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>; def SDT_Sync : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>; def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisVT<2, i32>, SDTCisSameAs<2, 3>, SDTCisSameAs<0, 4>]>; def SDTMipsLoadLR : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisPtrTy<1>, SDTCisSameAs<0, 2>]>; // Call def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink, [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue, SDNPVariadic]>; // Tail call def MipsTailCall : SDNode<"MipsISD::TailCall", SDT_MipsJmpLink, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; // Hi and Lo nodes are used to handle global addresses. Used on // MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol // static model. (nothing to do with Mips Registers Hi and Lo) def MipsHi : SDNode<"MipsISD::Hi", SDTIntUnaryOp>; def MipsLo : SDNode<"MipsISD::Lo", SDTIntUnaryOp>; def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>; // TlsGd node is used to handle General Dynamic TLS def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>; // TprelHi and TprelLo nodes are used to handle Local Exec TLS def MipsTprelHi : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>; def MipsTprelLo : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>; // Thread pointer def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>; // Return def MipsRet : SDNode<"MipsISD::Ret", SDTNone, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; // These are target-independent nodes, but have target-specific formats. def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart, [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>; def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd, [SDNPHasChain, SDNPSideEffect, SDNPOptInGlue, SDNPOutGlue]>; // Node used to extract integer from LO/HI register. def ExtractLOHI : SDNode<"MipsISD::ExtractLOHI", SDT_ExtractLOHI>; // Node used to insert 32-bit integers to LOHI register pair. def InsertLOHI : SDNode<"MipsISD::InsertLOHI", SDT_InsertLOHI>; // Mult nodes. def MipsMult : SDNode<"MipsISD::Mult", SDT_MipsMultDiv>; def MipsMultu : SDNode<"MipsISD::Multu", SDT_MipsMultDiv>; // MAdd*/MSub* nodes def MipsMAdd : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub>; def MipsMAddu : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub>; def MipsMSub : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub>; def MipsMSubu : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub>; // DivRem(u) nodes def MipsDivRem : SDNode<"MipsISD::DivRem", SDT_MipsMultDiv>; def MipsDivRemU : SDNode<"MipsISD::DivRemU", SDT_MipsMultDiv>; def MipsDivRem16 : SDNode<"MipsISD::DivRem16", SDT_MipsDivRem16, [SDNPOutGlue]>; def MipsDivRemU16 : SDNode<"MipsISD::DivRemU16", SDT_MipsDivRem16, [SDNPOutGlue]>; // Target constant nodes that are not part of any isel patterns and remain // unchanged can cause instructions with illegal operands to be emitted. // Wrapper node patterns give the instruction selector a chance to replace // target constant nodes that would otherwise remain unchanged with ADDiu // nodes. Without these wrapper node patterns, the following conditional move // instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is // compiled: // movn %got(d)($gp), %got(c)($gp), $4 // This instruction is illegal since movn can take only register operands. def MipsWrapper : SDNode<"MipsISD::Wrapper", SDTIntBinOp>; def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain,SDNPSideEffect]>; def MipsExt : SDNode<"MipsISD::Ext", SDT_Ext>; def MipsIns : SDNode<"MipsISD::Ins", SDT_Ins>; def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; def MipsSWL : SDNode<"MipsISD::SWL", SDTStore, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; def MipsSWR : SDNode<"MipsISD::SWR", SDTStore, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; def MipsSDL : SDNode<"MipsISD::SDL", SDTStore, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; def MipsSDR : SDNode<"MipsISD::SDR", SDTStore, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; //===----------------------------------------------------------------------===// // Mips Instruction Predicate Definitions. //===----------------------------------------------------------------------===// def HasSEInReg : Predicate<"Subtarget.hasSEInReg()">, AssemblerPredicate<"FeatureSEInReg">; def HasBitCount : Predicate<"Subtarget.hasBitCount()">, AssemblerPredicate<"FeatureBitCount">; def HasSwap : Predicate<"Subtarget.hasSwap()">, AssemblerPredicate<"FeatureSwap">; def HasCondMov : Predicate<"Subtarget.hasCondMov()">, AssemblerPredicate<"FeatureCondMov">; def HasFPIdx : Predicate<"Subtarget.hasFPIdx()">, AssemblerPredicate<"FeatureFPIdx">; def HasMips32 : Predicate<"Subtarget.hasMips32()">, AssemblerPredicate<"FeatureMips32">; def HasMips32r2 : Predicate<"Subtarget.hasMips32r2()">, AssemblerPredicate<"FeatureMips32r2">; def HasMips64 : Predicate<"Subtarget.hasMips64()">, AssemblerPredicate<"FeatureMips64">; def NotMips64 : Predicate<"!Subtarget.hasMips64()">, AssemblerPredicate<"!FeatureMips64">; def HasMips64r2 : Predicate<"Subtarget.hasMips64r2()">, AssemblerPredicate<"FeatureMips64r2">; def IsN64 : Predicate<"Subtarget.isABI_N64()">, AssemblerPredicate<"FeatureN64">; def NotN64 : Predicate<"!Subtarget.isABI_N64()">, AssemblerPredicate<"!FeatureN64">; def InMips16Mode : Predicate<"Subtarget.inMips16Mode()">, AssemblerPredicate<"FeatureMips16">; def RelocStatic : Predicate<"TM.getRelocationModel() == Reloc::Static">, AssemblerPredicate<"FeatureMips32">; def RelocPIC : Predicate<"TM.getRelocationModel() == Reloc::PIC_">, AssemblerPredicate<"FeatureMips32">; def NoNaNsFPMath : Predicate<"TM.Options.NoNaNsFPMath">, AssemblerPredicate<"FeatureMips32">; def HasStdEnc : Predicate<"Subtarget.hasStandardEncoding()">, AssemblerPredicate<"!FeatureMips16">; def NotDSP : Predicate<"!Subtarget.hasDSP()">; class MipsPat : Pat { let Predicates = [HasStdEnc]; } class IsCommutable { bit isCommutable = 1; } class IsBranch { bit isBranch = 1; } class IsReturn { bit isReturn = 1; } class IsCall { bit isCall = 1; } class IsTailCall { bit isCall = 1; bit isTerminator = 1; bit isReturn = 1; bit isBarrier = 1; bit hasExtraSrcRegAllocReq = 1; bit isCodeGenOnly = 1; } class IsAsCheapAsAMove { bit isAsCheapAsAMove = 1; } class NeverHasSideEffects { bit neverHasSideEffects = 1; } //===----------------------------------------------------------------------===// // Instruction format superclass //===----------------------------------------------------------------------===// include "MipsInstrFormats.td" //===----------------------------------------------------------------------===// // Mips Operand, Complex Patterns and Transformations Definitions. //===----------------------------------------------------------------------===// // Instruction operand types def jmptarget : Operand { let EncoderMethod = "getJumpTargetOpValue"; } def brtarget : Operand { let EncoderMethod = "getBranchTargetOpValue"; let OperandType = "OPERAND_PCREL"; let DecoderMethod = "DecodeBranchTarget"; } def calltarget : Operand { let EncoderMethod = "getJumpTargetOpValue"; } def calltarget64: Operand; def simm16 : Operand { let DecoderMethod= "DecodeSimm16"; } def simm20 : Operand { } def simm16_64 : Operand; def shamt : Operand; // Unsigned Operand def uimm16 : Operand { let PrintMethod = "printUnsignedImm"; } def MipsMemAsmOperand : AsmOperandClass { let Name = "Mem"; let ParserMethod = "parseMemOperand"; } // Address operand def mem : Operand { let PrintMethod = "printMemOperand"; let MIOperandInfo = (ops CPURegs, simm16); let EncoderMethod = "getMemEncoding"; let ParserMatchClass = MipsMemAsmOperand; let OperandType = "OPERAND_MEMORY"; } def mem64 : Operand { let PrintMethod = "printMemOperand"; let MIOperandInfo = (ops CPU64Regs, simm16_64); let EncoderMethod = "getMemEncoding"; let ParserMatchClass = MipsMemAsmOperand; let OperandType = "OPERAND_MEMORY"; } def mem_ea : Operand { let PrintMethod = "printMemOperandEA"; let MIOperandInfo = (ops CPURegs, simm16); let EncoderMethod = "getMemEncoding"; let OperandType = "OPERAND_MEMORY"; } def mem_ea_64 : Operand { let PrintMethod = "printMemOperandEA"; let MIOperandInfo = (ops CPU64Regs, simm16_64); let EncoderMethod = "getMemEncoding"; let OperandType = "OPERAND_MEMORY"; } // size operand of ext instruction def size_ext : Operand { let EncoderMethod = "getSizeExtEncoding"; let DecoderMethod = "DecodeExtSize"; } // size operand of ins instruction def size_ins : Operand { let EncoderMethod = "getSizeInsEncoding"; let DecoderMethod = "DecodeInsSize"; } // Transformation Function - get the lower 16 bits. def LO16 : SDNodeXFormgetZExtValue() & 0xFFFF); }]>; // Transformation Function - get the higher 16 bits. def HI16 : SDNodeXFormgetZExtValue() >> 16) & 0xFFFF); }]>; // Plus 1. def Plus1 : SDNodeXFormgetSExtValue() + 1); }]>; // Node immediate fits as 16-bit sign extended on target immediate. // e.g. addi, andi def immSExt8 : PatLeaf<(imm), [{ return isInt<8>(N->getSExtValue()); }]>; // Node immediate fits as 16-bit sign extended on target immediate. // e.g. addi, andi def immSExt16 : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>; // Node immediate fits as 15-bit sign extended on target immediate. // e.g. addi, andi def immSExt15 : PatLeaf<(imm), [{ return isInt<15>(N->getSExtValue()); }]>; // Node immediate fits as 16-bit zero extended on target immediate. // The LO16 param means that only the lower 16 bits of the node // immediate are caught. // e.g. addiu, sltiu def immZExt16 : PatLeaf<(imm), [{ if (N->getValueType(0) == MVT::i32) return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue(); else return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue(); }], LO16>; // Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared). def immLow16Zero : PatLeaf<(imm), [{ int64_t Val = N->getSExtValue(); return isInt<32>(Val) && !(Val & 0xffff); }]>; // shamt field must fit in 5 bits. def immZExt5 : ImmLeaf; // True if (N + 1) fits in 16-bit field. def immSExt16Plus1 : PatLeaf<(imm), [{ return isInt<17>(N->getSExtValue()) && isInt<16>(N->getSExtValue() + 1); }]>; // Mips Address Mode! SDNode frameindex could possibily be a match // since load and store instructions from stack used it. def addr : ComplexPattern; def addrRegImm : ComplexPattern; def addrDefault : ComplexPattern; //===----------------------------------------------------------------------===// // Instructions specific format //===----------------------------------------------------------------------===// // Arithmetic and logical instructions with 3 register operands. class ArithLogicR: InstSE<(outs RO:$rd), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$rd, $rs, $rt"), [(set RO:$rd, (OpNode RO:$rs, RO:$rt))], Itin, FrmR> { let isCommutable = isComm; let isReMaterializable = 1; string BaseOpcode; string Arch; } // Arithmetic and logical instructions with 2 register operands. class ArithLogicI : InstSE<(outs RO:$rt), (ins RO:$rs, Od:$imm16), !strconcat(opstr, "\t$rt, $rs, $imm16"), [(set RO:$rt, (OpNode RO:$rs, imm_type:$imm16))], IIAlu, FrmI> { let isReMaterializable = 1; } // Arithmetic Multiply ADD/SUB class MArithR : InstSE<(outs), (ins CPURegsOpnd:$rs, CPURegsOpnd:$rt), !strconcat(opstr, "\t$rs, $rt"), [], IIImul, FrmR> { let Defs = [HI, LO]; let Uses = [HI, LO]; let isCommutable = isComm; } // Logical class LogicNOR: InstSE<(outs RC:$rd), (ins RC:$rs, RC:$rt), !strconcat(opstr, "\t$rd, $rs, $rt"), [(set RC:$rd, (not (or RC:$rs, RC:$rt)))], IIAlu, FrmR> { let isCommutable = 1; } // Shifts class shift_rotate_imm : InstSE<(outs RC:$rd), (ins RC:$rt, ImmOpnd:$shamt), !strconcat(opstr, "\t$rd, $rt, $shamt"), [(set RC:$rd, (OpNode RC:$rt, PF:$shamt))], IIAlu, FrmR>; class shift_rotate_reg: InstSE<(outs RC:$rd), (ins CPURegsOpnd:$rs, RC:$rt), !strconcat(opstr, "\t$rd, $rt, $rs"), [(set RC:$rd, (OpNode RC:$rt, CPURegsOpnd:$rs))], IIAlu, FrmR>; // Load Upper Imediate class LoadUpper: InstSE<(outs RC:$rt), (ins Imm:$imm16), !strconcat(opstr, "\t$rt, $imm16"), [], IIAlu, FrmI>, IsAsCheapAsAMove { let neverHasSideEffects = 1; let isReMaterializable = 1; } class FMem op, dag outs, dag ins, string asmstr, list pattern, InstrItinClass itin>: FFI { bits<21> addr; let Inst{25-21} = addr{20-16}; let Inst{15-0} = addr{15-0}; let DecoderMethod = "DecodeMem"; } // Memory Load/Store class Load : InstSE<(outs RC:$rt), (ins MemOpnd:$addr), !strconcat(opstr, "\t$rt, $addr"), [(set RC:$rt, (OpNode Addr:$addr))], NoItinerary, FrmI> { let DecoderMethod = "DecodeMem"; let canFoldAsLoad = 1; let mayLoad = 1; } class Store : InstSE<(outs), (ins RC:$rt, MemOpnd:$addr), !strconcat(opstr, "\t$rt, $addr"), [(OpNode RC:$rt, Addr:$addr)], NoItinerary, FrmI> { let DecoderMethod = "DecodeMem"; let mayStore = 1; } multiclass LoadM { def NAME : Load, Requires<[NotN64, HasStdEnc]>; def _P8 : Load, Requires<[IsN64, HasStdEnc]> { let DecoderNamespace = "Mips64"; let isCodeGenOnly = 1; } } multiclass StoreM { def NAME : Store, Requires<[NotN64, HasStdEnc]>; def _P8 : Store, Requires<[IsN64, HasStdEnc]> { let DecoderNamespace = "Mips64"; let isCodeGenOnly = 1; } } // Load/Store Left/Right let canFoldAsLoad = 1 in class LoadLeftRight : InstSE<(outs RC:$rt), (ins MemOpnd:$addr, RC:$src), !strconcat(opstr, "\t$rt, $addr"), [(set RC:$rt, (OpNode addr:$addr, RC:$src))], NoItinerary, FrmI> { let DecoderMethod = "DecodeMem"; string Constraints = "$src = $rt"; } class StoreLeftRight: InstSE<(outs), (ins RC:$rt, MemOpnd:$addr), !strconcat(opstr, "\t$rt, $addr"), [(OpNode RC:$rt, addr:$addr)], NoItinerary, FrmI> { let DecoderMethod = "DecodeMem"; } multiclass LoadLeftRightM { def NAME : LoadLeftRight, Requires<[NotN64, HasStdEnc]>; def _P8 : LoadLeftRight, Requires<[IsN64, HasStdEnc]> { let DecoderNamespace = "Mips64"; let isCodeGenOnly = 1; } } multiclass StoreLeftRightM { def NAME : StoreLeftRight, Requires<[NotN64, HasStdEnc]>; def _P8 : StoreLeftRight, Requires<[IsN64, HasStdEnc]> { let DecoderNamespace = "Mips64"; let isCodeGenOnly = 1; } } // Conditional Branch class CBranch : InstSE<(outs), (ins RC:$rs, RC:$rt, brtarget:$offset), !strconcat(opstr, "\t$rs, $rt, $offset"), [(brcond (i32 (cond_op RC:$rs, RC:$rt)), bb:$offset)], IIBranch, FrmI> { let isBranch = 1; let isTerminator = 1; let hasDelaySlot = 1; let Defs = [AT]; } class CBranchZero : InstSE<(outs), (ins RC:$rs, brtarget:$offset), !strconcat(opstr, "\t$rs, $offset"), [(brcond (i32 (cond_op RC:$rs, 0)), bb:$offset)], IIBranch, FrmI> { let isBranch = 1; let isTerminator = 1; let hasDelaySlot = 1; let Defs = [AT]; } // SetCC class SetCC_R : InstSE<(outs CPURegsOpnd:$rd), (ins RC:$rs, RC:$rt), !strconcat(opstr, "\t$rd, $rs, $rt"), [(set CPURegsOpnd:$rd, (cond_op RC:$rs, RC:$rt))], IIAlu, FrmR>; class SetCC_I: InstSE<(outs CPURegsOpnd:$rt), (ins RC:$rs, Od:$imm16), !strconcat(opstr, "\t$rt, $rs, $imm16"), [(set CPURegsOpnd:$rt, (cond_op RC:$rs, imm_type:$imm16))], IIAlu, FrmI>; // Jump class JumpFJ : InstSE<(outs), (ins opnd:$target), !strconcat(opstr, "\t$target"), [(operator targetoperator:$target)], IIBranch, FrmJ> { let isTerminator=1; let isBarrier=1; let hasDelaySlot = 1; let DecoderMethod = "DecodeJumpTarget"; let Defs = [AT]; } // Unconditional branch class UncondBranch : InstSE<(outs), (ins brtarget:$offset), !strconcat(opstr, "\t$offset"), [(br bb:$offset)], IIBranch, FrmI> { let isBranch = 1; let isTerminator = 1; let isBarrier = 1; let hasDelaySlot = 1; let Predicates = [RelocPIC, HasStdEnc]; let Defs = [AT]; } // Base class for indirect branch and return instruction classes. let isTerminator=1, isBarrier=1, hasDelaySlot = 1 in class JumpFR: InstSE<(outs), (ins RC:$rs), "jr\t$rs", [(operator RC:$rs)], IIBranch, FrmR>; // Indirect branch class IndirectBranch: JumpFR { let isBranch = 1; let isIndirectBranch = 1; } // Return instruction class RetBase: JumpFR { let isReturn = 1; let isCodeGenOnly = 1; let hasCtrlDep = 1; let hasExtraSrcRegAllocReq = 1; } // Jump and Link (Call) let isCall=1, hasDelaySlot=1, Defs = [RA] in { class JumpLink : InstSE<(outs), (ins calltarget:$target), !strconcat(opstr, "\t$target"), [(MipsJmpLink imm:$target)], IIBranch, FrmJ> { let DecoderMethod = "DecodeJumpTarget"; } class JumpLinkRegPseudo: PseudoSE<(outs), (ins RC:$rs), [(MipsJmpLink RC:$rs)], IIBranch>, PseudoInstExpansion<(JALRInst RetReg, RC:$rs)>; class JumpLinkReg: InstSE<(outs RC:$rd), (ins RC:$rs), !strconcat(opstr, "\t$rd, $rs"), [], IIBranch, FrmR>; class BGEZAL_FT : InstSE<(outs), (ins RO:$rs, brtarget:$offset), !strconcat(opstr, "\t$rs, $offset"), [], IIBranch, FrmI>; } class BAL_FT : InstSE<(outs), (ins brtarget:$offset), "bal\t$offset", [], IIBranch, FrmI> { let isBranch = 1; let isTerminator = 1; let isBarrier = 1; let hasDelaySlot = 1; let Defs = [RA]; } // Sync let hasSideEffects = 1 in class SYNC_FT : InstSE<(outs), (ins i32imm:$stype), "sync $stype", [(MipsSync imm:$stype)], NoItinerary, FrmOther>; // Mul, Div class Mult DefRegs> : InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$rs, $rt"), [], itin, FrmR> { let isCommutable = 1; let Defs = DefRegs; let neverHasSideEffects = 1; } // Pseudo multiply/divide instruction with explicit accumulator register // operands. class MultDivPseudo : PseudoSE<(outs R0:$ac), (ins R1:$rs, R1:$rt), [(set R0:$ac, (OpNode R1:$rs, R1:$rt))], Itin>, PseudoInstExpansion<(RealInst R1:$rs, R1:$rt)> { let isCommutable = IsComm; let hasSideEffects = HasSideEffects; } // Pseudo multiply add/sub instruction with explicit accumulator register // operands. class MAddSubPseudo : PseudoSE<(outs ACRegs:$ac), (ins CPURegsOpnd:$rs, CPURegsOpnd:$rt, ACRegs:$acin), [(set ACRegs:$ac, (OpNode CPURegsOpnd:$rs, CPURegsOpnd:$rt, ACRegs:$acin))], IIImul>, PseudoInstExpansion<(RealInst CPURegsOpnd:$rs, CPURegsOpnd:$rt)> { string Constraints = "$acin = $ac"; } class Div DefRegs> : InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$$zero, $rs, $rt"), [], itin, FrmR> { let Defs = DefRegs; } // Move from Hi/Lo class MoveFromLOHI UseRegs>: InstSE<(outs RC:$rd), (ins), !strconcat(opstr, "\t$rd"), [], IIHiLo, FrmR> { let Uses = UseRegs; let neverHasSideEffects = 1; } class MoveToLOHI DefRegs>: InstSE<(outs), (ins RC:$rs), !strconcat(opstr, "\t$rs"), [], IIHiLo, FrmR> { let Defs = DefRegs; let neverHasSideEffects = 1; } class EffectiveAddress : InstSE<(outs RC:$rt), (ins Mem:$addr), !strconcat(opstr, "\t$rt, $addr"), [(set RC:$rt, addr:$addr)], NoItinerary, FrmI> { let isCodeGenOnly = 1; let DecoderMethod = "DecodeMem"; } // Count Leading Ones/Zeros in Word class CountLeading0: InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"), [(set RO:$rd, (ctlz RO:$rs))], IIAlu, FrmR>, Requires<[HasBitCount, HasStdEnc]>; class CountLeading1: InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"), [(set RO:$rd, (ctlz (not RO:$rs)))], IIAlu, FrmR>, Requires<[HasBitCount, HasStdEnc]>; // Sign Extend in Register. class SignExtInReg : InstSE<(outs RC:$rd), (ins RC:$rt), !strconcat(opstr, "\t$rd, $rt"), [(set RC:$rd, (sext_inreg RC:$rt, vt))], NoItinerary, FrmR> { let Predicates = [HasSEInReg, HasStdEnc]; } // Subword Swap class SubwordSwap: InstSE<(outs RO:$rd), (ins RO:$rt), !strconcat(opstr, "\t$rd, $rt"), [], NoItinerary, FrmR> { let Predicates = [HasSwap, HasStdEnc]; let neverHasSideEffects = 1; } // Read Hardware class ReadHardware : InstSE<(outs CPURegClass:$rt), (ins RO:$rd), "rdhwr\t$rt, $rd", [], IIAlu, FrmR>; // Ext and Ins class ExtBase: InstSE<(outs RO:$rt), (ins RO:$rs, uimm16:$pos, size_ext:$size), !strconcat(opstr, " $rt, $rs, $pos, $size"), [(set RO:$rt, (MipsExt RO:$rs, imm:$pos, imm:$size))], NoItinerary, FrmR> { let Predicates = [HasMips32r2, HasStdEnc]; } class InsBase: InstSE<(outs RO:$rt), (ins RO:$rs, uimm16:$pos, size_ins:$size, RO:$src), !strconcat(opstr, " $rt, $rs, $pos, $size"), [(set RO:$rt, (MipsIns RO:$rs, imm:$pos, imm:$size, RO:$src))], NoItinerary, FrmR> { let Predicates = [HasMips32r2, HasStdEnc]; let Constraints = "$src = $rt"; } // Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*). class Atomic2Ops : PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$incr), [(set DRC:$dst, (Op PRC:$ptr, DRC:$incr))]>; multiclass Atomic2Ops32 { def NAME : Atomic2Ops, Requires<[NotN64, HasStdEnc]>; def _P8 : Atomic2Ops, Requires<[IsN64, HasStdEnc]> { let DecoderNamespace = "Mips64"; } } // Atomic Compare & Swap. class AtomicCmpSwap : PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$cmp, DRC:$swap), [(set DRC:$dst, (Op PRC:$ptr, DRC:$cmp, DRC:$swap))]>; multiclass AtomicCmpSwap32 { def NAME : AtomicCmpSwap, Requires<[NotN64, HasStdEnc]>; def _P8 : AtomicCmpSwap, Requires<[IsN64, HasStdEnc]> { let DecoderNamespace = "Mips64"; } } class LLBase : InstSE<(outs RO:$rt), (ins Mem:$addr), !strconcat(opstr, "\t$rt, $addr"), [], NoItinerary, FrmI> { let DecoderMethod = "DecodeMem"; let mayLoad = 1; } class SCBase : InstSE<(outs RO:$dst), (ins RO:$rt, Mem:$addr), !strconcat(opstr, "\t$rt, $addr"), [], NoItinerary, FrmI> { let DecoderMethod = "DecodeMem"; let mayStore = 1; let Constraints = "$rt = $dst"; } class MFC3OP : InstSE; //===----------------------------------------------------------------------===// // Pseudo instructions //===----------------------------------------------------------------------===// // Return RA. let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1 in def RetRA : PseudoSE<(outs), (ins), [(MipsRet)]>; let Defs = [SP], Uses = [SP], hasSideEffects = 1 in { def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt), [(callseq_start timm:$amt)]>; def ADJCALLSTACKUP : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), [(callseq_end timm:$amt1, timm:$amt2)]>; } let usesCustomInserter = 1 in { defm ATOMIC_LOAD_ADD_I8 : Atomic2Ops32; defm ATOMIC_LOAD_ADD_I16 : Atomic2Ops32; defm ATOMIC_LOAD_ADD_I32 : Atomic2Ops32; defm ATOMIC_LOAD_SUB_I8 : Atomic2Ops32; defm ATOMIC_LOAD_SUB_I16 : Atomic2Ops32; defm ATOMIC_LOAD_SUB_I32 : Atomic2Ops32; defm ATOMIC_LOAD_AND_I8 : Atomic2Ops32; defm ATOMIC_LOAD_AND_I16 : Atomic2Ops32; defm ATOMIC_LOAD_AND_I32 : Atomic2Ops32; defm ATOMIC_LOAD_OR_I8 : Atomic2Ops32; defm ATOMIC_LOAD_OR_I16 : Atomic2Ops32; defm ATOMIC_LOAD_OR_I32 : Atomic2Ops32; defm ATOMIC_LOAD_XOR_I8 : Atomic2Ops32; defm ATOMIC_LOAD_XOR_I16 : Atomic2Ops32; defm ATOMIC_LOAD_XOR_I32 : Atomic2Ops32; defm ATOMIC_LOAD_NAND_I8 : Atomic2Ops32; defm ATOMIC_LOAD_NAND_I16 : Atomic2Ops32; defm ATOMIC_LOAD_NAND_I32 : Atomic2Ops32; defm ATOMIC_SWAP_I8 : Atomic2Ops32; defm ATOMIC_SWAP_I16 : Atomic2Ops32; defm ATOMIC_SWAP_I32 : Atomic2Ops32; defm ATOMIC_CMP_SWAP_I8 : AtomicCmpSwap32; defm ATOMIC_CMP_SWAP_I16 : AtomicCmpSwap32; defm ATOMIC_CMP_SWAP_I32 : AtomicCmpSwap32; } /// Pseudo instructions for loading, storing and copying accumulator registers. let isPseudo = 1 in { defm LOAD_AC64 : LoadM<"load_ac64", ACRegs>; defm STORE_AC64 : StoreM<"store_ac64", ACRegs>; } def COPY_AC64 : PseudoSE<(outs ACRegs:$dst), (ins ACRegs:$src), []>; //===----------------------------------------------------------------------===// // Instruction definition //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // MipsI Instructions //===----------------------------------------------------------------------===// /// Arithmetic Instructions (ALU Immediate) def ADDiu : ArithLogicI<"addiu", simm16, CPURegsOpnd, immSExt16, add>, ADDI_FM<0x9>, IsAsCheapAsAMove; def ADDi : ArithLogicI<"addi", simm16, CPURegsOpnd>, ADDI_FM<0x8>; def SLTi : SetCC_I<"slti", setlt, simm16, immSExt16, CPURegs>, SLTI_FM<0xa>; def SLTiu : SetCC_I<"sltiu", setult, simm16, immSExt16, CPURegs>, SLTI_FM<0xb>; def ANDi : ArithLogicI<"andi", uimm16, CPURegsOpnd, immZExt16, and>, ADDI_FM<0xc>; def ORi : ArithLogicI<"ori", uimm16, CPURegsOpnd, immZExt16, or>, ADDI_FM<0xd>; def XORi : ArithLogicI<"xori", uimm16, CPURegsOpnd, immZExt16, xor>, ADDI_FM<0xe>; def LUi : LoadUpper<"lui", CPURegs, uimm16>, LUI_FM; /// Arithmetic Instructions (3-Operand, R-Type) def ADDu : ArithLogicR<"addu", CPURegsOpnd, 1, IIAlu, add>, ADD_FM<0, 0x21>; def SUBu : ArithLogicR<"subu", CPURegsOpnd, 0, IIAlu, sub>, ADD_FM<0, 0x23>; def MUL : ArithLogicR<"mul", CPURegsOpnd, 1, IIImul, mul>, ADD_FM<0x1c, 2>; def ADD : ArithLogicR<"add", CPURegsOpnd>, ADD_FM<0, 0x20>; def SUB : ArithLogicR<"sub", CPURegsOpnd>, ADD_FM<0, 0x22>; def SLT : SetCC_R<"slt", setlt, CPURegs>, ADD_FM<0, 0x2a>; def SLTu : SetCC_R<"sltu", setult, CPURegs>, ADD_FM<0, 0x2b>; def AND : ArithLogicR<"and", CPURegsOpnd, 1, IIAlu, and>, ADD_FM<0, 0x24>; def OR : ArithLogicR<"or", CPURegsOpnd, 1, IIAlu, or>, ADD_FM<0, 0x25>; def XOR : ArithLogicR<"xor", CPURegsOpnd, 1, IIAlu, xor>, ADD_FM<0, 0x26>; def NOR : LogicNOR<"nor", CPURegsOpnd>, ADD_FM<0, 0x27>; /// Shift Instructions def SLL : shift_rotate_imm<"sll", shamt, CPURegsOpnd, shl, immZExt5>, SRA_FM<0, 0>; def SRL : shift_rotate_imm<"srl", shamt, CPURegsOpnd, srl, immZExt5>, SRA_FM<2, 0>; def SRA : shift_rotate_imm<"sra", shamt, CPURegsOpnd, sra, immZExt5>, SRA_FM<3, 0>; def SLLV : shift_rotate_reg<"sllv", CPURegsOpnd, shl>, SRLV_FM<4, 0>; def SRLV : shift_rotate_reg<"srlv", CPURegsOpnd, srl>, SRLV_FM<6, 0>; def SRAV : shift_rotate_reg<"srav", CPURegsOpnd, sra>, SRLV_FM<7, 0>; // Rotate Instructions let Predicates = [HasMips32r2, HasStdEnc] in { def ROTR : shift_rotate_imm<"rotr", shamt, CPURegsOpnd, rotr, immZExt5>, SRA_FM<2, 1>; def ROTRV : shift_rotate_reg<"rotrv", CPURegsOpnd, rotr>, SRLV_FM<6, 1>; } /// Load and Store Instructions /// aligned defm LB : LoadM<"lb", CPURegs, sextloadi8>, LW_FM<0x20>; defm LBu : LoadM<"lbu", CPURegs, zextloadi8, addrDefault>, LW_FM<0x24>; defm LH : LoadM<"lh", CPURegs, sextloadi16, addrDefault>, LW_FM<0x21>; defm LHu : LoadM<"lhu", CPURegs, zextloadi16>, LW_FM<0x25>; defm LW : LoadM<"lw", CPURegs, load, addrDefault>, LW_FM<0x23>; defm SB : StoreM<"sb", CPURegs, truncstorei8>, LW_FM<0x28>; defm SH : StoreM<"sh", CPURegs, truncstorei16>, LW_FM<0x29>; defm SW : StoreM<"sw", CPURegs, store>, LW_FM<0x2b>; /// load/store left/right defm LWL : LoadLeftRightM<"lwl", MipsLWL, CPURegs>, LW_FM<0x22>; defm LWR : LoadLeftRightM<"lwr", MipsLWR, CPURegs>, LW_FM<0x26>; defm SWL : StoreLeftRightM<"swl", MipsSWL, CPURegs>, LW_FM<0x2a>; defm SWR : StoreLeftRightM<"swr", MipsSWR, CPURegs>, LW_FM<0x2e>; def SYNC : SYNC_FT, SYNC_FM; /// Load-linked, Store-conditional let Predicates = [NotN64, HasStdEnc] in { def LL : LLBase<"ll", CPURegsOpnd, mem>, LW_FM<0x30>; def SC : SCBase<"sc", CPURegsOpnd, mem>, LW_FM<0x38>; } let Predicates = [IsN64, HasStdEnc], DecoderNamespace = "Mips64" in { def LL_P8 : LLBase<"ll", CPURegsOpnd, mem64>, LW_FM<0x30>; def SC_P8 : SCBase<"sc", CPURegsOpnd, mem64>, LW_FM<0x38>; } /// Jump and Branch Instructions def J : JumpFJ, FJ<2>, Requires<[RelocStatic, HasStdEnc]>, IsBranch; def JR : IndirectBranch, MTLO_FM<8>; def B : UncondBranch<"b">, B_FM; def BEQ : CBranch<"beq", seteq, CPURegs>, BEQ_FM<4>; def BNE : CBranch<"bne", setne, CPURegs>, BEQ_FM<5>; def BGEZ : CBranchZero<"bgez", setge, CPURegs>, BGEZ_FM<1, 1>; def BGTZ : CBranchZero<"bgtz", setgt, CPURegs>, BGEZ_FM<7, 0>; def BLEZ : CBranchZero<"blez", setle, CPURegs>, BGEZ_FM<6, 0>; def BLTZ : CBranchZero<"bltz", setlt, CPURegs>, BGEZ_FM<1, 0>; def BAL_BR: BAL_FT, BAL_FM; def JAL : JumpLink<"jal">, FJ<3>; def JALR : JumpLinkReg<"jalr", CPURegs>, JALR_FM; def JALRPseudo : JumpLinkRegPseudo; def BGEZAL : BGEZAL_FT<"bgezal", CPURegsOpnd>, BGEZAL_FM<0x11>; def BLTZAL : BGEZAL_FT<"bltzal", CPURegsOpnd>, BGEZAL_FM<0x10>; def TAILCALL : JumpFJ, FJ<2>, IsTailCall; def TAILCALL_R : JumpFR, MTLO_FM<8>, IsTailCall; def RET : RetBase, MTLO_FM<8>; // Exception handling related node and instructions. // The conversion sequence is: // ISD::EH_RETURN -> MipsISD::EH_RETURN -> // MIPSeh_return -> (stack change + indirect branch) // // MIPSeh_return takes the place of regular return instruction // but takes two arguments (V1, V0) which are used for storing // the offset and return address respectively. def SDT_MipsEHRET : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisPtrTy<1>]>; def MIPSehret : SDNode<"MipsISD::EH_RETURN", SDT_MipsEHRET, [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; let Uses = [V0, V1], isTerminator = 1, isReturn = 1, isBarrier = 1 in { def MIPSeh_return32 : MipsPseudo<(outs), (ins CPURegs:$spoff, CPURegs:$dst), [(MIPSehret CPURegs:$spoff, CPURegs:$dst)]>; def MIPSeh_return64 : MipsPseudo<(outs), (ins CPU64Regs:$spoff, CPU64Regs:$dst), [(MIPSehret CPU64Regs:$spoff, CPU64Regs:$dst)]>; } /// Multiply and Divide Instructions. def MULT : Mult<"mult", IIImul, CPURegsOpnd, [HI, LO]>, MULT_FM<0, 0x18>; def MULTu : Mult<"multu", IIImul, CPURegsOpnd, [HI, LO]>, MULT_FM<0, 0x19>; def PseudoMULT : MultDivPseudo; def PseudoMULTu : MultDivPseudo; def SDIV : Div<"div", IIIdiv, CPURegsOpnd, [HI, LO]>, MULT_FM<0, 0x1a>; def UDIV : Div<"divu", IIIdiv, CPURegsOpnd, [HI, LO]>, MULT_FM<0, 0x1b>; def PseudoSDIV : MultDivPseudo; def PseudoUDIV : MultDivPseudo; def MTHI : MoveToLOHI<"mthi", CPURegs, [HI]>, MTLO_FM<0x11>; def MTLO : MoveToLOHI<"mtlo", CPURegs, [LO]>, MTLO_FM<0x13>; def MFHI : MoveFromLOHI<"mfhi", CPURegs, [HI]>, MFLO_FM<0x10>; def MFLO : MoveFromLOHI<"mflo", CPURegs, [LO]>, MFLO_FM<0x12>; /// Sign Ext In Register Instructions. def SEB : SignExtInReg<"seb", i8, CPURegs>, SEB_FM<0x10, 0x20>; def SEH : SignExtInReg<"seh", i16, CPURegs>, SEB_FM<0x18, 0x20>; /// Count Leading def CLZ : CountLeading0<"clz", CPURegsOpnd>, CLO_FM<0x20>; def CLO : CountLeading1<"clo", CPURegsOpnd>, CLO_FM<0x21>; /// Word Swap Bytes Within Halfwords def WSBH : SubwordSwap<"wsbh", CPURegsOpnd>, SEB_FM<2, 0x20>; /// No operation. def NOP : PseudoSE<(outs), (ins), []>, PseudoInstExpansion<(SLL ZERO, ZERO, 0)>; // FrameIndexes are legalized when they are operands from load/store // instructions. The same not happens for stack address copies, so an // add op with mem ComplexPattern is used and the stack address copy // can be matched. It's similar to Sparc LEA_ADDRi def LEA_ADDiu : EffectiveAddress<"addiu", CPURegs, mem_ea>, LW_FM<9>; // MADD*/MSUB* def MADD : MArithR<"madd", 1>, MULT_FM<0x1c, 0>; def MADDU : MArithR<"maddu", 1>, MULT_FM<0x1c, 1>; def MSUB : MArithR<"msub">, MULT_FM<0x1c, 4>; def MSUBU : MArithR<"msubu">, MULT_FM<0x1c, 5>; def PseudoMADD : MAddSubPseudo; def PseudoMADDU : MAddSubPseudo; def PseudoMSUB : MAddSubPseudo; def PseudoMSUBU : MAddSubPseudo; def RDHWR : ReadHardware, RDHWR_FM; def EXT : ExtBase<"ext", CPURegsOpnd>, EXT_FM<0>; def INS : InsBase<"ins", CPURegsOpnd>, EXT_FM<4>; /// Move Control Registers From/To CPU Registers def MFC0_3OP : MFC3OP<(outs CPURegsOpnd:$rt), (ins CPURegsOpnd:$rd, uimm16:$sel), "mfc0\t$rt, $rd, $sel">, MFC3OP_FM<0x10, 0>; def MTC0_3OP : MFC3OP<(outs CPURegsOpnd:$rd, uimm16:$sel), (ins CPURegsOpnd:$rt), "mtc0\t$rt, $rd, $sel">, MFC3OP_FM<0x10, 4>; def MFC2_3OP : MFC3OP<(outs CPURegsOpnd:$rt), (ins CPURegsOpnd:$rd, uimm16:$sel), "mfc2\t$rt, $rd, $sel">, MFC3OP_FM<0x12, 0>; def MTC2_3OP : MFC3OP<(outs CPURegsOpnd:$rd, uimm16:$sel), (ins CPURegsOpnd:$rt), "mtc2\t$rt, $rd, $sel">, MFC3OP_FM<0x12, 4>; //===----------------------------------------------------------------------===// // Instruction aliases //===----------------------------------------------------------------------===// def : InstAlias<"move $dst, $src", (ADDu CPURegsOpnd:$dst, CPURegsOpnd:$src,ZERO), 1>, Requires<[NotMips64]>; def : InstAlias<"move $dst, $src", (OR CPURegsOpnd:$dst, CPURegsOpnd:$src,ZERO), 1>, Requires<[NotMips64]>; def : InstAlias<"bal $offset", (BGEZAL RA, brtarget:$offset), 1>; def : InstAlias<"addu $rs, $rt, $imm", (ADDiu CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>; def : InstAlias<"add $rs, $rt, $imm", (ADDi CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>; def : InstAlias<"and $rs, $rt, $imm", (ANDi CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>; def : InstAlias<"j $rs", (JR CPURegs:$rs), 0>, Requires<[NotMips64]>; def : InstAlias<"jalr $rs", (JALR RA, CPURegs:$rs)>, Requires<[NotMips64]>; def : InstAlias<"jal $rs", (JALR RA, CPURegs:$rs), 0>, Requires<[NotMips64]>; def : InstAlias<"jal $rd,$rs", (JALR CPURegs:$rd, CPURegs:$rs), 0>, Requires<[NotMips64]>; def : InstAlias<"not $rt, $rs", (NOR CPURegsOpnd:$rt, CPURegsOpnd:$rs, ZERO), 1>; def : InstAlias<"neg $rt, $rs", (SUB CPURegsOpnd:$rt, ZERO, CPURegsOpnd:$rs), 1>; def : InstAlias<"negu $rt, $rs", (SUBu CPURegsOpnd:$rt, ZERO, CPURegsOpnd:$rs), 1>; def : InstAlias<"slt $rs, $rt, $imm", (SLTi CPURegsOpnd:$rs, CPURegs:$rt, simm16:$imm), 0>; def : InstAlias<"xor $rs, $rt, $imm", (XORi CPURegsOpnd:$rs, CPURegsOpnd:$rt, uimm16:$imm), 1>, Requires<[NotMips64]>; def : InstAlias<"or $rs, $rt, $imm", (ORi CPURegsOpnd:$rs, CPURegsOpnd:$rt, uimm16:$imm), 1>, Requires<[NotMips64]>; def : InstAlias<"nop", (SLL ZERO, ZERO, 0), 1>; def : InstAlias<"mfc0 $rt, $rd", (MFC0_3OP CPURegsOpnd:$rt, CPURegsOpnd:$rd, 0), 0>; def : InstAlias<"mtc0 $rt, $rd", (MTC0_3OP CPURegsOpnd:$rd, 0, CPURegsOpnd:$rt), 0>; def : InstAlias<"mfc2 $rt, $rd", (MFC2_3OP CPURegsOpnd:$rt, CPURegsOpnd:$rd, 0), 0>; def : InstAlias<"mtc2 $rt, $rd", (MTC2_3OP CPURegsOpnd:$rd, 0, CPURegsOpnd:$rt), 0>; //===----------------------------------------------------------------------===// // Assembler Pseudo Instructions //===----------------------------------------------------------------------===// class LoadImm32< string instr_asm, Operand Od, RegisterOperand RO> : MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32), !strconcat(instr_asm, "\t$rt, $imm32")> ; def LoadImm32Reg : LoadImm32<"li", shamt,CPURegsOpnd>; class LoadAddress : MipsAsmPseudoInst<(outs RO:$rt), (ins MemOpnd:$addr), !strconcat(instr_asm, "\t$rt, $addr")> ; def LoadAddr32Reg : LoadAddress<"la", mem, CPURegsOpnd>; class LoadAddressImm : MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32), !strconcat(instr_asm, "\t$rt, $imm32")> ; def LoadAddr32Imm : LoadAddressImm<"la", shamt,CPURegsOpnd>; //===----------------------------------------------------------------------===// // Arbitrary patterns that map to one or more instructions //===----------------------------------------------------------------------===// // Load/store pattern templates. class LoadRegImmPat : MipsPat<(ValTy (Node addrRegImm:$a)), (LoadInst addrRegImm:$a)>; class StoreRegImmPat : MipsPat<(store ValTy:$v, addrRegImm:$a), (StoreInst ValTy:$v, addrRegImm:$a)>; // Small immediates def : MipsPat<(i32 immSExt16:$in), (ADDiu ZERO, imm:$in)>; def : MipsPat<(i32 immZExt16:$in), (ORi ZERO, imm:$in)>; def : MipsPat<(i32 immLow16Zero:$in), (LUi (HI16 imm:$in))>; // Arbitrary immediates def : MipsPat<(i32 imm:$imm), (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>; // Carry MipsPatterns def : MipsPat<(subc CPURegs:$lhs, CPURegs:$rhs), (SUBu CPURegs:$lhs, CPURegs:$rhs)>; let Predicates = [HasStdEnc, NotDSP] in { def : MipsPat<(addc CPURegs:$lhs, CPURegs:$rhs), (ADDu CPURegs:$lhs, CPURegs:$rhs)>; def : MipsPat<(addc CPURegs:$src, immSExt16:$imm), (ADDiu CPURegs:$src, imm:$imm)>; } // Call def : MipsPat<(MipsJmpLink (i32 tglobaladdr:$dst)), (JAL tglobaladdr:$dst)>; def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)), (JAL texternalsym:$dst)>; //def : MipsPat<(MipsJmpLink CPURegs:$dst), // (JALR CPURegs:$dst)>; // Tail call def : MipsPat<(MipsTailCall (iPTR tglobaladdr:$dst)), (TAILCALL tglobaladdr:$dst)>; def : MipsPat<(MipsTailCall (iPTR texternalsym:$dst)), (TAILCALL texternalsym:$dst)>; // hi/lo relocs def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>; def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>; def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>; def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>; def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>; def : MipsPat<(MipsHi texternalsym:$in), (LUi texternalsym:$in)>; def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>; def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>; def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>; def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>; def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>; def : MipsPat<(MipsLo texternalsym:$in), (ADDiu ZERO, texternalsym:$in)>; def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)), (ADDiu CPURegs:$hi, tglobaladdr:$lo)>; def : MipsPat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)), (ADDiu CPURegs:$hi, tblockaddress:$lo)>; def : MipsPat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)), (ADDiu CPURegs:$hi, tjumptable:$lo)>; def : MipsPat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)), (ADDiu CPURegs:$hi, tconstpool:$lo)>; def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaltlsaddr:$lo)), (ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>; // gp_rel relocs def : MipsPat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)), (ADDiu CPURegs:$gp, tglobaladdr:$in)>; def : MipsPat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)), (ADDiu CPURegs:$gp, tconstpool:$in)>; // wrapper_pic class WrapperPat: MipsPat<(MipsWrapper RC:$gp, node:$in), (ADDiuOp RC:$gp, node:$in)>; def : WrapperPat; def : WrapperPat; def : WrapperPat; def : WrapperPat; def : WrapperPat; def : WrapperPat; // Mips does not have "not", so we expand our way def : MipsPat<(not CPURegs:$in), (NOR CPURegsOpnd:$in, ZERO)>; // extended loads let Predicates = [NotN64, HasStdEnc] in { def : MipsPat<(i32 (extloadi1 addr:$src)), (LBu addr:$src)>; def : MipsPat<(i32 (extloadi8 addr:$src)), (LBu addr:$src)>; def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>; } let Predicates = [IsN64, HasStdEnc] in { def : MipsPat<(i32 (extloadi1 addr:$src)), (LBu_P8 addr:$src)>; def : MipsPat<(i32 (extloadi8 addr:$src)), (LBu_P8 addr:$src)>; def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu_P8 addr:$src)>; } // peepholes let Predicates = [NotN64, HasStdEnc] in { def : MipsPat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>; } let Predicates = [IsN64, HasStdEnc] in { def : MipsPat<(store (i32 0), addr:$dst), (SW_P8 ZERO, addr:$dst)>; } // brcond patterns multiclass BrcondPats { def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst), (BNEOp RC:$lhs, ZEROReg, bb:$dst)>; def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst), (BEQOp RC:$lhs, ZEROReg, bb:$dst)>; def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst), (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>; def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst), (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>; def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst), (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>; def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst), (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>; def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst), (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>; def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst), (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>; def : MipsPat<(brcond RC:$cond, bb:$dst), (BNEOp RC:$cond, ZEROReg, bb:$dst)>; } defm : BrcondPats; // setcc patterns multiclass SeteqPats { def : MipsPat<(seteq RC:$lhs, RC:$rhs), (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>; def : MipsPat<(setne RC:$lhs, RC:$rhs), (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>; } multiclass SetlePats { def : MipsPat<(setle RC:$lhs, RC:$rhs), (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>; def : MipsPat<(setule RC:$lhs, RC:$rhs), (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>; } multiclass SetgtPats { def : MipsPat<(setgt RC:$lhs, RC:$rhs), (SLTOp RC:$rhs, RC:$lhs)>; def : MipsPat<(setugt RC:$lhs, RC:$rhs), (SLTuOp RC:$rhs, RC:$lhs)>; } multiclass SetgePats { def : MipsPat<(setge RC:$lhs, RC:$rhs), (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>; def : MipsPat<(setuge RC:$lhs, RC:$rhs), (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>; } multiclass SetgeImmPats { def : MipsPat<(setge RC:$lhs, immSExt16:$rhs), (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>; def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs), (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>; } defm : SeteqPats; defm : SetlePats; defm : SetgtPats; defm : SetgePats; defm : SetgeImmPats; // bswap pattern def : MipsPat<(bswap CPURegs:$rt), (ROTR (WSBH CPURegs:$rt), 16)>; // mflo/hi patterns. def : MipsPat<(i32 (ExtractLOHI ACRegs:$ac, imm:$lohi_idx)), (EXTRACT_SUBREG ACRegs:$ac, imm:$lohi_idx)>; // Load halfword/word patterns. let AddedComplexity = 40 in { let Predicates = [NotN64, HasStdEnc] in { def : LoadRegImmPat; def : LoadRegImmPat; def : LoadRegImmPat; } let Predicates = [IsN64, HasStdEnc] in { def : LoadRegImmPat; def : LoadRegImmPat; def : LoadRegImmPat; } } //===----------------------------------------------------------------------===// // Floating Point Support //===----------------------------------------------------------------------===// include "MipsInstrFPU.td" include "Mips64InstrInfo.td" include "MipsCondMov.td" // // Mips16 include "Mips16InstrFormats.td" include "Mips16InstrInfo.td" // DSP include "MipsDSPInstrFormats.td" include "MipsDSPInstrInfo.td"