//===-- R600ExpandSpecialInstrs.cpp - Expand special instructions ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // Vector, Reduction, and Cube instructions need to fill the entire instruction // group to work correctly. This pass expands these individual instructions // into several instructions that will completely fill the instruction group. //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "R600Defines.h" #include "R600InstrInfo.h" #include "R600RegisterInfo.h" #include "R600MachineFunctionInfo.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" using namespace llvm; namespace { class R600ExpandSpecialInstrsPass : public MachineFunctionPass { private: static char ID; const R600InstrInfo *TII; bool ExpandInputPerspective(MachineInstr& MI); bool ExpandInputConstant(MachineInstr& MI); public: R600ExpandSpecialInstrsPass(TargetMachine &tm) : MachineFunctionPass(ID), TII (static_cast(tm.getInstrInfo())) { } virtual bool runOnMachineFunction(MachineFunction &MF); const char *getPassName() const { return "R600 Expand special instructions pass"; } }; } // End anonymous namespace char R600ExpandSpecialInstrsPass::ID = 0; FunctionPass *llvm::createR600ExpandSpecialInstrsPass(TargetMachine &TM) { return new R600ExpandSpecialInstrsPass(TM); } bool R600ExpandSpecialInstrsPass::ExpandInputPerspective(MachineInstr &MI) { const R600RegisterInfo &TRI = TII->getRegisterInfo(); if (MI.getOpcode() != AMDGPU::input_perspective) return false; MachineBasicBlock::iterator I = &MI; unsigned DstReg = MI.getOperand(0).getReg(); R600MachineFunctionInfo *MFI = MI.getParent()->getParent() ->getInfo(); unsigned IJIndexBase; // In Evergreen ISA doc section 8.3.2 : // We need to interpolate XY and ZW in two different instruction groups. // An INTERP_* must occupy all 4 slots of an instruction group. // Output of INTERP_XY is written in X,Y slots // Output of INTERP_ZW is written in Z,W slots // // Thus interpolation requires the following sequences : // // AnyGPR.x = INTERP_ZW; (Write Masked Out) // AnyGPR.y = INTERP_ZW; (Write Masked Out) // DstGPR.z = INTERP_ZW; // DstGPR.w = INTERP_ZW; (End of first IG) // DstGPR.x = INTERP_XY; // DstGPR.y = INTERP_XY; // AnyGPR.z = INTERP_XY; (Write Masked Out) // AnyGPR.w = INTERP_XY; (Write Masked Out) (End of second IG) // switch (MI.getOperand(1).getImm()) { case 0: IJIndexBase = MFI->GetIJPerspectiveIndex(); break; case 1: IJIndexBase = MFI->GetIJLinearIndex(); break; default: assert(0 && "Unknow ij index"); } for (unsigned i = 0; i < 8; i++) { unsigned IJIndex = AMDGPU::R600_TReg32RegClass.getRegister( 2 * IJIndexBase + ((i + 1) % 2)); unsigned ReadReg = AMDGPU::R600_TReg32RegClass.getRegister( 4 * MI.getOperand(2).getImm()); unsigned Sel; switch (i % 4) { case 0:Sel = AMDGPU::sel_x;break; case 1:Sel = AMDGPU::sel_y;break; case 2:Sel = AMDGPU::sel_z;break; case 3:Sel = AMDGPU::sel_w;break; default:break; } unsigned Res = TRI.getSubReg(DstReg, Sel); const MCInstrDesc &Opcode = (i < 4)? TII->get(AMDGPU::INTERP_ZW): TII->get(AMDGPU::INTERP_XY); MachineInstr *NewMI = BuildMI(*(MI.getParent()), I, MI.getParent()->findDebugLoc(I), Opcode, Res) .addReg(IJIndex) .addReg(ReadReg) .addImm(0); if (!(i> 1 && i < 6)) { TII->addFlag(NewMI, 0, MO_FLAG_MASK); } if (i % 4 != 3) TII->addFlag(NewMI, 0, MO_FLAG_NOT_LAST); } MI.eraseFromParent(); return true; } bool R600ExpandSpecialInstrsPass::ExpandInputConstant(MachineInstr &MI) { const R600RegisterInfo &TRI = TII->getRegisterInfo(); if (MI.getOpcode() != AMDGPU::input_constant) return false; MachineBasicBlock::iterator I = &MI; unsigned DstReg = MI.getOperand(0).getReg(); for (unsigned i = 0; i < 4; i++) { unsigned ReadReg = AMDGPU::R600_TReg32RegClass.getRegister( 4 * MI.getOperand(1).getImm() + i); unsigned Sel; switch (i % 4) { case 0:Sel = AMDGPU::sel_x;break; case 1:Sel = AMDGPU::sel_y;break; case 2:Sel = AMDGPU::sel_z;break; case 3:Sel = AMDGPU::sel_w;break; default:break; } unsigned Res = TRI.getSubReg(DstReg, Sel); MachineInstr *NewMI = BuildMI(*(MI.getParent()), I, MI.getParent()->findDebugLoc(I), TII->get(AMDGPU::INTERP_LOAD_P0), Res) .addReg(ReadReg) .addImm(0); if (i % 4 != 3) TII->addFlag(NewMI, 0, MO_FLAG_NOT_LAST); } MI.eraseFromParent(); return true; } bool R600ExpandSpecialInstrsPass::runOnMachineFunction(MachineFunction &MF) { const R600RegisterInfo &TRI = TII->getRegisterInfo(); for (MachineFunction::iterator BB = MF.begin(), BB_E = MF.end(); BB != BB_E; ++BB) { MachineBasicBlock &MBB = *BB; MachineBasicBlock::iterator I = MBB.begin(); while (I != MBB.end()) { MachineInstr &MI = *I; I = llvm::next(I); if (ExpandInputPerspective(MI)) continue; if (ExpandInputConstant(MI)) continue; bool IsReduction = TII->isReductionOp(MI.getOpcode()); bool IsVector = TII->isVector(MI); bool IsCube = TII->isCubeOp(MI.getOpcode()); if (!IsReduction && !IsVector && !IsCube) { continue; } // Expand the instruction // // Reduction instructions: // T0_X = DP4 T1_XYZW, T2_XYZW // becomes: // TO_X = DP4 T1_X, T2_X // TO_Y (write masked) = DP4 T1_Y, T2_Y // TO_Z (write masked) = DP4 T1_Z, T2_Z // TO_W (write masked) = DP4 T1_W, T2_W // // Vector instructions: // T0_X = MULLO_INT T1_X, T2_X // becomes: // T0_X = MULLO_INT T1_X, T2_X // T0_Y (write masked) = MULLO_INT T1_X, T2_X // T0_Z (write masked) = MULLO_INT T1_X, T2_X // T0_W (write masked) = MULLO_INT T1_X, T2_X // // Cube instructions: // T0_XYZW = CUBE T1_XYZW // becomes: // TO_X = CUBE T1_Z, T1_Y // T0_Y = CUBE T1_Z, T1_X // T0_Z = CUBE T1_X, T1_Z // T0_W = CUBE T1_Y, T1_Z for (unsigned Chan = 0; Chan < 4; Chan++) { unsigned DstReg = MI.getOperand(0).getReg(); unsigned Src0 = MI.getOperand(1).getReg(); unsigned Src1 = 0; // Determine the correct source registers if (!IsCube) { Src1 = MI.getOperand(2).getReg(); } if (IsReduction) { unsigned SubRegIndex = TRI.getSubRegFromChannel(Chan); Src0 = TRI.getSubReg(Src0, SubRegIndex); Src1 = TRI.getSubReg(Src1, SubRegIndex); } else if (IsCube) { static const int CubeSrcSwz[] = {2, 2, 0, 1}; unsigned SubRegIndex0 = TRI.getSubRegFromChannel(CubeSrcSwz[Chan]); unsigned SubRegIndex1 = TRI.getSubRegFromChannel(CubeSrcSwz[3 - Chan]); Src1 = TRI.getSubReg(Src0, SubRegIndex1); Src0 = TRI.getSubReg(Src0, SubRegIndex0); } // Determine the correct destination registers; unsigned Flags = 0; if (IsCube) { unsigned SubRegIndex = TRI.getSubRegFromChannel(Chan); DstReg = TRI.getSubReg(DstReg, SubRegIndex); } else { // Mask the write if the original instruction does not write to // the current Channel. Flags |= (Chan != TRI.getHWRegChan(DstReg) ? MO_FLAG_MASK : 0); unsigned DstBase = TRI.getEncodingValue(DstReg); DstReg = AMDGPU::R600_TReg32RegClass.getRegister((DstBase * 4) + Chan); } // Set the IsLast bit Flags |= (Chan != 3 ? MO_FLAG_NOT_LAST : 0); // Add the new instruction unsigned Opcode; if (IsCube) { switch (MI.getOpcode()) { case AMDGPU::CUBE_r600_pseudo: Opcode = AMDGPU::CUBE_r600_real; break; case AMDGPU::CUBE_eg_pseudo: Opcode = AMDGPU::CUBE_eg_real; break; default: assert(!"Unknown CUBE instruction"); Opcode = 0; break; } } else { Opcode = MI.getOpcode(); } MachineInstr *NewMI = BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(Opcode), DstReg) .addReg(Src0) .addReg(Src1) .addImm(0); // Flag NewMI->setIsInsideBundle(Chan != 0); TII->addFlag(NewMI, 0, Flags); } MI.eraseFromParent(); } } return false; }