//===-- UnixLocalInferiorProcess.cpp - A Local process on a Unixy system --===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file provides one implementation of the InferiorProcess class, which is // designed to be used on unixy systems (those that support pipe, fork, exec, // and signals). // // When the process is started, the debugger creates a pair of pipes, forks, and // makes the child start executing the program. The child executes the process // with an IntrinsicLowering instance that turns debugger intrinsics into actual // callbacks. // // This target takes advantage of the fact that the Module* addresses in the // parent and the Module* addresses in the child will be the same, due to the // use of fork(). As such, global addresses looked up in the child can be sent // over the pipe to the debugger. // //===----------------------------------------------------------------------===// #include "llvm/Debugger/InferiorProcess.h" #include "llvm/Constant.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/ModuleProvider.h" #include "llvm/Type.h" #include "llvm/CodeGen/IntrinsicLowering.h" #include "llvm/ExecutionEngine/GenericValue.h" #include "llvm/ExecutionEngine/ExecutionEngine.h" #include "llvm/Support/FileUtilities.h" #include "llvm/ADT/StringExtras.h" #include "FDHandle.h" #include #include #include // Unix-specific debugger support #include #include using namespace llvm; // runChild - Entry point for the child process. static void runChild(Module *M, const std::vector &Arguments, const char * const *envp, FDHandle ReadFD, FDHandle WriteFD); //===----------------------------------------------------------------------===// // Parent/Child Pipe Protocol //===----------------------------------------------------------------------===// // // The parent/child communication protocol is designed to have the child process // responding to requests that the debugger makes. Whenever the child process // has stopped (due to a break point, single stepping, etc), the child process // enters a message processing loop, where it reads and responds to commands // until the parent decides that it wants to continue execution in some way. // // Whenever the child process stops, it notifies the debugger by sending a // character over the wire. // namespace { /// LocationToken - Objects of this type are sent across the pipe from the /// child to the parent to indicate where various stack frames are located. struct LocationToken { unsigned Line, Col; const GlobalVariable *File; LocationToken(unsigned L = 0, unsigned C = 0, const GlobalVariable *F = 0) : Line(L), Col(C), File(F) {} }; } // Once the debugger process has received the LocationToken, it can make // requests of the child by sending one of the following enum values followed by // any data required by that command. The child responds with data appropriate // to the command. // namespace { /// CommandID - This enum defines all of the commands that the child process /// can respond to. The actual expected data and responses are defined as the /// enum values are defined. /// enum CommandID { //===------------------------------------------------------------------===// // Execution commands - These are sent to the child to from the debugger to // get it to do certain things. // // StepProgram: void->char - This command causes the program to continue // execution, but stop as soon as it reaches another stoppoint. StepProgram, // FinishProgram: FrameDesc*->char - This command causes the program to // continue execution until the specified function frame returns. FinishProgram, // ContProgram: void->char - This command causes the program to continue // execution, stopping at some point in the future. ContProgram, // GetSubprogramDescriptor: FrameDesc*->GlobalValue* - This command returns // the GlobalValue* descriptor object for the specified stack frame. GetSubprogramDescriptor, // GetParentFrame: FrameDesc*->FrameDesc* - This command returns the frame // descriptor for the parent stack frame to the specified one, or null if // there is none. GetParentFrame, // GetFrameLocation - FrameDesc*->LocationToken - This command returns the // location that a particular stack frame is stopped at. GetFrameLocation, // AddBreakpoint - LocationToken->unsigned - This command instructs the // target to install a breakpoint at the specified location. AddBreakpoint, // RemoveBreakpoint - unsigned->void - This command instructs the target to // remove a breakpoint. RemoveBreakpoint, }; } //===----------------------------------------------------------------------===// // Parent Process Code //===----------------------------------------------------------------------===// namespace { class IP : public InferiorProcess { // ReadFD, WriteFD - The file descriptors to read/write to the inferior // process. FDHandle ReadFD, WriteFD; // ChildPID - The unix PID of the child process we forked. mutable pid_t ChildPID; public: IP(Module *M, const std::vector &Arguments, const char * const *envp); ~IP(); std::string getStatus() const; /// Execution method implementations... virtual void stepProgram(); virtual void finishProgram(void *Frame); virtual void contProgram(); // Stack frame method implementations... virtual void *getPreviousFrame(void *Frame) const; virtual const GlobalVariable *getSubprogramDesc(void *Frame) const; virtual void getFrameLocation(void *Frame, unsigned &LineNo, unsigned &ColNo, const GlobalVariable *&SourceDesc) const; // Breakpoint implementation methods virtual unsigned addBreakpoint(unsigned LineNo, unsigned ColNo, const GlobalVariable *SourceDesc); virtual void removeBreakpoint(unsigned ID); private: /// startChild - This starts up the child process, and initializes the /// ChildPID member. /// void startChild(Module *M, const std::vector &Arguments, const char * const *envp); /// killChild - Kill or reap the child process. This throws the /// InferiorProcessDead exception an exit code if the process had already /// died, otherwise it just kills it and returns. void killChild() const; private: // Methods for communicating with the child process. If the child exits or // dies while attempting to communicate with it, ChildPID is set to zero and // an exception is thrown. /// readFromChild - Low-level primitive to read some data from the child, /// throwing an exception if it dies. void readFromChild(void *Buffer, unsigned Size) const; /// writeToChild - Low-level primitive to send some data to the child /// process, throwing an exception if the child died. void writeToChild(void *Buffer, unsigned Size) const; /// sendCommand - Send a command token and the request data to the child. /// void sendCommand(CommandID Command, void *Data, unsigned Size) const; /// waitForStop - This method waits for the child process to reach a stop /// point. void waitForStop(); }; } // create - This is the factory method for the InferiorProcess class. Since // there is currently only one subclass of InferiorProcess, we just define it // here. InferiorProcess * InferiorProcess::create(Module *M, const std::vector &Arguments, const char * const *envp) { return new IP(M, Arguments, envp); } /// IP constructor - Create some pipes, them fork a child process. The child /// process should start execution of the debugged program, but stop at the /// first available opportunity. IP::IP(Module *M, const std::vector &Arguments, const char * const *envp) : InferiorProcess(M) { // Start the child running... startChild(M, Arguments, envp); // Okay, we created the program and it is off and running. Wait for it to // stop now. try { waitForStop(); } catch (InferiorProcessDead &IPD) { throw "Error waiting for the child process to stop. " "It exited with status " + itostr(IPD.getExitCode()); } } IP::~IP() { // If the child is still running, kill it. if (!ChildPID) return; killChild(); } /// getStatus - Return information about the unix process being debugged. /// std::string IP::getStatus() const { if (ChildPID == 0) return "Unix target. ERROR: child process appears to be dead!\n"; return "Unix target: PID #" + utostr((unsigned)ChildPID) + "\n"; } /// startChild - This starts up the child process, and initializes the /// ChildPID member. /// void IP::startChild(Module *M, const std::vector &Arguments, const char * const *envp) { // Create the pipes. Make sure to immediately assign the returned file // descriptors to FDHandle's so they get destroyed if an exception is thrown. int FDs[2]; if (pipe(FDs)) throw "Error creating a pipe!"; FDHandle ChildReadFD(FDs[0]); WriteFD = FDs[1]; if (pipe(FDs)) throw "Error creating a pipe!"; ReadFD = FDs[0]; FDHandle ChildWriteFD(FDs[1]); // Fork off the child process. switch (ChildPID = fork()) { case -1: throw "Error forking child process!"; case 0: // child delete this; // Free parent pipe file descriptors runChild(M, Arguments, envp, ChildReadFD, ChildWriteFD); exit(1); default: break; } } /// sendCommand - Send a command token and the request data to the child. /// void IP::sendCommand(CommandID Command, void *Data, unsigned Size) const { writeToChild(&Command, sizeof(Command)); writeToChild(Data, Size); } /// stepProgram - Implement the 'step' command, continuing execution until /// the next possible stop point. void IP::stepProgram() { sendCommand(StepProgram, 0, 0); waitForStop(); } /// finishProgram - Implement the 'finish' command, executing the program until /// the current function returns to its caller. void IP::finishProgram(void *Frame) { sendCommand(FinishProgram, &Frame, sizeof(Frame)); waitForStop(); } /// contProgram - Implement the 'cont' command, continuing execution until /// a breakpoint is encountered. void IP::contProgram() { sendCommand(ContProgram, 0, 0); waitForStop(); } //===----------------------------------------------------------------------===// // Stack manipulation methods // /// getPreviousFrame - Given the descriptor for the current stack frame, /// return the descriptor for the caller frame. This returns null when it /// runs out of frames. void *IP::getPreviousFrame(void *Frame) const { sendCommand(GetParentFrame, &Frame, sizeof(Frame)); readFromChild(&Frame, sizeof(Frame)); return Frame; } /// getSubprogramDesc - Return the subprogram descriptor for the current /// stack frame. const GlobalVariable *IP::getSubprogramDesc(void *Frame) const { sendCommand(GetSubprogramDescriptor, &Frame, sizeof(Frame)); const GlobalVariable *Desc; readFromChild(&Desc, sizeof(Desc)); return Desc; } /// getFrameLocation - This method returns the source location where each stack /// frame is stopped. void IP::getFrameLocation(void *Frame, unsigned &LineNo, unsigned &ColNo, const GlobalVariable *&SourceDesc) const { sendCommand(GetFrameLocation, &Frame, sizeof(Frame)); LocationToken Loc; readFromChild(&Loc, sizeof(Loc)); LineNo = Loc.Line; ColNo = Loc.Col; SourceDesc = Loc.File; } //===----------------------------------------------------------------------===// // Breakpoint manipulation methods // unsigned IP::addBreakpoint(unsigned LineNo, unsigned ColNo, const GlobalVariable *SourceDesc) { LocationToken Loc; Loc.Line = LineNo; Loc.Col = ColNo; Loc.File = SourceDesc; sendCommand(AddBreakpoint, &Loc, sizeof(Loc)); unsigned ID; readFromChild(&ID, sizeof(ID)); return ID; } void IP::removeBreakpoint(unsigned ID) { sendCommand(RemoveBreakpoint, &ID, sizeof(ID)); } //===----------------------------------------------------------------------===// // Methods for communication with the child process // // Methods for communicating with the child process. If the child exits or dies // while attempting to communicate with it, ChildPID is set to zero and an // exception is thrown. // /// readFromChild - Low-level primitive to read some data from the child, /// throwing an exception if it dies. void IP::readFromChild(void *Buffer, unsigned Size) const { assert(ChildPID && "Child process died and still attempting to communicate with it!"); while (Size) { ssize_t Amount = read(ReadFD, Buffer, Size); if (Amount == 0) { // If we cannot communicate with the process, kill it. killChild(); // If killChild succeeded, then the process must have closed the pipe FD // or something, because the child existed, but we cannot communicate with // it. throw InferiorProcessDead(-1); } else if (Amount == -1) { if (errno != EINTR) { ChildPID = 0; killChild(); throw "Error reading from child process!"; } } else { // We read a chunk. Buffer = (char*)Buffer + Amount; Size -= Amount; } } } /// writeToChild - Low-level primitive to send some data to the child /// process, throwing an exception if the child died. void IP::writeToChild(void *Buffer, unsigned Size) const { while (Size) { ssize_t Amount = write(WriteFD, Buffer, Size); if (Amount < 0 && errno == EINTR) continue; if (Amount <= 0) { // If we cannot communicate with the process, kill it. killChild(); // If killChild succeeded, then the process must have closed the pipe FD // or something, because the child existed, but we cannot communicate with // it. throw InferiorProcessDead(-1); } else { // We wrote a chunk. Buffer = (char*)Buffer + Amount; Size -= Amount; } } } /// killChild - Kill or reap the child process. This throws the /// InferiorProcessDead exception an exit code if the process had already /// died, otherwise it just returns the exit code if it had to be killed. void IP::killChild() const { assert(ChildPID != 0 && "Child has already been reaped!"); // If the process terminated on its own accord, closing the pipe file // descriptors, we will get here. Check to see if the process has already // died in this manner, gracefully. int Status = 0; int PID; do { PID = waitpid(ChildPID, &Status, WNOHANG); } while (PID < 0 && errno == EINTR); if (PID < 0) throw "Error waiting for child to exit!"; // Ok, there is a slight race condition here. It's possible that we will find // out that the file descriptor closed before waitpid will indicate that the // process gracefully died. If we don't know that the process gracefully // died, wait a bit and try again. This is pretty nasty. if (PID == 0) { usleep(10000); // Wait a bit. // Try again. Status = 0; do { PID = waitpid(ChildPID, &Status, WNOHANG); } while (PID < 0 && errno == EINTR); if (PID < 0) throw "Error waiting for child to exit!"; } // If the child process was already dead, then indicate that the process // terminated on its own. if (PID) { assert(PID == ChildPID && "Didn't reap child?"); ChildPID = 0; // Child has been reaped if (WIFEXITED(Status)) throw InferiorProcessDead(WEXITSTATUS(Status)); else if (WIFSIGNALED(Status)) throw InferiorProcessDead(WTERMSIG(Status)); throw InferiorProcessDead(-1); } // Otherwise, the child exists and has not yet been killed. if (kill(ChildPID, SIGKILL) < 0) throw "Error killing child process!"; do { PID = waitpid(ChildPID, 0, 0); } while (PID < 0 && errno == EINTR); if (PID <= 0) throw "Error waiting for child to exit!"; assert(PID == ChildPID && "Didn't reap child?"); } /// waitForStop - This method waits for the child process to reach a stop /// point. When it does, it fills in the CurLocation member and returns. void IP::waitForStop() { char Dummy; readFromChild(&Dummy, sizeof(char)); } //===----------------------------------------------------------------------===// // Child Process Code //===----------------------------------------------------------------------===// namespace { class SourceSubprogram; /// SourceRegion - Instances of this class represent the regions that are /// active in the program. class SourceRegion { /// Parent - A pointer to the region that encloses the current one. SourceRegion *Parent; /// CurSubprogram - The subprogram that contains this region. This allows /// efficient stack traversals. SourceSubprogram *CurSubprogram; /// CurLine, CurCol, CurFile - The last location visited by this region. /// This is used for getting the source location of callers in stack frames. unsigned CurLine, CurCol; void *CurFileDesc; //std::vector ActiveObjects; public: SourceRegion(SourceRegion *p, SourceSubprogram *Subprogram = 0) : Parent(p), CurSubprogram(Subprogram ? Subprogram : p->getSubprogram()) { CurLine = 0; CurCol = 0; CurFileDesc = 0; } virtual ~SourceRegion() {} SourceRegion *getParent() const { return Parent; } SourceSubprogram *getSubprogram() const { return CurSubprogram; } void updateLocation(unsigned Line, unsigned Col, void *File) { CurLine = Line; CurCol = Col; CurFileDesc = File; } /// Return a LocationToken for the place that this stack frame stopped or /// called a sub-function. LocationToken getLocation(ExecutionEngine *EE) { LocationToken LT; LT.Line = CurLine; LT.Col = CurCol; const GlobalValue *GV = EE->getGlobalValueAtAddress(CurFileDesc); LT.File = dyn_cast_or_null(GV); return LT; } }; /// SourceSubprogram - This is a stack-frame that represents a source program. /// class SourceSubprogram : public SourceRegion { /// Desc - A pointer to the descriptor for the subprogram that this frame /// represents. void *Desc; public: SourceSubprogram(SourceRegion *P, void *desc) : SourceRegion(P, this), Desc(desc) {} void *getDescriptor() const { return Desc; } }; /// Child class - This class contains all of the information and methods used /// by the child side of the debugger. The single instance of this object is /// pointed to by the "TheChild" global variable. class Child { /// M - The module for the program currently being debugged. /// Module *M; /// EE - The execution engine that we are using to run the program. /// ExecutionEngine *EE; /// ReadFD, WriteFD - The file descriptor handles for this side of the /// debugger pipe. FDHandle ReadFD, WriteFD; /// RegionStack - A linked list of all of the regions dynamically active. /// SourceRegion *RegionStack; /// StopAtNextOpportunity - If this flag is set, the child process will stop /// and report to the debugger at the next possible chance it gets. volatile bool StopAtNextOpportunity; /// StopWhenSubprogramReturns - If this is non-null, the debugger requests /// that the program stops when the specified function frame is destroyed. SourceSubprogram *StopWhenSubprogramReturns; /// Breakpoints - This contains a list of active breakpoints and their IDs. /// std::vector > Breakpoints; /// CurBreakpoint - The last assigned breakpoint. /// unsigned CurBreakpoint; public: Child(Module *m, ExecutionEngine *ee, FDHandle &Read, FDHandle &Write) : M(m), EE(ee), ReadFD(Read), WriteFD(Write), RegionStack(0), CurBreakpoint(0) { StopAtNextOpportunity = true; StopWhenSubprogramReturns = 0; } /// writeToParent - Send the specified buffer of data to the debugger /// process. /// void writeToParent(const void *Buffer, unsigned Size); /// readFromParent - Read the specified number of bytes from the parent. /// void readFromParent(void *Buffer, unsigned Size); /// childStopped - This method is called whenever the child has stopped /// execution due to a breakpoint, step command, interruption, or whatever. /// This stops the process, responds to any requests from the debugger, and /// when commanded to, can continue execution by returning. /// void childStopped(); /// startSubprogram - This method creates a new region for the subroutine /// with the specified descriptor. /// void startSubprogram(void *FuncDesc); /// startRegion - This method initiates the creation of an anonymous region. /// void startRegion(); /// endRegion - This method terminates the last active region. /// void endRegion(); /// reachedLine - This method is automatically called by the program every /// time it executes an llvm.dbg.stoppoint intrinsic. If the debugger wants /// us to stop here, we do so, otherwise we continue execution. /// void reachedLine(unsigned Line, unsigned Col, void *SourceDesc); }; /// TheChild - The single instance of the Child class, which only gets created /// in the child process. Child *TheChild = 0; } // end anonymous namespace // writeToParent - Send the specified buffer of data to the debugger process. void Child::writeToParent(const void *Buffer, unsigned Size) { while (Size) { ssize_t Amount = write(WriteFD, Buffer, Size); if (Amount < 0 && errno == EINTR) continue; if (Amount <= 0) { write(2, "ERROR: Connection to debugger lost!\n", 36); abort(); } else { // We wrote a chunk. Buffer = (const char*)Buffer + Amount; Size -= Amount; } } } // readFromParent - Read the specified number of bytes from the parent. void Child::readFromParent(void *Buffer, unsigned Size) { while (Size) { ssize_t Amount = read(ReadFD, Buffer, Size); if (Amount < 0 && errno == EINTR) continue; if (Amount <= 0) { write(2, "ERROR: Connection to debugger lost!\n", 36); abort(); } else { // We read a chunk. Buffer = (char*)Buffer + Amount; Size -= Amount; } } } /// childStopped - This method is called whenever the child has stopped /// execution due to a breakpoint, step command, interruption, or whatever. /// This stops the process, responds to any requests from the debugger, and when /// commanded to, can continue execution by returning. /// void Child::childStopped() { // Since we stopped, notify the parent that we did so. char Token = 0; writeToParent(&Token, sizeof(char)); StopAtNextOpportunity = false; StopWhenSubprogramReturns = 0; // Now that the debugger knows that we stopped, read commands from it and // respond to them appropriately. CommandID Command; while (1) { SourceRegion *Frame; const void *Result; readFromParent(&Command, sizeof(CommandID)); switch (Command) { case StepProgram: // To step the program, just return. StopAtNextOpportunity = true; return; case FinishProgram: // Run until exit from the specified function... readFromParent(&Frame, sizeof(Frame)); // The user wants us to stop when the specified FUNCTION exits, not when // the specified REGION exits. StopWhenSubprogramReturns = Frame->getSubprogram(); return; case ContProgram: // To continue, just return back to execution. return; case GetSubprogramDescriptor: readFromParent(&Frame, sizeof(Frame)); Result = EE->getGlobalValueAtAddress(Frame->getSubprogram()->getDescriptor()); writeToParent(&Result, sizeof(Result)); break; case GetParentFrame: readFromParent(&Frame, sizeof(Frame)); Result = Frame ? Frame->getSubprogram()->getParent() : RegionStack; writeToParent(&Result, sizeof(Result)); break; case GetFrameLocation: { readFromParent(&Frame, sizeof(Frame)); LocationToken LT = Frame->getLocation(EE); writeToParent(<, sizeof(LT)); break; } case AddBreakpoint: { LocationToken Loc; readFromParent(&Loc, sizeof(Loc)); // Convert the GlobalVariable pointer to the address it was emitted to. Loc.File = (GlobalVariable*)EE->getPointerToGlobal(Loc.File); unsigned ID = CurBreakpoint++; Breakpoints.push_back(std::make_pair(ID, Loc)); writeToParent(&ID, sizeof(ID)); break; } case RemoveBreakpoint: { unsigned ID = 0; readFromParent(&ID, sizeof(ID)); for (unsigned i = 0, e = Breakpoints.size(); i != e; ++i) if (Breakpoints[i].first == ID) { Breakpoints.erase(Breakpoints.begin()+i); break; } break; } default: assert(0 && "Unknown command!"); } } } /// startSubprogram - This method creates a new region for the subroutine /// with the specified descriptor. void Child::startSubprogram(void *SPDesc) { RegionStack = new SourceSubprogram(RegionStack, SPDesc); } /// startRegion - This method initiates the creation of an anonymous region. /// void Child::startRegion() { RegionStack = new SourceRegion(RegionStack); } /// endRegion - This method terminates the last active region. /// void Child::endRegion() { SourceRegion *R = RegionStack->getParent(); // If the debugger wants us to stop when this frame is destroyed, do so. if (RegionStack == StopWhenSubprogramReturns) { StopAtNextOpportunity = true; StopWhenSubprogramReturns = 0; } delete RegionStack; RegionStack = R; } /// reachedLine - This method is automatically called by the program every time /// it executes an llvm.dbg.stoppoint intrinsic. If the debugger wants us to /// stop here, we do so, otherwise we continue execution. Note that the Data /// pointer coming in is a pointer to the LLVM global variable that represents /// the source file we are in. We do not use the contents of the global /// directly in the child, but we do use its address. /// void Child::reachedLine(unsigned Line, unsigned Col, void *SourceDesc) { if (RegionStack) RegionStack->updateLocation(Line, Col, SourceDesc); // If we hit a breakpoint, stop the program. for (unsigned i = 0, e = Breakpoints.size(); i != e; ++i) if (Line == Breakpoints[i].second.Line && SourceDesc == (void*)Breakpoints[i].second.File && Col == Breakpoints[i].second.Col) { childStopped(); return; } // If we are single stepping the program, make sure to stop it. if (StopAtNextOpportunity) childStopped(); } //===----------------------------------------------------------------------===// // Child class wrapper functions // // These functions are invoked directly by the program as it executes, in place // of the debugging intrinsic functions that it contains. // /// llvm_debugger_stop - Every time the program reaches a new source line, it /// will call back to this function. If the debugger has a breakpoint or /// otherwise wants us to stop on this line, we do so, and notify the debugger /// over the pipe. /// extern "C" void *llvm_debugger_stop(void *Dummy, unsigned Line, unsigned Col, void *SourceDescriptor) { TheChild->reachedLine(Line, Col, SourceDescriptor); return Dummy; } /// llvm_dbg_region_start - This function is invoked every time an anonymous /// region of the source program is entered. /// extern "C" void *llvm_dbg_region_start(void *Dummy) { TheChild->startRegion(); return Dummy; } /// llvm_dbg_subprogram - This function is invoked every time a source-language /// subprogram has been entered. /// extern "C" void *llvm_dbg_subprogram(void *FuncDesc) { TheChild->startSubprogram(FuncDesc); return 0; } /// llvm_dbg_region_end - This function is invoked every time a source-language /// region (started with llvm.dbg.region.start or llvm.dbg.func.start) is /// terminated. /// extern "C" void llvm_dbg_region_end(void *Dummy) { TheChild->endRegion(); } namespace { /// DebuggerIntrinsicLowering - This class implements a simple intrinsic /// lowering class that revectors debugging intrinsics to call actual /// functions (defined above), instead of being turned into noops. struct DebuggerIntrinsicLowering : public DefaultIntrinsicLowering { virtual void LowerIntrinsicCall(CallInst *CI) { Module *M = CI->getParent()->getParent()->getParent(); switch (CI->getCalledFunction()->getIntrinsicID()) { case Intrinsic::dbg_stoppoint: // Turn call into a call to llvm_debugger_stop CI->setOperand(0, M->getOrInsertFunction("llvm_debugger_stop", CI->getCalledFunction()->getFunctionType())); break; case Intrinsic::dbg_region_start: // Turn call into a call to llvm_dbg_region_start CI->setOperand(0, M->getOrInsertFunction("llvm_dbg_region_start", CI->getCalledFunction()->getFunctionType())); break; case Intrinsic::dbg_region_end: // Turn call into a call to llvm_dbg_region_end CI->setOperand(0, M->getOrInsertFunction("llvm_dbg_region_end", CI->getCalledFunction()->getFunctionType())); break; case Intrinsic::dbg_func_start: // Turn call into a call to llvm_dbg_subprogram CI->setOperand(0, M->getOrInsertFunction("llvm_dbg_subprogram", CI->getCalledFunction()->getFunctionType())); break; default: DefaultIntrinsicLowering::LowerIntrinsicCall(CI); break; } } }; } // end anonymous namespace static void runChild(Module *M, const std::vector &Arguments, const char * const *envp, FDHandle ReadFD, FDHandle WriteFD) { // Create an execution engine that uses our custom intrinsic lowering object // to revector debugging intrinsic functions into actual functions defined // above. ExecutionEngine *EE = ExecutionEngine::create(new ExistingModuleProvider(M), false, new DebuggerIntrinsicLowering()); assert(EE && "Couldn't create an ExecutionEngine, not even an interpreter?"); // Call the main function from M as if its signature were: // int main (int argc, char **argv, const char **envp) // using the contents of Args to determine argc & argv, and the contents of // EnvVars to determine envp. // Function *Fn = M->getMainFunction(); if (!Fn) exit(1); // Create the child class instance which will be used by the debugger // callbacks to keep track of the current state of the process. assert(TheChild == 0 && "A child process has already been created??"); TheChild = new Child(M, EE, ReadFD, WriteFD); // Run main... int Result = EE->runFunctionAsMain(Fn, Arguments, envp); // If the program didn't explicitly call exit, call exit now, for the program. // This ensures that any atexit handlers get called correctly. Function *Exit = M->getOrInsertFunction("exit", Type::VoidTy, Type::IntTy, 0); std::vector Args; GenericValue ResultGV; ResultGV.IntVal = Result; Args.push_back(ResultGV); EE->runFunction(Exit, Args); abort(); }