//===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This header file implements the operating system Host concept. // //===----------------------------------------------------------------------===// #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/DataStream.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Host.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Config/config.h" #include // Include the platform-specific parts of this class. #ifdef LLVM_ON_UNIX #include "Unix/Host.inc" #endif #ifdef LLVM_ON_WIN32 #include "Windows/Host.inc" #endif #ifdef _MSC_VER #include #endif #if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__)) #include #include #include #include #endif //===----------------------------------------------------------------------===// // // Implementations of the CPU detection routines // //===----------------------------------------------------------------------===// using namespace llvm; #if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\ || defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64) /// GetX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in the /// specified arguments. If we can't run cpuid on the host, return true. static bool GetX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX, unsigned *rECX, unsigned *rEDX) { #if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64) #if defined(__GNUC__) // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually. asm ("movq\t%%rbx, %%rsi\n\t" "cpuid\n\t" "xchgq\t%%rbx, %%rsi\n\t" : "=a" (*rEAX), "=S" (*rEBX), "=c" (*rECX), "=d" (*rEDX) : "a" (value)); return false; #elif defined(_MSC_VER) int registers[4]; __cpuid(registers, value); *rEAX = registers[0]; *rEBX = registers[1]; *rECX = registers[2]; *rEDX = registers[3]; return false; #else return true; #endif #elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86) #if defined(__GNUC__) asm ("movl\t%%ebx, %%esi\n\t" "cpuid\n\t" "xchgl\t%%ebx, %%esi\n\t" : "=a" (*rEAX), "=S" (*rEBX), "=c" (*rECX), "=d" (*rEDX) : "a" (value)); return false; #elif defined(_MSC_VER) __asm { mov eax,value cpuid mov esi,rEAX mov dword ptr [esi],eax mov esi,rEBX mov dword ptr [esi],ebx mov esi,rECX mov dword ptr [esi],ecx mov esi,rEDX mov dword ptr [esi],edx } return false; // pedantic #else returns to appease -Wunreachable-code (so we don't generate // postprocessed code that looks like "return true; return false;") #else return true; #endif #else return true; #endif } static void DetectX86FamilyModel(unsigned EAX, unsigned &Family, unsigned &Model) { Family = (EAX >> 8) & 0xf; // Bits 8 - 11 Model = (EAX >> 4) & 0xf; // Bits 4 - 7 if (Family == 6 || Family == 0xf) { if (Family == 0xf) // Examine extended family ID if family ID is F. Family += (EAX >> 20) & 0xff; // Bits 20 - 27 // Examine extended model ID if family ID is 6 or F. Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19 } } std::string sys::getHostCPUName() { unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; if (GetX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX)) return "generic"; unsigned Family = 0; unsigned Model = 0; DetectX86FamilyModel(EAX, Family, Model); bool HasSSE3 = (ECX & 0x1); GetX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); bool Em64T = (EDX >> 29) & 0x1; union { unsigned u[3]; char c[12]; } text; GetX86CpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1); if (memcmp(text.c, "GenuineIntel", 12) == 0) { switch (Family) { case 3: return "i386"; case 4: switch (Model) { case 0: // Intel486 DX processors case 1: // Intel486 DX processors case 2: // Intel486 SX processors case 3: // Intel487 processors, IntelDX2 OverDrive processors, // IntelDX2 processors case 4: // Intel486 SL processor case 5: // IntelSX2 processors case 7: // Write-Back Enhanced IntelDX2 processors case 8: // IntelDX4 OverDrive processors, IntelDX4 processors default: return "i486"; } case 5: switch (Model) { case 1: // Pentium OverDrive processor for Pentium processor (60, 66), // Pentium processors (60, 66) case 2: // Pentium OverDrive processor for Pentium processor (75, 90, // 100, 120, 133), Pentium processors (75, 90, 100, 120, 133, // 150, 166, 200) case 3: // Pentium OverDrive processors for Intel486 processor-based // systems return "pentium"; case 4: // Pentium OverDrive processor with MMX technology for Pentium // processor (75, 90, 100, 120, 133), Pentium processor with // MMX technology (166, 200) return "pentium-mmx"; default: return "pentium"; } case 6: switch (Model) { case 1: // Pentium Pro processor return "pentiumpro"; case 3: // Intel Pentium II OverDrive processor, Pentium II processor, // model 03 case 5: // Pentium II processor, model 05, Pentium II Xeon processor, // model 05, and Intel Celeron processor, model 05 case 6: // Celeron processor, model 06 return "pentium2"; case 7: // Pentium III processor, model 07, and Pentium III Xeon // processor, model 07 case 8: // Pentium III processor, model 08, Pentium III Xeon processor, // model 08, and Celeron processor, model 08 case 10: // Pentium III Xeon processor, model 0Ah case 11: // Pentium III processor, model 0Bh return "pentium3"; case 9: // Intel Pentium M processor, Intel Celeron M processor model 09. case 13: // Intel Pentium M processor, Intel Celeron M processor, model // 0Dh. All processors are manufactured using the 90 nm process. return "pentium-m"; case 14: // Intel Core Duo processor, Intel Core Solo processor, model // 0Eh. All processors are manufactured using the 65 nm process. return "yonah"; case 15: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile // processor, Intel Core 2 Quad processor, Intel Core 2 Quad // mobile processor, Intel Core 2 Extreme processor, Intel // Pentium Dual-Core processor, Intel Xeon processor, model // 0Fh. All processors are manufactured using the 65 nm process. case 22: // Intel Celeron processor model 16h. All processors are // manufactured using the 65 nm process return "core2"; case 21: // Intel EP80579 Integrated Processor and Intel EP80579 // Integrated Processor with Intel QuickAssist Technology return "i686"; // FIXME: ??? case 23: // Intel Core 2 Extreme processor, Intel Xeon processor, model // 17h. All processors are manufactured using the 45 nm process. // // 45nm: Penryn , Wolfdale, Yorkfield (XE) return "penryn"; case 26: // Intel Core i7 processor and Intel Xeon processor. All // processors are manufactured using the 45 nm process. case 29: // Intel Xeon processor MP. All processors are manufactured using // the 45 nm process. case 30: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz. // As found in a Summer 2010 model iMac. case 37: // Intel Core i7, laptop version. case 44: // Intel Core i7 processor and Intel Xeon processor. All // processors are manufactured using the 32 nm process. case 46: // Nehalem EX case 47: // Westmere EX return "corei7"; // SandyBridge: case 42: // Intel Core i7 processor. All processors are manufactured // using the 32 nm process. case 45: return "corei7-avx"; // Ivy Bridge: case 58: return "core-avx-i"; case 28: // Most 45 nm Intel Atom processors case 38: // 45 nm Atom Lincroft case 39: // 32 nm Atom Medfield case 53: // 32 nm Atom Midview case 54: // 32 nm Atom Midview return "atom"; default: return (Em64T) ? "x86-64" : "i686"; } case 15: { switch (Model) { case 0: // Pentium 4 processor, Intel Xeon processor. All processors are // model 00h and manufactured using the 0.18 micron process. case 1: // Pentium 4 processor, Intel Xeon processor, Intel Xeon // processor MP, and Intel Celeron processor. All processors are // model 01h and manufactured using the 0.18 micron process. case 2: // Pentium 4 processor, Mobile Intel Pentium 4 processor - M, // Intel Xeon processor, Intel Xeon processor MP, Intel Celeron // processor, and Mobile Intel Celeron processor. All processors // are model 02h and manufactured using the 0.13 micron process. return (Em64T) ? "x86-64" : "pentium4"; case 3: // Pentium 4 processor, Intel Xeon processor, Intel Celeron D // processor. All processors are model 03h and manufactured using // the 90 nm process. case 4: // Pentium 4 processor, Pentium 4 processor Extreme Edition, // Pentium D processor, Intel Xeon processor, Intel Xeon // processor MP, Intel Celeron D processor. All processors are // model 04h and manufactured using the 90 nm process. case 6: // Pentium 4 processor, Pentium D processor, Pentium processor // Extreme Edition, Intel Xeon processor, Intel Xeon processor // MP, Intel Celeron D processor. All processors are model 06h // and manufactured using the 65 nm process. return (Em64T) ? "nocona" : "prescott"; default: return (Em64T) ? "x86-64" : "pentium4"; } } default: return "generic"; } } else if (memcmp(text.c, "AuthenticAMD", 12) == 0) { // FIXME: this poorly matches the generated SubtargetFeatureKV table. There // appears to be no way to generate the wide variety of AMD-specific targets // from the information returned from CPUID. switch (Family) { case 4: return "i486"; case 5: switch (Model) { case 6: case 7: return "k6"; case 8: return "k6-2"; case 9: case 13: return "k6-3"; case 10: return "geode"; default: return "pentium"; } case 6: switch (Model) { case 4: return "athlon-tbird"; case 6: case 7: case 8: return "athlon-mp"; case 10: return "athlon-xp"; default: return "athlon"; } case 15: if (HasSSE3) return "k8-sse3"; switch (Model) { case 1: return "opteron"; case 5: return "athlon-fx"; // also opteron default: return "athlon64"; } case 16: return "amdfam10"; case 20: return "btver1"; case 21: return "bdver1"; default: return "generic"; } } return "generic"; } #elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__)) std::string sys::getHostCPUName() { host_basic_info_data_t hostInfo; mach_msg_type_number_t infoCount; infoCount = HOST_BASIC_INFO_COUNT; host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&hostInfo, &infoCount); if (hostInfo.cpu_type != CPU_TYPE_POWERPC) return "generic"; switch(hostInfo.cpu_subtype) { case CPU_SUBTYPE_POWERPC_601: return "601"; case CPU_SUBTYPE_POWERPC_602: return "602"; case CPU_SUBTYPE_POWERPC_603: return "603"; case CPU_SUBTYPE_POWERPC_603e: return "603e"; case CPU_SUBTYPE_POWERPC_603ev: return "603ev"; case CPU_SUBTYPE_POWERPC_604: return "604"; case CPU_SUBTYPE_POWERPC_604e: return "604e"; case CPU_SUBTYPE_POWERPC_620: return "620"; case CPU_SUBTYPE_POWERPC_750: return "750"; case CPU_SUBTYPE_POWERPC_7400: return "7400"; case CPU_SUBTYPE_POWERPC_7450: return "7450"; case CPU_SUBTYPE_POWERPC_970: return "970"; default: ; } return "generic"; } #elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__)) std::string sys::getHostCPUName() { // Access to the Processor Version Register (PVR) on PowerPC is privileged, // and so we must use an operating-system interface to determine the current // processor type. On Linux, this is exposed through the /proc/cpuinfo file. const char *generic = "generic"; // Note: We cannot mmap /proc/cpuinfo here and then process the resulting // memory buffer because the 'file' has 0 size (it can be read from only // as a stream). std::string Err; DataStreamer *DS = getDataFileStreamer("/proc/cpuinfo", &Err); if (!DS) { DEBUG(dbgs() << "Unable to open /proc/cpuinfo: " << Err << "\n"); return generic; } // The cpu line is second (after the 'processor: 0' line), so if this // buffer is too small then something has changed (or is wrong). char buffer[1024]; size_t CPUInfoSize = DS->GetBytes((unsigned char*) buffer, sizeof(buffer)); delete DS; const char *CPUInfoStart = buffer; const char *CPUInfoEnd = buffer + CPUInfoSize; const char *CIP = CPUInfoStart; const char *CPUStart = 0; size_t CPULen = 0; // We need to find the first line which starts with cpu, spaces, and a colon. // After the colon, there may be some additional spaces and then the cpu type. while (CIP < CPUInfoEnd && CPUStart == 0) { if (CIP < CPUInfoEnd && *CIP == '\n') ++CIP; if (CIP < CPUInfoEnd && *CIP == 'c') { ++CIP; if (CIP < CPUInfoEnd && *CIP == 'p') { ++CIP; if (CIP < CPUInfoEnd && *CIP == 'u') { ++CIP; while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t')) ++CIP; if (CIP < CPUInfoEnd && *CIP == ':') { ++CIP; while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t')) ++CIP; if (CIP < CPUInfoEnd) { CPUStart = CIP; while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' && *CIP != ',' && *CIP != '\n')) ++CIP; CPULen = CIP - CPUStart; } } } } } if (CPUStart == 0) while (CIP < CPUInfoEnd && *CIP != '\n') ++CIP; } if (CPUStart == 0) return generic; return StringSwitch(StringRef(CPUStart, CPULen)) .Case("604e", "604e") .Case("604", "604") .Case("7400", "7400") .Case("7410", "7400") .Case("7447", "7400") .Case("7455", "7450") .Case("G4", "g4") .Case("POWER4", "970") .Case("PPC970FX", "970") .Case("PPC970MP", "970") .Case("G5", "g5") .Case("POWER5", "g5") .Case("A2", "a2") .Case("POWER6", "pwr6") .Case("POWER7", "pwr7") .Default(generic); } #elif defined(__linux__) && defined(__arm__) std::string sys::getHostCPUName() { // The cpuid register on arm is not accessible from user space. On Linux, // it is exposed through the /proc/cpuinfo file. // Note: We cannot mmap /proc/cpuinfo here and then process the resulting // memory buffer because the 'file' has 0 size (it can be read from only // as a stream). std::string Err; DataStreamer *DS = getDataFileStreamer("/proc/cpuinfo", &Err); if (!DS) { DEBUG(dbgs() << "Unable to open /proc/cpuinfo: " << Err << "\n"); return "generic"; } // Read 1024 bytes from /proc/cpuinfo, which should contain the CPU part line // in all cases. char buffer[1024]; size_t CPUInfoSize = DS->GetBytes((unsigned char*) buffer, sizeof(buffer)); delete DS; StringRef Str(buffer, CPUInfoSize); SmallVector Lines; Str.split(Lines, "\n"); // Look for the CPU implementer line. StringRef Implementer; for (unsigned I = 0, E = Lines.size(); I != E; ++I) if (Lines[I].startswith("CPU implementer")) Implementer = Lines[I].substr(15).ltrim("\t :"); if (Implementer == "0x41") // ARM Ltd. // Look for the CPU part line. for (unsigned I = 0, E = Lines.size(); I != E; ++I) if (Lines[I].startswith("CPU part")) // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The // values correspond to the "Part number" in the CP15/c0 register. The // contents are specified in the various processor manuals. return StringSwitch(Lines[I].substr(8).ltrim("\t :")) .Case("0x926", "arm926ej-s") .Case("0xb02", "mpcore") .Case("0xb36", "arm1136j-s") .Case("0xb56", "arm1156t2-s") .Case("0xb76", "arm1176jz-s") .Case("0xc08", "cortex-a8") .Case("0xc09", "cortex-a9") .Case("0xc20", "cortex-m0") .Case("0xc23", "cortex-m3") .Case("0xc24", "cortex-m4") .Default("generic"); return "generic"; } #else std::string sys::getHostCPUName() { return "generic"; } #endif bool sys::getHostCPUFeatures(StringMap &Features){ return false; }