//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the SelectionDAG::Legalize method. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/DwarfWriter.h" #include "llvm/Analysis/DebugInfo.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/Target/TargetFrameInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetSubtarget.h" #include "llvm/CallingConv.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/GlobalVariable.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/MathExtras.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/SmallPtrSet.h" #include using namespace llvm; //===----------------------------------------------------------------------===// /// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and /// hacks on it until the target machine can handle it. This involves /// eliminating value sizes the machine cannot handle (promoting small sizes to /// large sizes or splitting up large values into small values) as well as /// eliminating operations the machine cannot handle. /// /// This code also does a small amount of optimization and recognition of idioms /// as part of its processing. For example, if a target does not support a /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this /// will attempt merge setcc and brc instructions into brcc's. /// namespace { class VISIBILITY_HIDDEN SelectionDAGLegalize { TargetLowering &TLI; SelectionDAG &DAG; bool TypesNeedLegalizing; // Libcall insertion helpers. /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been /// legalized. We use this to ensure that calls are properly serialized /// against each other, including inserted libcalls. SDValue LastCALLSEQ_END; /// IsLegalizingCall - This member is used *only* for purposes of providing /// helpful assertions that a libcall isn't created while another call is /// being legalized (which could lead to non-serialized call sequences). bool IsLegalizingCall; enum LegalizeAction { Legal, // The target natively supports this operation. Promote, // This operation should be executed in a larger type. Expand // Try to expand this to other ops, otherwise use a libcall. }; /// ValueTypeActions - This is a bitvector that contains two bits for each /// value type, where the two bits correspond to the LegalizeAction enum. /// This can be queried with "getTypeAction(VT)". TargetLowering::ValueTypeActionImpl ValueTypeActions; /// LegalizedNodes - For nodes that are of legal width, and that have more /// than one use, this map indicates what regularized operand to use. This /// allows us to avoid legalizing the same thing more than once. DenseMap LegalizedNodes; /// PromotedNodes - For nodes that are below legal width, and that have more /// than one use, this map indicates what promoted value to use. This allows /// us to avoid promoting the same thing more than once. DenseMap PromotedNodes; /// ExpandedNodes - For nodes that need to be expanded this map indicates /// which operands are the expanded version of the input. This allows /// us to avoid expanding the same node more than once. DenseMap > ExpandedNodes; /// SplitNodes - For vector nodes that need to be split, this map indicates /// which operands are the split version of the input. This allows us /// to avoid splitting the same node more than once. std::map > SplitNodes; /// ScalarizedNodes - For nodes that need to be converted from vector types to /// scalar types, this contains the mapping of ones we have already /// processed to the result. std::map ScalarizedNodes; /// WidenNodes - For nodes that need to be widened from one vector type to /// another, this contains the mapping of those that we have already widen. /// This allows us to avoid widening more than once. std::map WidenNodes; void AddLegalizedOperand(SDValue From, SDValue To) { LegalizedNodes.insert(std::make_pair(From, To)); // If someone requests legalization of the new node, return itself. if (From != To) LegalizedNodes.insert(std::make_pair(To, To)); } void AddPromotedOperand(SDValue From, SDValue To) { bool isNew = PromotedNodes.insert(std::make_pair(From, To)).second; assert(isNew && "Got into the map somehow?"); isNew = isNew; // If someone requests legalization of the new node, return itself. LegalizedNodes.insert(std::make_pair(To, To)); } void AddWidenedOperand(SDValue From, SDValue To) { bool isNew = WidenNodes.insert(std::make_pair(From, To)).second; assert(isNew && "Got into the map somehow?"); isNew = isNew; // If someone requests legalization of the new node, return itself. LegalizedNodes.insert(std::make_pair(To, To)); } public: explicit SelectionDAGLegalize(SelectionDAG &DAG, bool TypesNeedLegalizing); /// getTypeAction - Return how we should legalize values of this type, either /// it is already legal or we need to expand it into multiple registers of /// smaller integer type, or we need to promote it to a larger type. LegalizeAction getTypeAction(MVT VT) const { return (LegalizeAction)ValueTypeActions.getTypeAction(VT); } /// isTypeLegal - Return true if this type is legal on this target. /// bool isTypeLegal(MVT VT) const { return getTypeAction(VT) == Legal; } void LegalizeDAG(); private: /// HandleOp - Legalize, Promote, or Expand the specified operand as /// appropriate for its type. void HandleOp(SDValue Op); /// LegalizeOp - We know that the specified value has a legal type. /// Recursively ensure that the operands have legal types, then return the /// result. SDValue LegalizeOp(SDValue O); /// UnrollVectorOp - We know that the given vector has a legal type, however /// the operation it performs is not legal and is an operation that we have /// no way of lowering. "Unroll" the vector, splitting out the scalars and /// operating on each element individually. SDValue UnrollVectorOp(SDValue O); /// PerformInsertVectorEltInMemory - Some target cannot handle a variable /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it /// is necessary to spill the vector being inserted into to memory, perform /// the insert there, and then read the result back. SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx); /// PromoteOp - Given an operation that produces a value in an invalid type, /// promote it to compute the value into a larger type. The produced value /// will have the correct bits for the low portion of the register, but no /// guarantee is made about the top bits: it may be zero, sign-extended, or /// garbage. SDValue PromoteOp(SDValue O); /// ExpandOp - Expand the specified SDValue into its two component pieces /// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, /// the LegalizedNodes map is filled in for any results that are not expanded, /// the ExpandedNodes map is filled in for any results that are expanded, and /// the Lo/Hi values are returned. This applies to integer types and Vector /// types. void ExpandOp(SDValue O, SDValue &Lo, SDValue &Hi); /// WidenVectorOp - Widen a vector operation to a wider type given by WidenVT /// (e.g., v3i32 to v4i32). The produced value will have the correct value /// for the existing elements but no guarantee is made about the new elements /// at the end of the vector: it may be zero, ones, or garbage. This is useful /// when we have an instruction operating on an illegal vector type and we /// want to widen it to do the computation on a legal wider vector type. SDValue WidenVectorOp(SDValue Op, MVT WidenVT); /// SplitVectorOp - Given an operand of vector type, break it down into /// two smaller values. void SplitVectorOp(SDValue O, SDValue &Lo, SDValue &Hi); /// ScalarizeVectorOp - Given an operand of single-element vector type /// (e.g. v1f32), convert it into the equivalent operation that returns a /// scalar (e.g. f32) value. SDValue ScalarizeVectorOp(SDValue O); /// Useful 16 element vector type that is used to pass operands for widening. typedef SmallVector SDValueVector; /// LoadWidenVectorOp - Load a vector for a wider type. Returns true if /// the LdChain contains a single load and false if it contains a token /// factor for multiple loads. It takes /// Result: location to return the result /// LdChain: location to return the load chain /// Op: load operation to widen /// NVT: widen vector result type we want for the load bool LoadWidenVectorOp(SDValue& Result, SDValue& LdChain, SDValue Op, MVT NVT); /// Helper genWidenVectorLoads - Helper function to generate a set of /// loads to load a vector with a resulting wider type. It takes /// LdChain: list of chains for the load we have generated /// Chain: incoming chain for the ld vector /// BasePtr: base pointer to load from /// SV: memory disambiguation source value /// SVOffset: memory disambiugation offset /// Alignment: alignment of the memory /// isVolatile: volatile load /// LdWidth: width of memory that we want to load /// ResType: the wider result result type for the resulting loaded vector SDValue genWidenVectorLoads(SDValueVector& LdChain, SDValue Chain, SDValue BasePtr, const Value *SV, int SVOffset, unsigned Alignment, bool isVolatile, unsigned LdWidth, MVT ResType); /// StoreWidenVectorOp - Stores a widen vector into non widen memory /// location. It takes /// ST: store node that we want to replace /// Chain: incoming store chain /// BasePtr: base address of where we want to store into SDValue StoreWidenVectorOp(StoreSDNode *ST, SDValue Chain, SDValue BasePtr); /// Helper genWidenVectorStores - Helper function to generate a set of /// stores to store a widen vector into non widen memory // It takes // StChain: list of chains for the stores we have generated // Chain: incoming chain for the ld vector // BasePtr: base pointer to load from // SV: memory disambiguation source value // SVOffset: memory disambiugation offset // Alignment: alignment of the memory // isVolatile: volatile lod // ValOp: value to store // StWidth: width of memory that we want to store void genWidenVectorStores(SDValueVector& StChain, SDValue Chain, SDValue BasePtr, const Value *SV, int SVOffset, unsigned Alignment, bool isVolatile, SDValue ValOp, unsigned StWidth); /// isShuffleLegal - Return non-null if a vector shuffle is legal with the /// specified mask and type. Targets can specify exactly which masks they /// support and the code generator is tasked with not creating illegal masks. /// /// Note that this will also return true for shuffles that are promoted to a /// different type. /// /// If this is a legal shuffle, this method returns the (possibly promoted) /// build_vector Mask. If it's not a legal shuffle, it returns null. SDNode *isShuffleLegal(MVT VT, SDValue Mask) const; bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, SmallPtrSet &NodesLeadingTo); void LegalizeSetCCOperands(SDValue &LHS, SDValue &RHS, SDValue &CC); void LegalizeSetCCCondCode(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC); void LegalizeSetCC(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC) { LegalizeSetCCOperands(LHS, RHS, CC); LegalizeSetCCCondCode(VT, LHS, RHS, CC); } SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned, SDValue &Hi); SDValue ExpandIntToFP(bool isSigned, MVT DestTy, SDValue Source); SDValue EmitStackConvert(SDValue SrcOp, MVT SlotVT, MVT DestVT); SDValue ExpandBUILD_VECTOR(SDNode *Node); SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); SDValue LegalizeINT_TO_FP(SDValue Result, bool isSigned, MVT DestTy, SDValue Op); SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, MVT DestVT); SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, MVT DestVT, bool isSigned); SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, MVT DestVT, bool isSigned); SDValue ExpandBSWAP(SDValue Op); SDValue ExpandBitCount(unsigned Opc, SDValue Op); bool ExpandShift(unsigned Opc, SDValue Op, SDValue Amt, SDValue &Lo, SDValue &Hi); void ExpandShiftParts(unsigned NodeOp, SDValue Op, SDValue Amt, SDValue &Lo, SDValue &Hi); SDValue ExpandEXTRACT_SUBVECTOR(SDValue Op); SDValue ExpandEXTRACT_VECTOR_ELT(SDValue Op); // Returns the legalized (truncated or extended) shift amount. SDValue LegalizeShiftAmount(SDValue ShiftAmt); }; } /// isVectorShuffleLegal - Return true if a vector shuffle is legal with the /// specified mask and type. Targets can specify exactly which masks they /// support and the code generator is tasked with not creating illegal masks. /// /// Note that this will also return true for shuffles that are promoted to a /// different type. SDNode *SelectionDAGLegalize::isShuffleLegal(MVT VT, SDValue Mask) const { switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE, VT)) { default: return 0; case TargetLowering::Legal: case TargetLowering::Custom: break; case TargetLowering::Promote: { // If this is promoted to a different type, convert the shuffle mask and // ask if it is legal in the promoted type! MVT NVT = TLI.getTypeToPromoteTo(ISD::VECTOR_SHUFFLE, VT); MVT EltVT = NVT.getVectorElementType(); // If we changed # elements, change the shuffle mask. unsigned NumEltsGrowth = NVT.getVectorNumElements() / VT.getVectorNumElements(); assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); if (NumEltsGrowth > 1) { // Renumber the elements. SmallVector Ops; for (unsigned i = 0, e = Mask.getNumOperands(); i != e; ++i) { SDValue InOp = Mask.getOperand(i); for (unsigned j = 0; j != NumEltsGrowth; ++j) { if (InOp.getOpcode() == ISD::UNDEF) Ops.push_back(DAG.getNode(ISD::UNDEF, EltVT)); else { unsigned InEltNo = cast(InOp)->getZExtValue(); Ops.push_back(DAG.getConstant(InEltNo*NumEltsGrowth+j, EltVT)); } } } Mask = DAG.getNode(ISD::BUILD_VECTOR, NVT, &Ops[0], Ops.size()); } VT = NVT; break; } } return TLI.isShuffleMaskLegal(Mask, VT) ? Mask.getNode() : 0; } SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag, bool types) : TLI(dag.getTargetLoweringInfo()), DAG(dag), TypesNeedLegalizing(types), ValueTypeActions(TLI.getValueTypeActions()) { assert(MVT::LAST_VALUETYPE <= 32 && "Too many value types for ValueTypeActions to hold!"); } void SelectionDAGLegalize::LegalizeDAG() { LastCALLSEQ_END = DAG.getEntryNode(); IsLegalizingCall = false; // The legalize process is inherently a bottom-up recursive process (users // legalize their uses before themselves). Given infinite stack space, we // could just start legalizing on the root and traverse the whole graph. In // practice however, this causes us to run out of stack space on large basic // blocks. To avoid this problem, compute an ordering of the nodes where each // node is only legalized after all of its operands are legalized. DAG.AssignTopologicalOrder(); for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), E = prior(DAG.allnodes_end()); I != next(E); ++I) HandleOp(SDValue(I, 0)); // Finally, it's possible the root changed. Get the new root. SDValue OldRoot = DAG.getRoot(); assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); DAG.setRoot(LegalizedNodes[OldRoot]); ExpandedNodes.clear(); LegalizedNodes.clear(); PromotedNodes.clear(); SplitNodes.clear(); ScalarizedNodes.clear(); WidenNodes.clear(); // Remove dead nodes now. DAG.RemoveDeadNodes(); } /// FindCallEndFromCallStart - Given a chained node that is part of a call /// sequence, find the CALLSEQ_END node that terminates the call sequence. static SDNode *FindCallEndFromCallStart(SDNode *Node) { if (Node->getOpcode() == ISD::CALLSEQ_END) return Node; if (Node->use_empty()) return 0; // No CallSeqEnd // The chain is usually at the end. SDValue TheChain(Node, Node->getNumValues()-1); if (TheChain.getValueType() != MVT::Other) { // Sometimes it's at the beginning. TheChain = SDValue(Node, 0); if (TheChain.getValueType() != MVT::Other) { // Otherwise, hunt for it. for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i) if (Node->getValueType(i) == MVT::Other) { TheChain = SDValue(Node, i); break; } // Otherwise, we walked into a node without a chain. if (TheChain.getValueType() != MVT::Other) return 0; } } for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end(); UI != E; ++UI) { // Make sure to only follow users of our token chain. SDNode *User = *UI; for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) if (User->getOperand(i) == TheChain) if (SDNode *Result = FindCallEndFromCallStart(User)) return Result; } return 0; } /// FindCallStartFromCallEnd - Given a chained node that is part of a call /// sequence, find the CALLSEQ_START node that initiates the call sequence. static SDNode *FindCallStartFromCallEnd(SDNode *Node) { assert(Node && "Didn't find callseq_start for a call??"); if (Node->getOpcode() == ISD::CALLSEQ_START) return Node; assert(Node->getOperand(0).getValueType() == MVT::Other && "Node doesn't have a token chain argument!"); return FindCallStartFromCallEnd(Node->getOperand(0).getNode()); } /// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to /// see if any uses can reach Dest. If no dest operands can get to dest, /// legalize them, legalize ourself, and return false, otherwise, return true. /// /// Keep track of the nodes we fine that actually do lead to Dest in /// NodesLeadingTo. This avoids retraversing them exponential number of times. /// bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest, SmallPtrSet &NodesLeadingTo) { if (N == Dest) return true; // N certainly leads to Dest :) // If we've already processed this node and it does lead to Dest, there is no // need to reprocess it. if (NodesLeadingTo.count(N)) return true; // If the first result of this node has been already legalized, then it cannot // reach N. switch (getTypeAction(N->getValueType(0))) { case Legal: if (LegalizedNodes.count(SDValue(N, 0))) return false; break; case Promote: if (PromotedNodes.count(SDValue(N, 0))) return false; break; case Expand: if (ExpandedNodes.count(SDValue(N, 0))) return false; break; } // Okay, this node has not already been legalized. Check and legalize all // operands. If none lead to Dest, then we can legalize this node. bool OperandsLeadToDest = false; for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) OperandsLeadToDest |= // If an operand leads to Dest, so do we. LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo); if (OperandsLeadToDest) { NodesLeadingTo.insert(N); return true; } // Okay, this node looks safe, legalize it and return false. HandleOp(SDValue(N, 0)); return false; } /// HandleOp - Legalize, Promote, Widen, or Expand the specified operand as /// appropriate for its type. void SelectionDAGLegalize::HandleOp(SDValue Op) { MVT VT = Op.getValueType(); // If the type legalizer was run then we should never see any illegal result // types here except for target constants (the type legalizer does not touch // those) or for build vector used as a mask for a vector shuffle. // FIXME: We can removed the BUILD_VECTOR case when we fix PR2957. assert((TypesNeedLegalizing || getTypeAction(VT) == Legal || Op.getOpcode() == ISD::TargetConstant || Op.getOpcode() == ISD::BUILD_VECTOR) && "Illegal type introduced after type legalization?"); switch (getTypeAction(VT)) { default: assert(0 && "Bad type action!"); case Legal: (void)LegalizeOp(Op); break; case Promote: if (!VT.isVector()) { (void)PromoteOp(Op); break; } else { // See if we can widen otherwise use Expand to either scalarize or split MVT WidenVT = TLI.getWidenVectorType(VT); if (WidenVT != MVT::Other) { (void) WidenVectorOp(Op, WidenVT); break; } // else fall thru to expand since we can't widen the vector } case Expand: if (!VT.isVector()) { // If this is an illegal scalar, expand it into its two component // pieces. SDValue X, Y; if (Op.getOpcode() == ISD::TargetConstant) break; // Allow illegal target nodes. ExpandOp(Op, X, Y); } else if (VT.getVectorNumElements() == 1) { // If this is an illegal single element vector, convert it to a // scalar operation. (void)ScalarizeVectorOp(Op); } else { // This is an illegal multiple element vector. // Split it in half and legalize both parts. SDValue X, Y; SplitVectorOp(Op, X, Y); } break; } } /// ExpandConstantFP - Expands the ConstantFP node to an integer constant or /// a load from the constant pool. static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP, SelectionDAG &DAG, const TargetLowering &TLI) { bool Extend = false; // If a FP immediate is precise when represented as a float and if the // target can do an extending load from float to double, we put it into // the constant pool as a float, even if it's is statically typed as a // double. This shrinks FP constants and canonicalizes them for targets where // an FP extending load is the same cost as a normal load (such as on the x87 // fp stack or PPC FP unit). MVT VT = CFP->getValueType(0); ConstantFP *LLVMC = const_cast(CFP->getConstantFPValue()); if (!UseCP) { if (VT!=MVT::f64 && VT!=MVT::f32) assert(0 && "Invalid type expansion"); return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), (VT == MVT::f64) ? MVT::i64 : MVT::i32); } MVT OrigVT = VT; MVT SVT = VT; while (SVT != MVT::f32) { SVT = (MVT::SimpleValueType)(SVT.getSimpleVT() - 1); if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) && // Only do this if the target has a native EXTLOAD instruction from // smaller type. TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) && TLI.ShouldShrinkFPConstant(OrigVT)) { const Type *SType = SVT.getTypeForMVT(); LLVMC = cast(ConstantExpr::getFPTrunc(LLVMC, SType)); VT = SVT; Extend = true; } } SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy()); unsigned Alignment = 1 << cast(CPIdx)->getAlignment(); if (Extend) return DAG.getExtLoad(ISD::EXTLOAD, OrigVT, DAG.getEntryNode(), CPIdx, PseudoSourceValue::getConstantPool(), 0, VT, false, Alignment); return DAG.getLoad(OrigVT, DAG.getEntryNode(), CPIdx, PseudoSourceValue::getConstantPool(), 0, false, Alignment); } /// ExpandFCOPYSIGNToBitwiseOps - Expands fcopysign to a series of bitwise /// operations. static SDValue ExpandFCOPYSIGNToBitwiseOps(SDNode *Node, MVT NVT, SelectionDAG &DAG, const TargetLowering &TLI) { MVT VT = Node->getValueType(0); MVT SrcVT = Node->getOperand(1).getValueType(); assert((SrcVT == MVT::f32 || SrcVT == MVT::f64) && "fcopysign expansion only supported for f32 and f64"); MVT SrcNVT = (SrcVT == MVT::f64) ? MVT::i64 : MVT::i32; // First get the sign bit of second operand. SDValue Mask1 = (SrcVT == MVT::f64) ? DAG.getConstantFP(BitsToDouble(1ULL << 63), SrcVT) : DAG.getConstantFP(BitsToFloat(1U << 31), SrcVT); Mask1 = DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Mask1); SDValue SignBit= DAG.getNode(ISD::BIT_CONVERT, SrcNVT, Node->getOperand(1)); SignBit = DAG.getNode(ISD::AND, SrcNVT, SignBit, Mask1); // Shift right or sign-extend it if the two operands have different types. int SizeDiff = SrcNVT.getSizeInBits() - NVT.getSizeInBits(); if (SizeDiff > 0) { SignBit = DAG.getNode(ISD::SRL, SrcNVT, SignBit, DAG.getConstant(SizeDiff, TLI.getShiftAmountTy())); SignBit = DAG.getNode(ISD::TRUNCATE, NVT, SignBit); } else if (SizeDiff < 0) { SignBit = DAG.getNode(ISD::ZERO_EXTEND, NVT, SignBit); SignBit = DAG.getNode(ISD::SHL, NVT, SignBit, DAG.getConstant(-SizeDiff, TLI.getShiftAmountTy())); } // Clear the sign bit of first operand. SDValue Mask2 = (VT == MVT::f64) ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); Mask2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask2); SDValue Result = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); Result = DAG.getNode(ISD::AND, NVT, Result, Mask2); // Or the value with the sign bit. Result = DAG.getNode(ISD::OR, NVT, Result, SignBit); return Result; } /// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores. static SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, const TargetLowering &TLI) { SDValue Chain = ST->getChain(); SDValue Ptr = ST->getBasePtr(); SDValue Val = ST->getValue(); MVT VT = Val.getValueType(); int Alignment = ST->getAlignment(); int SVOffset = ST->getSrcValueOffset(); if (ST->getMemoryVT().isFloatingPoint() || ST->getMemoryVT().isVector()) { MVT intVT = MVT::getIntegerVT(VT.getSizeInBits()); if (TLI.isTypeLegal(intVT)) { // Expand to a bitconvert of the value to the integer type of the // same size, then a (misaligned) int store. // FIXME: Does not handle truncating floating point stores! SDValue Result = DAG.getNode(ISD::BIT_CONVERT, intVT, Val); return DAG.getStore(Chain, Result, Ptr, ST->getSrcValue(), SVOffset, ST->isVolatile(), Alignment); } else { // Do a (aligned) store to a stack slot, then copy from the stack slot // to the final destination using (unaligned) integer loads and stores. MVT StoredVT = ST->getMemoryVT(); MVT RegVT = TLI.getRegisterType(MVT::getIntegerVT(StoredVT.getSizeInBits())); unsigned StoredBytes = StoredVT.getSizeInBits() / 8; unsigned RegBytes = RegVT.getSizeInBits() / 8; unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; // Make sure the stack slot is also aligned for the register type. SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); // Perform the original store, only redirected to the stack slot. SDValue Store = DAG.getTruncStore(Chain, Val, StackPtr, NULL, 0,StoredVT); SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); SmallVector Stores; unsigned Offset = 0; // Do all but one copies using the full register width. for (unsigned i = 1; i < NumRegs; i++) { // Load one integer register's worth from the stack slot. SDValue Load = DAG.getLoad(RegVT, Store, StackPtr, NULL, 0); // Store it to the final location. Remember the store. Stores.push_back(DAG.getStore(Load.getValue(1), Load, Ptr, ST->getSrcValue(), SVOffset + Offset, ST->isVolatile(), MinAlign(ST->getAlignment(), Offset))); // Increment the pointers. Offset += RegBytes; StackPtr = DAG.getNode(ISD::ADD, StackPtr.getValueType(), StackPtr, Increment); Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, Increment); } // The last store may be partial. Do a truncating store. On big-endian // machines this requires an extending load from the stack slot to ensure // that the bits are in the right place. MVT MemVT = MVT::getIntegerVT(8 * (StoredBytes - Offset)); // Load from the stack slot. SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, RegVT, Store, StackPtr, NULL, 0, MemVT); Stores.push_back(DAG.getTruncStore(Load.getValue(1), Load, Ptr, ST->getSrcValue(), SVOffset + Offset, MemVT, ST->isVolatile(), MinAlign(ST->getAlignment(), Offset))); // The order of the stores doesn't matter - say it with a TokenFactor. return DAG.getNode(ISD::TokenFactor, MVT::Other, &Stores[0], Stores.size()); } } assert(ST->getMemoryVT().isInteger() && !ST->getMemoryVT().isVector() && "Unaligned store of unknown type."); // Get the half-size VT MVT NewStoredVT = (MVT::SimpleValueType)(ST->getMemoryVT().getSimpleVT() - 1); int NumBits = NewStoredVT.getSizeInBits(); int IncrementSize = NumBits / 8; // Divide the stored value in two parts. SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); SDValue Lo = Val; SDValue Hi = DAG.getNode(ISD::SRL, VT, Val, ShiftAmount); // Store the two parts SDValue Store1, Store2; Store1 = DAG.getTruncStore(Chain, TLI.isLittleEndian()?Lo:Hi, Ptr, ST->getSrcValue(), SVOffset, NewStoredVT, ST->isVolatile(), Alignment); Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, DAG.getConstant(IncrementSize, TLI.getPointerTy())); Alignment = MinAlign(Alignment, IncrementSize); Store2 = DAG.getTruncStore(Chain, TLI.isLittleEndian()?Hi:Lo, Ptr, ST->getSrcValue(), SVOffset + IncrementSize, NewStoredVT, ST->isVolatile(), Alignment); return DAG.getNode(ISD::TokenFactor, MVT::Other, Store1, Store2); } /// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads. static SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, const TargetLowering &TLI) { int SVOffset = LD->getSrcValueOffset(); SDValue Chain = LD->getChain(); SDValue Ptr = LD->getBasePtr(); MVT VT = LD->getValueType(0); MVT LoadedVT = LD->getMemoryVT(); if (VT.isFloatingPoint() || VT.isVector()) { MVT intVT = MVT::getIntegerVT(LoadedVT.getSizeInBits()); if (TLI.isTypeLegal(intVT)) { // Expand to a (misaligned) integer load of the same size, // then bitconvert to floating point or vector. SDValue newLoad = DAG.getLoad(intVT, Chain, Ptr, LD->getSrcValue(), SVOffset, LD->isVolatile(), LD->getAlignment()); SDValue Result = DAG.getNode(ISD::BIT_CONVERT, LoadedVT, newLoad); if (VT.isFloatingPoint() && LoadedVT != VT) Result = DAG.getNode(ISD::FP_EXTEND, VT, Result); SDValue Ops[] = { Result, Chain }; return DAG.getMergeValues(Ops, 2); } else { // Copy the value to a (aligned) stack slot using (unaligned) integer // loads and stores, then do a (aligned) load from the stack slot. MVT RegVT = TLI.getRegisterType(intVT); unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; unsigned RegBytes = RegVT.getSizeInBits() / 8; unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; // Make sure the stack slot is also aligned for the register type. SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy()); SmallVector Stores; SDValue StackPtr = StackBase; unsigned Offset = 0; // Do all but one copies using the full register width. for (unsigned i = 1; i < NumRegs; i++) { // Load one integer register's worth from the original location. SDValue Load = DAG.getLoad(RegVT, Chain, Ptr, LD->getSrcValue(), SVOffset + Offset, LD->isVolatile(), MinAlign(LD->getAlignment(), Offset)); // Follow the load with a store to the stack slot. Remember the store. Stores.push_back(DAG.getStore(Load.getValue(1), Load, StackPtr, NULL, 0)); // Increment the pointers. Offset += RegBytes; Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, Increment); StackPtr = DAG.getNode(ISD::ADD, StackPtr.getValueType(), StackPtr, Increment); } // The last copy may be partial. Do an extending load. MVT MemVT = MVT::getIntegerVT(8 * (LoadedBytes - Offset)); SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, RegVT, Chain, Ptr, LD->getSrcValue(), SVOffset + Offset, MemVT, LD->isVolatile(), MinAlign(LD->getAlignment(), Offset)); // Follow the load with a store to the stack slot. Remember the store. // On big-endian machines this requires a truncating store to ensure // that the bits end up in the right place. Stores.push_back(DAG.getTruncStore(Load.getValue(1), Load, StackPtr, NULL, 0, MemVT)); // The order of the stores doesn't matter - say it with a TokenFactor. SDValue TF = DAG.getNode(ISD::TokenFactor, MVT::Other, &Stores[0], Stores.size()); // Finally, perform the original load only redirected to the stack slot. Load = DAG.getExtLoad(LD->getExtensionType(), VT, TF, StackBase, NULL, 0, LoadedVT); // Callers expect a MERGE_VALUES node. SDValue Ops[] = { Load, TF }; return DAG.getMergeValues(Ops, 2); } } assert(LoadedVT.isInteger() && !LoadedVT.isVector() && "Unaligned load of unsupported type."); // Compute the new VT that is half the size of the old one. This is an // integer MVT. unsigned NumBits = LoadedVT.getSizeInBits(); MVT NewLoadedVT; NewLoadedVT = MVT::getIntegerVT(NumBits/2); NumBits >>= 1; unsigned Alignment = LD->getAlignment(); unsigned IncrementSize = NumBits / 8; ISD::LoadExtType HiExtType = LD->getExtensionType(); // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. if (HiExtType == ISD::NON_EXTLOAD) HiExtType = ISD::ZEXTLOAD; // Load the value in two parts SDValue Lo, Hi; if (TLI.isLittleEndian()) { Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, Chain, Ptr, LD->getSrcValue(), SVOffset, NewLoadedVT, LD->isVolatile(), Alignment); Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, DAG.getConstant(IncrementSize, TLI.getPointerTy())); Hi = DAG.getExtLoad(HiExtType, VT, Chain, Ptr, LD->getSrcValue(), SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), MinAlign(Alignment, IncrementSize)); } else { Hi = DAG.getExtLoad(HiExtType, VT, Chain, Ptr, LD->getSrcValue(), SVOffset, NewLoadedVT,LD->isVolatile(), Alignment); Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, DAG.getConstant(IncrementSize, TLI.getPointerTy())); Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, Chain, Ptr, LD->getSrcValue(), SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(), MinAlign(Alignment, IncrementSize)); } // aggregate the two parts SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy()); SDValue Result = DAG.getNode(ISD::SHL, VT, Hi, ShiftAmount); Result = DAG.getNode(ISD::OR, VT, Result, Lo); SDValue TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), Hi.getValue(1)); SDValue Ops[] = { Result, TF }; return DAG.getMergeValues(Ops, 2); } /// UnrollVectorOp - We know that the given vector has a legal type, however /// the operation it performs is not legal and is an operation that we have /// no way of lowering. "Unroll" the vector, splitting out the scalars and /// operating on each element individually. SDValue SelectionDAGLegalize::UnrollVectorOp(SDValue Op) { MVT VT = Op.getValueType(); assert(isTypeLegal(VT) && "Caller should expand or promote operands that are not legal!"); assert(Op.getNode()->getNumValues() == 1 && "Can't unroll a vector with multiple results!"); unsigned NE = VT.getVectorNumElements(); MVT EltVT = VT.getVectorElementType(); SmallVector Scalars; SmallVector Operands(Op.getNumOperands()); for (unsigned i = 0; i != NE; ++i) { for (unsigned j = 0; j != Op.getNumOperands(); ++j) { SDValue Operand = Op.getOperand(j); MVT OperandVT = Operand.getValueType(); if (OperandVT.isVector()) { // A vector operand; extract a single element. MVT OperandEltVT = OperandVT.getVectorElementType(); Operands[j] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, OperandEltVT, Operand, DAG.getConstant(i, MVT::i32)); } else { // A scalar operand; just use it as is. Operands[j] = Operand; } } switch (Op.getOpcode()) { default: Scalars.push_back(DAG.getNode(Op.getOpcode(), EltVT, &Operands[0], Operands.size())); break; case ISD::SHL: case ISD::SRA: case ISD::SRL: Scalars.push_back(DAG.getNode(Op.getOpcode(), EltVT, Operands[0], LegalizeShiftAmount(Operands[1]))); break; } } return DAG.getNode(ISD::BUILD_VECTOR, VT, &Scalars[0], Scalars.size()); } /// GetFPLibCall - Return the right libcall for the given floating point type. static RTLIB::Libcall GetFPLibCall(MVT VT, RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, RTLIB::Libcall Call_PPCF128) { return VT == MVT::f32 ? Call_F32 : VT == MVT::f64 ? Call_F64 : VT == MVT::f80 ? Call_F80 : VT == MVT::ppcf128 ? Call_PPCF128 : RTLIB::UNKNOWN_LIBCALL; } /// PerformInsertVectorEltInMemory - Some target cannot handle a variable /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it /// is necessary to spill the vector being inserted into to memory, perform /// the insert there, and then read the result back. SDValue SelectionDAGLegalize:: PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx) { SDValue Tmp1 = Vec; SDValue Tmp2 = Val; SDValue Tmp3 = Idx; // If the target doesn't support this, we have to spill the input vector // to a temporary stack slot, update the element, then reload it. This is // badness. We could also load the value into a vector register (either // with a "move to register" or "extload into register" instruction, then // permute it into place, if the idx is a constant and if the idx is // supported by the target. MVT VT = Tmp1.getValueType(); MVT EltVT = VT.getVectorElementType(); MVT IdxVT = Tmp3.getValueType(); MVT PtrVT = TLI.getPointerTy(); SDValue StackPtr = DAG.CreateStackTemporary(VT); int SPFI = cast(StackPtr.getNode())->getIndex(); // Store the vector. SDValue Ch = DAG.getStore(DAG.getEntryNode(), Tmp1, StackPtr, PseudoSourceValue::getFixedStack(SPFI), 0); // Truncate or zero extend offset to target pointer type. unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND; Tmp3 = DAG.getNode(CastOpc, PtrVT, Tmp3); // Add the offset to the index. unsigned EltSize = EltVT.getSizeInBits()/8; Tmp3 = DAG.getNode(ISD::MUL, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT)); SDValue StackPtr2 = DAG.getNode(ISD::ADD, IdxVT, Tmp3, StackPtr); // Store the scalar value. Ch = DAG.getTruncStore(Ch, Tmp2, StackPtr2, PseudoSourceValue::getFixedStack(SPFI), 0, EltVT); // Load the updated vector. return DAG.getLoad(VT, Ch, StackPtr, PseudoSourceValue::getFixedStack(SPFI), 0); } SDValue SelectionDAGLegalize::LegalizeShiftAmount(SDValue ShiftAmt) { if (TLI.getShiftAmountTy().bitsLT(ShiftAmt.getValueType())) return DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), ShiftAmt); if (TLI.getShiftAmountTy().bitsGT(ShiftAmt.getValueType())) return DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), ShiftAmt); return ShiftAmt; } /// LegalizeOp - We know that the specified value has a legal type, and /// that its operands are legal. Now ensure that the operation itself /// is legal, recursively ensuring that the operands' operations remain /// legal. SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) { if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. return Op; assert(isTypeLegal(Op.getValueType()) && "Caller should expand or promote operands that are not legal!"); SDNode *Node = Op.getNode(); // If this operation defines any values that cannot be represented in a // register on this target, make sure to expand or promote them. if (Node->getNumValues() > 1) { for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) if (getTypeAction(Node->getValueType(i)) != Legal) { HandleOp(Op.getValue(i)); assert(LegalizedNodes.count(Op) && "Handling didn't add legal operands!"); return LegalizedNodes[Op]; } } // Note that LegalizeOp may be reentered even from single-use nodes, which // means that we always must cache transformed nodes. DenseMap::iterator I = LegalizedNodes.find(Op); if (I != LegalizedNodes.end()) return I->second; SDValue Tmp1, Tmp2, Tmp3, Tmp4; SDValue Result = Op; bool isCustom = false; switch (Node->getOpcode()) { case ISD::FrameIndex: case ISD::EntryToken: case ISD::Register: case ISD::BasicBlock: case ISD::TargetFrameIndex: case ISD::TargetJumpTable: case ISD::TargetConstant: case ISD::TargetConstantFP: case ISD::TargetConstantPool: case ISD::TargetGlobalAddress: case ISD::TargetGlobalTLSAddress: case ISD::TargetExternalSymbol: case ISD::VALUETYPE: case ISD::SRCVALUE: case ISD::MEMOPERAND: case ISD::CONDCODE: case ISD::ARG_FLAGS: // Primitives must all be legal. assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) && "This must be legal!"); break; default: if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { // If this is a target node, legalize it by legalizing the operands then // passing it through. SmallVector Ops; for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) Ops.push_back(LegalizeOp(Node->getOperand(i))); Result = DAG.UpdateNodeOperands(Result.getValue(0), &Ops[0], Ops.size()); for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); return Result.getValue(Op.getResNo()); } // Otherwise this is an unhandled builtin node. splat. #ifndef NDEBUG cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; #endif assert(0 && "Do not know how to legalize this operator!"); abort(); case ISD::GLOBAL_OFFSET_TABLE: case ISD::GlobalAddress: case ISD::GlobalTLSAddress: case ISD::ExternalSymbol: case ISD::ConstantPool: case ISD::JumpTable: // Nothing to do. switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Custom: Tmp1 = TLI.LowerOperation(Op, DAG); if (Tmp1.getNode()) Result = Tmp1; // FALLTHROUGH if the target doesn't want to lower this op after all. case TargetLowering::Legal: break; } break; case ISD::FRAMEADDR: case ISD::RETURNADDR: // The only option for these nodes is to custom lower them. If the target // does not custom lower them, then return zero. Tmp1 = TLI.LowerOperation(Op, DAG); if (Tmp1.getNode()) Result = Tmp1; else Result = DAG.getConstant(0, TLI.getPointerTy()); break; case ISD::FRAME_TO_ARGS_OFFSET: { MVT VT = Node->getValueType(0); switch (TLI.getOperationAction(Node->getOpcode(), VT)) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Custom: Result = TLI.LowerOperation(Op, DAG); if (Result.getNode()) break; // Fall Thru case TargetLowering::Legal: Result = DAG.getConstant(0, VT); break; } } break; case ISD::EXCEPTIONADDR: { Tmp1 = LegalizeOp(Node->getOperand(0)); MVT VT = Node->getValueType(0); switch (TLI.getOperationAction(Node->getOpcode(), VT)) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Expand: { unsigned Reg = TLI.getExceptionAddressRegister(); Result = DAG.getCopyFromReg(Tmp1, Reg, VT); } break; case TargetLowering::Custom: Result = TLI.LowerOperation(Op, DAG); if (Result.getNode()) break; // Fall Thru case TargetLowering::Legal: { SDValue Ops[] = { DAG.getConstant(0, VT), Tmp1 }; Result = DAG.getMergeValues(Ops, 2); break; } } } if (Result.getNode()->getNumValues() == 1) break; assert(Result.getNode()->getNumValues() == 2 && "Cannot return more than two values!"); // Since we produced two values, make sure to remember that we // legalized both of them. Tmp1 = LegalizeOp(Result); Tmp2 = LegalizeOp(Result.getValue(1)); AddLegalizedOperand(Op.getValue(0), Tmp1); AddLegalizedOperand(Op.getValue(1), Tmp2); return Op.getResNo() ? Tmp2 : Tmp1; case ISD::EHSELECTION: { Tmp1 = LegalizeOp(Node->getOperand(0)); Tmp2 = LegalizeOp(Node->getOperand(1)); MVT VT = Node->getValueType(0); switch (TLI.getOperationAction(Node->getOpcode(), VT)) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Expand: { unsigned Reg = TLI.getExceptionSelectorRegister(); Result = DAG.getCopyFromReg(Tmp2, Reg, VT); } break; case TargetLowering::Custom: Result = TLI.LowerOperation(Op, DAG); if (Result.getNode()) break; // Fall Thru case TargetLowering::Legal: { SDValue Ops[] = { DAG.getConstant(0, VT), Tmp2 }; Result = DAG.getMergeValues(Ops, 2); break; } } } if (Result.getNode()->getNumValues() == 1) break; assert(Result.getNode()->getNumValues() == 2 && "Cannot return more than two values!"); // Since we produced two values, make sure to remember that we // legalized both of them. Tmp1 = LegalizeOp(Result); Tmp2 = LegalizeOp(Result.getValue(1)); AddLegalizedOperand(Op.getValue(0), Tmp1); AddLegalizedOperand(Op.getValue(1), Tmp2); return Op.getResNo() ? Tmp2 : Tmp1; case ISD::EH_RETURN: { MVT VT = Node->getValueType(0); // The only "good" option for this node is to custom lower it. switch (TLI.getOperationAction(Node->getOpcode(), VT)) { default: assert(0 && "This action is not supported at all!"); case TargetLowering::Custom: Result = TLI.LowerOperation(Op, DAG); if (Result.getNode()) break; // Fall Thru case TargetLowering::Legal: // Target does not know, how to lower this, lower to noop Result = LegalizeOp(Node->getOperand(0)); break; } } break; case ISD::AssertSext: case ISD::AssertZext: Tmp1 = LegalizeOp(Node->getOperand(0)); Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); break; case ISD::MERGE_VALUES: // Legalize eliminates MERGE_VALUES nodes. Result = Node->getOperand(Op.getResNo()); break; case ISD::CopyFromReg: Tmp1 = LegalizeOp(Node->getOperand(0)); Result = Op.getValue(0); if (Node->getNumValues() == 2) { Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); } else { assert(Node->getNumValues() == 3 && "Invalid copyfromreg!"); if (Node->getNumOperands() == 3) { Tmp2 = LegalizeOp(Node->getOperand(2)); Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); } else { Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); } AddLegalizedOperand(Op.getValue(2), Result.getValue(2)); } // Since CopyFromReg produces two values, make sure to remember that we // legalized both of them. AddLegalizedOperand(Op.getValue(0), Result); AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); return Result.getValue(Op.getResNo()); case ISD::UNDEF: { MVT VT = Op.getValueType(); switch (TLI.getOperationAction(ISD::UNDEF, VT)) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Expand: if (VT.isInteger()) Result = DAG.getConstant(0, VT); else if (VT.isFloatingPoint()) Result = DAG.getConstantFP(APFloat(APInt(VT.getSizeInBits(), 0)), VT); else assert(0 && "Unknown value type!"); break; case TargetLowering::Legal: break; } break; } case ISD::INTRINSIC_W_CHAIN: case ISD::INTRINSIC_WO_CHAIN: case ISD::INTRINSIC_VOID: { SmallVector Ops; for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) Ops.push_back(LegalizeOp(Node->getOperand(i))); Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); // Allow the target to custom lower its intrinsics if it wants to. if (TLI.getOperationAction(Node->getOpcode(), MVT::Other) == TargetLowering::Custom) { Tmp3 = TLI.LowerOperation(Result, DAG); if (Tmp3.getNode()) Result = Tmp3; } if (Result.getNode()->getNumValues() == 1) break; // Must have return value and chain result. assert(Result.getNode()->getNumValues() == 2 && "Cannot return more than two values!"); // Since loads produce two values, make sure to remember that we // legalized both of them. AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); return Result.getValue(Op.getResNo()); } case ISD::DBG_STOPPOINT: assert(Node->getNumOperands() == 1 && "Invalid DBG_STOPPOINT node!"); Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input chain. switch (TLI.getOperationAction(ISD::DBG_STOPPOINT, MVT::Other)) { case TargetLowering::Promote: default: assert(0 && "This action is not supported yet!"); case TargetLowering::Expand: { DwarfWriter *DW = DAG.getDwarfWriter(); bool useDEBUG_LOC = TLI.isOperationLegal(ISD::DEBUG_LOC, MVT::Other); bool useLABEL = TLI.isOperationLegal(ISD::DBG_LABEL, MVT::Other); const DbgStopPointSDNode *DSP = cast(Node); GlobalVariable *CU_GV = cast(DSP->getCompileUnit()); if (DW && (useDEBUG_LOC || useLABEL) && !CU_GV->isDeclaration()) { DICompileUnit CU(cast(DSP->getCompileUnit())); unsigned SrcFile = DW->RecordSource(CU.getDirectory(), CU.getFilename()); unsigned Line = DSP->getLine(); unsigned Col = DSP->getColumn(); if (useDEBUG_LOC) { SDValue Ops[] = { Tmp1, DAG.getConstant(Line, MVT::i32), DAG.getConstant(Col, MVT::i32), DAG.getConstant(SrcFile, MVT::i32) }; Result = DAG.getNode(ISD::DEBUG_LOC, MVT::Other, Ops, 4); } else { unsigned ID = DW->RecordSourceLine(Line, Col, SrcFile); Result = DAG.getLabel(ISD::DBG_LABEL, Tmp1, ID); } } else { Result = Tmp1; // chain } break; } case TargetLowering::Legal: { LegalizeAction Action = getTypeAction(Node->getOperand(1).getValueType()); if (Action == Legal && Tmp1 == Node->getOperand(0)) break; SmallVector Ops; Ops.push_back(Tmp1); if (Action == Legal) { Ops.push_back(Node->getOperand(1)); // line # must be legal. Ops.push_back(Node->getOperand(2)); // col # must be legal. } else { // Otherwise promote them. Ops.push_back(PromoteOp(Node->getOperand(1))); Ops.push_back(PromoteOp(Node->getOperand(2))); } Ops.push_back(Node->getOperand(3)); // filename must be legal. Ops.push_back(Node->getOperand(4)); // working dir # must be legal. Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); break; } } break; case ISD::DECLARE: assert(Node->getNumOperands() == 3 && "Invalid DECLARE node!"); switch (TLI.getOperationAction(ISD::DECLARE, MVT::Other)) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Legal: Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the address. Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the variable. Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); break; case TargetLowering::Expand: Result = LegalizeOp(Node->getOperand(0)); break; } break; case ISD::DEBUG_LOC: assert(Node->getNumOperands() == 4 && "Invalid DEBUG_LOC node!"); switch (TLI.getOperationAction(ISD::DEBUG_LOC, MVT::Other)) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Legal: { LegalizeAction Action = getTypeAction(Node->getOperand(1).getValueType()); Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. if (Action == Legal && Tmp1 == Node->getOperand(0)) break; if (Action == Legal) { Tmp2 = Node->getOperand(1); Tmp3 = Node->getOperand(2); Tmp4 = Node->getOperand(3); } else { Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the line #. Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the col #. Tmp4 = LegalizeOp(Node->getOperand(3)); // Legalize the source file id. } Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4); break; } } break; case ISD::DBG_LABEL: case ISD::EH_LABEL: assert(Node->getNumOperands() == 1 && "Invalid LABEL node!"); switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Legal: Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. Result = DAG.UpdateNodeOperands(Result, Tmp1); break; case TargetLowering::Expand: Result = LegalizeOp(Node->getOperand(0)); break; } break; case ISD::PREFETCH: assert(Node->getNumOperands() == 4 && "Invalid Prefetch node!"); switch (TLI.getOperationAction(ISD::PREFETCH, MVT::Other)) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Legal: Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the address. Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the rw specifier. Tmp4 = LegalizeOp(Node->getOperand(3)); // Legalize locality specifier. Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4); break; case TargetLowering::Expand: // It's a noop. Result = LegalizeOp(Node->getOperand(0)); break; } break; case ISD::MEMBARRIER: { assert(Node->getNumOperands() == 6 && "Invalid MemBarrier node!"); switch (TLI.getOperationAction(ISD::MEMBARRIER, MVT::Other)) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Legal: { SDValue Ops[6]; Ops[0] = LegalizeOp(Node->getOperand(0)); // Legalize the chain. for (int x = 1; x < 6; ++x) { Ops[x] = Node->getOperand(x); if (!isTypeLegal(Ops[x].getValueType())) Ops[x] = PromoteOp(Ops[x]); } Result = DAG.UpdateNodeOperands(Result, &Ops[0], 6); break; } case TargetLowering::Expand: //There is no libgcc call for this op Result = Node->getOperand(0); // Noop break; } break; } case ISD::ATOMIC_CMP_SWAP: { unsigned int num_operands = 4; assert(Node->getNumOperands() == num_operands && "Invalid Atomic node!"); SDValue Ops[4]; for (unsigned int x = 0; x < num_operands; ++x) Ops[x] = LegalizeOp(Node->getOperand(x)); Result = DAG.UpdateNodeOperands(Result, &Ops[0], num_operands); switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Custom: Result = TLI.LowerOperation(Result, DAG); break; case TargetLowering::Legal: break; } AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); return Result.getValue(Op.getResNo()); } case ISD::ATOMIC_LOAD_ADD: case ISD::ATOMIC_LOAD_SUB: case ISD::ATOMIC_LOAD_AND: case ISD::ATOMIC_LOAD_OR: case ISD::ATOMIC_LOAD_XOR: case ISD::ATOMIC_LOAD_NAND: case ISD::ATOMIC_LOAD_MIN: case ISD::ATOMIC_LOAD_MAX: case ISD::ATOMIC_LOAD_UMIN: case ISD::ATOMIC_LOAD_UMAX: case ISD::ATOMIC_SWAP: { unsigned int num_operands = 3; assert(Node->getNumOperands() == num_operands && "Invalid Atomic node!"); SDValue Ops[3]; for (unsigned int x = 0; x < num_operands; ++x) Ops[x] = LegalizeOp(Node->getOperand(x)); Result = DAG.UpdateNodeOperands(Result, &Ops[0], num_operands); switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Custom: Result = TLI.LowerOperation(Result, DAG); break; case TargetLowering::Legal: break; } AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); return Result.getValue(Op.getResNo()); } case ISD::Constant: { ConstantSDNode *CN = cast(Node); unsigned opAction = TLI.getOperationAction(ISD::Constant, CN->getValueType(0)); // We know we don't need to expand constants here, constants only have one // value and we check that it is fine above. if (opAction == TargetLowering::Custom) { Tmp1 = TLI.LowerOperation(Result, DAG); if (Tmp1.getNode()) Result = Tmp1; } break; } case ISD::ConstantFP: { // Spill FP immediates to the constant pool if the target cannot directly // codegen them. Targets often have some immediate values that can be // efficiently generated into an FP register without a load. We explicitly // leave these constants as ConstantFP nodes for the target to deal with. ConstantFPSDNode *CFP = cast(Node); switch (TLI.getOperationAction(ISD::ConstantFP, CFP->getValueType(0))) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Legal: break; case TargetLowering::Custom: Tmp3 = TLI.LowerOperation(Result, DAG); if (Tmp3.getNode()) { Result = Tmp3; break; } // FALLTHROUGH case TargetLowering::Expand: { // Check to see if this FP immediate is already legal. bool isLegal = false; for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(), E = TLI.legal_fpimm_end(); I != E; ++I) { if (CFP->isExactlyValue(*I)) { isLegal = true; break; } } // If this is a legal constant, turn it into a TargetConstantFP node. if (isLegal) break; Result = ExpandConstantFP(CFP, true, DAG, TLI); } } break; } case ISD::TokenFactor: if (Node->getNumOperands() == 2) { Tmp1 = LegalizeOp(Node->getOperand(0)); Tmp2 = LegalizeOp(Node->getOperand(1)); Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); } else if (Node->getNumOperands() == 3) { Tmp1 = LegalizeOp(Node->getOperand(0)); Tmp2 = LegalizeOp(Node->getOperand(1)); Tmp3 = LegalizeOp(Node->getOperand(2)); Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); } else { SmallVector Ops; // Legalize the operands. for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) Ops.push_back(LegalizeOp(Node->getOperand(i))); Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); } break; case ISD::FORMAL_ARGUMENTS: case ISD::CALL: // The only option for this is to custom lower it. Tmp3 = TLI.LowerOperation(Result.getValue(0), DAG); assert(Tmp3.getNode() && "Target didn't custom lower this node!"); // A call within a calling sequence must be legalized to something // other than the normal CALLSEQ_END. Violating this gets Legalize // into an infinite loop. assert ((!IsLegalizingCall || Node->getOpcode() != ISD::CALL || Tmp3.getNode()->getOpcode() != ISD::CALLSEQ_END) && "Nested CALLSEQ_START..CALLSEQ_END not supported."); // The number of incoming and outgoing values should match; unless the final // outgoing value is a flag. assert((Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() || (Tmp3.getNode()->getNumValues() == Result.getNode()->getNumValues() + 1 && Tmp3.getNode()->getValueType(Tmp3.getNode()->getNumValues() - 1) == MVT::Flag)) && "Lowering call/formal_arguments produced unexpected # results!"); // Since CALL/FORMAL_ARGUMENTS nodes produce multiple values, make sure to // remember that we legalized all of them, so it doesn't get relegalized. for (unsigned i = 0, e = Tmp3.getNode()->getNumValues(); i != e; ++i) { if (Tmp3.getNode()->getValueType(i) == MVT::Flag) continue; Tmp1 = LegalizeOp(Tmp3.getValue(i)); if (Op.getResNo() == i) Tmp2 = Tmp1; AddLegalizedOperand(SDValue(Node, i), Tmp1); } return Tmp2; case ISD::EXTRACT_SUBREG: { Tmp1 = LegalizeOp(Node->getOperand(0)); ConstantSDNode *idx = dyn_cast(Node->getOperand(1)); assert(idx && "Operand must be a constant"); Tmp2 = DAG.getTargetConstant(idx->getAPIntValue(), idx->getValueType(0)); Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); } break; case ISD::INSERT_SUBREG: { Tmp1 = LegalizeOp(Node->getOperand(0)); Tmp2 = LegalizeOp(Node->getOperand(1)); ConstantSDNode *idx = dyn_cast(Node->getOperand(2)); assert(idx && "Operand must be a constant"); Tmp3 = DAG.getTargetConstant(idx->getAPIntValue(), idx->getValueType(0)); Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); } break; case ISD::BUILD_VECTOR: switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Custom: Tmp3 = TLI.LowerOperation(Result, DAG); if (Tmp3.getNode()) { Result = Tmp3; break; } // FALLTHROUGH case TargetLowering::Expand: Result = ExpandBUILD_VECTOR(Result.getNode()); break; } break; case ISD::INSERT_VECTOR_ELT: Tmp1 = LegalizeOp(Node->getOperand(0)); // InVec Tmp3 = LegalizeOp(Node->getOperand(2)); // InEltNo // The type of the value to insert may not be legal, even though the vector // type is legal. Legalize/Promote accordingly. We do not handle Expand // here. switch (getTypeAction(Node->getOperand(1).getValueType())) { default: assert(0 && "Cannot expand insert element operand"); case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); break; case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); break; case Expand: // FIXME: An alternative would be to check to see if the target is not // going to custom lower this operation, we could bitcast to half elt // width and perform two inserts at that width, if that is legal. Tmp2 = Node->getOperand(1); break; } Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); switch (TLI.getOperationAction(ISD::INSERT_VECTOR_ELT, Node->getValueType(0))) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Legal: break; case TargetLowering::Custom: Tmp4 = TLI.LowerOperation(Result, DAG); if (Tmp4.getNode()) { Result = Tmp4; break; } // FALLTHROUGH case TargetLowering::Promote: // Fall thru for vector case case TargetLowering::Expand: { // If the insert index is a constant, codegen this as a scalar_to_vector, // then a shuffle that inserts it into the right position in the vector. if (ConstantSDNode *InsertPos = dyn_cast(Tmp3)) { // SCALAR_TO_VECTOR requires that the type of the value being inserted // match the element type of the vector being created. if (Tmp2.getValueType() == Op.getValueType().getVectorElementType()) { SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, Tmp1.getValueType(), Tmp2); unsigned NumElts = Tmp1.getValueType().getVectorNumElements(); MVT ShufMaskVT = MVT::getIntVectorWithNumElements(NumElts); MVT ShufMaskEltVT = ShufMaskVT.getVectorElementType(); // We generate a shuffle of InVec and ScVec, so the shuffle mask // should be 0,1,2,3,4,5... with the appropriate element replaced with // elt 0 of the RHS. SmallVector ShufOps; for (unsigned i = 0; i != NumElts; ++i) { if (i != InsertPos->getZExtValue()) ShufOps.push_back(DAG.getConstant(i, ShufMaskEltVT)); else ShufOps.push_back(DAG.getConstant(NumElts, ShufMaskEltVT)); } SDValue ShufMask = DAG.getNode(ISD::BUILD_VECTOR, ShufMaskVT, &ShufOps[0], ShufOps.size()); Result = DAG.getNode(ISD::VECTOR_SHUFFLE, Tmp1.getValueType(), Tmp1, ScVec, ShufMask); Result = LegalizeOp(Result); break; } } Result = PerformInsertVectorEltInMemory(Tmp1, Tmp2, Tmp3); break; } } break; case ISD::SCALAR_TO_VECTOR: if (!TLI.isTypeLegal(Node->getOperand(0).getValueType())) { Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); break; } Tmp1 = LegalizeOp(Node->getOperand(0)); // InVal Result = DAG.UpdateNodeOperands(Result, Tmp1); switch (TLI.getOperationAction(ISD::SCALAR_TO_VECTOR, Node->getValueType(0))) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Legal: break; case TargetLowering::Custom: Tmp3 = TLI.LowerOperation(Result, DAG); if (Tmp3.getNode()) { Result = Tmp3; break; } // FALLTHROUGH case TargetLowering::Expand: Result = LegalizeOp(ExpandSCALAR_TO_VECTOR(Node)); break; } break; case ISD::VECTOR_SHUFFLE: Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the input vectors, Tmp2 = LegalizeOp(Node->getOperand(1)); // but not the shuffle mask. Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); // Allow targets to custom lower the SHUFFLEs they support. switch (TLI.getOperationAction(ISD::VECTOR_SHUFFLE,Result.getValueType())) { default: assert(0 && "Unknown operation action!"); case TargetLowering::Legal: assert(isShuffleLegal(Result.getValueType(), Node->getOperand(2)) && "vector shuffle should not be created if not legal!"); break; case TargetLowering::Custom: Tmp3 = TLI.LowerOperation(Result, DAG); if (Tmp3.getNode()) { Result = Tmp3; break; } // FALLTHROUGH case TargetLowering::Expand: { MVT VT = Node->getValueType(0); MVT EltVT = VT.getVectorElementType(); MVT PtrVT = TLI.getPointerTy(); SDValue Mask = Node->getOperand(2); unsigned NumElems = Mask.getNumOperands(); SmallVector Ops; for (unsigned i = 0; i != NumElems; ++i) { SDValue Arg = Mask.getOperand(i); if (Arg.getOpcode() == ISD::UNDEF) { Ops.push_back(DAG.getNode(ISD::UNDEF, EltVT)); } else { assert(isa(Arg) && "Invalid VECTOR_SHUFFLE mask!"); unsigned Idx = cast(Arg)->getZExtValue(); if (Idx < NumElems) Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp1, DAG.getConstant(Idx, PtrVT))); else Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, Tmp2, DAG.getConstant(Idx - NumElems, PtrVT))); } } Result = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); break; } case TargetLowering::Promote: { // Change base type to a different vector type. MVT OVT = Node->getValueType(0); MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); // Cast the two input vectors. Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1); Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2); // Convert the shuffle mask to the right # elements. Tmp3 = SDValue(isShuffleLegal(OVT, Node->getOperand(2)), 0); assert(Tmp3.getNode() && "Shuffle not legal?"); Result = DAG.getNode(ISD::VECTOR_SHUFFLE, NVT, Tmp1, Tmp2, Tmp3); Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result); break; } } break; case ISD::EXTRACT_VECTOR_ELT: Tmp1 = Node->getOperand(0); Tmp2 = LegalizeOp(Node->getOperand(1)); Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); Result = ExpandEXTRACT_VECTOR_ELT(Result); break; case ISD::EXTRACT_SUBVECTOR: Tmp1 = Node->getOperand(0); Tmp2 = LegalizeOp(Node->getOperand(1)); Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); Result = ExpandEXTRACT_SUBVECTOR(Result); break; case ISD::CONCAT_VECTORS: { // Use extract/insert/build vector for now. We might try to be // more clever later. MVT PtrVT = TLI.getPointerTy(); SmallVector Ops; unsigned NumOperands = Node->getNumOperands(); for (unsigned i=0; i < NumOperands; ++i) { SDValue SubOp = Node->getOperand(i); MVT VVT = SubOp.getNode()->getValueType(0); MVT EltVT = VVT.getVectorElementType(); unsigned NumSubElem = VVT.getVectorNumElements(); for (unsigned j=0; j < NumSubElem; ++j) { Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, SubOp, DAG.getConstant(j, PtrVT))); } } return LegalizeOp(DAG.getNode(ISD::BUILD_VECTOR, Node->getValueType(0), &Ops[0], Ops.size())); } case ISD::CALLSEQ_START: { SDNode *CallEnd = FindCallEndFromCallStart(Node); // Recursively Legalize all of the inputs of the call end that do not lead // to this call start. This ensures that any libcalls that need be inserted // are inserted *before* the CALLSEQ_START. {SmallPtrSet NodesLeadingTo; for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i) LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node, NodesLeadingTo); } // Now that we legalized all of the inputs (which may have inserted // libcalls) create the new CALLSEQ_START node. Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. // Merge in the last call, to ensure that this call start after the last // call ended. if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) { Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); Tmp1 = LegalizeOp(Tmp1); } // Do not try to legalize the target-specific arguments (#1+). if (Tmp1 != Node->getOperand(0)) { SmallVector Ops(Node->op_begin(), Node->op_end()); Ops[0] = Tmp1; Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); } // Remember that the CALLSEQ_START is legalized. AddLegalizedOperand(Op.getValue(0), Result); if (Node->getNumValues() == 2) // If this has a flag result, remember it. AddLegalizedOperand(Op.getValue(1), Result.getValue(1)); // Now that the callseq_start and all of the non-call nodes above this call // sequence have been legalized, legalize the call itself. During this // process, no libcalls can/will be inserted, guaranteeing that no calls // can overlap. assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!"); // Note that we are selecting this call! LastCALLSEQ_END = SDValue(CallEnd, 0); IsLegalizingCall = true; // Legalize the call, starting from the CALLSEQ_END. LegalizeOp(LastCALLSEQ_END); assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!"); return Result; } case ISD::CALLSEQ_END: // If the CALLSEQ_START node hasn't been legalized first, legalize it. This // will cause this node to be legalized as well as handling libcalls right. if (LastCALLSEQ_END.getNode() != Node) { LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0)); DenseMap::iterator I = LegalizedNodes.find(Op); assert(I != LegalizedNodes.end() && "Legalizing the call start should have legalized this node!"); return I->second; } // Otherwise, the call start has been legalized and everything is going // according to plan. Just legalize ourselves normally here. Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. // Do not try to legalize the target-specific arguments (#1+), except for // an optional flag input. if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){ if (Tmp1 != Node->getOperand(0)) { SmallVector Ops(Node->op_begin(), Node->op_end()); Ops[0] = Tmp1; Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); } } else { Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1)); if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(Node->getNumOperands()-1)) { SmallVector Ops(Node->op_begin(), Node->op_end()); Ops[0] = Tmp1; Ops.back() = Tmp2; Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); } } assert(IsLegalizingCall && "Call sequence imbalance between start/end?"); // This finishes up call legalization. IsLegalizingCall = false; // If the CALLSEQ_END node has a flag, remember that we legalized it. AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); if (Node->getNumValues() == 2) AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); return Result.getValue(Op.getResNo()); case ISD::DYNAMIC_STACKALLOC: { MVT VT = Node->getValueType(0); Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the size. Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the alignment. Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); Tmp1 = Result.getValue(0); Tmp2 = Result.getValue(1); switch (TLI.getOperationAction(Node->getOpcode(), VT)) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Expand: { unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" " not tell us which reg is the stack pointer!"); SDValue Chain = Tmp1.getOperand(0); // Chain the dynamic stack allocation so that it doesn't modify the stack // pointer when other instructions are using the stack. Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true)); SDValue Size = Tmp2.getOperand(1); SDValue SP = DAG.getCopyFromReg(Chain, SPReg, VT); Chain = SP.getValue(1); unsigned Align = cast(Tmp3)->getZExtValue(); unsigned StackAlign = TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); if (Align > StackAlign) SP = DAG.getNode(ISD::AND, VT, SP, DAG.getConstant(-(uint64_t)Align, VT)); Tmp1 = DAG.getNode(ISD::SUB, VT, SP, Size); // Value Chain = DAG.getCopyToReg(Chain, SPReg, Tmp1); // Output chain Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true), DAG.getIntPtrConstant(0, true), SDValue()); Tmp1 = LegalizeOp(Tmp1); Tmp2 = LegalizeOp(Tmp2); break; } case TargetLowering::Custom: Tmp3 = TLI.LowerOperation(Tmp1, DAG); if (Tmp3.getNode()) { Tmp1 = LegalizeOp(Tmp3); Tmp2 = LegalizeOp(Tmp3.getValue(1)); } break; case TargetLowering::Legal: break; } // Since this op produce two values, make sure to remember that we // legalized both of them. AddLegalizedOperand(SDValue(Node, 0), Tmp1); AddLegalizedOperand(SDValue(Node, 1), Tmp2); return Op.getResNo() ? Tmp2 : Tmp1; } case ISD::INLINEASM: { SmallVector Ops(Node->op_begin(), Node->op_end()); bool Changed = false; // Legalize all of the operands of the inline asm, in case they are nodes // that need to be expanded or something. Note we skip the asm string and // all of the TargetConstant flags. SDValue Op = LegalizeOp(Ops[0]); Changed = Op != Ops[0]; Ops[0] = Op; bool HasInFlag = Ops.back().getValueType() == MVT::Flag; for (unsigned i = 2, e = Ops.size()-HasInFlag; i < e; ) { unsigned NumVals = cast(Ops[i])->getZExtValue() >> 3; for (++i; NumVals; ++i, --NumVals) { SDValue Op = LegalizeOp(Ops[i]); if (Op != Ops[i]) { Changed = true; Ops[i] = Op; } } } if (HasInFlag) { Op = LegalizeOp(Ops.back()); Changed |= Op != Ops.back(); Ops.back() = Op; } if (Changed) Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); // INLINE asm returns a chain and flag, make sure to add both to the map. AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); return Result.getValue(Op.getResNo()); } case ISD::BR: Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. // Ensure that libcalls are emitted before a branch. Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); Tmp1 = LegalizeOp(Tmp1); LastCALLSEQ_END = DAG.getEntryNode(); Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); break; case ISD::BRIND: Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. // Ensure that libcalls are emitted before a branch. Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); Tmp1 = LegalizeOp(Tmp1); LastCALLSEQ_END = DAG.getEntryNode(); switch (getTypeAction(Node->getOperand(1).getValueType())) { default: assert(0 && "Indirect target must be legal type (pointer)!"); case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. break; } Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); break; case ISD::BR_JT: Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. // Ensure that libcalls are emitted before a branch. Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); Tmp1 = LegalizeOp(Tmp1); LastCALLSEQ_END = DAG.getEntryNode(); Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the jumptable node. Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); switch (TLI.getOperationAction(ISD::BR_JT, MVT::Other)) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Legal: break; case TargetLowering::Custom: Tmp1 = TLI.LowerOperation(Result, DAG); if (Tmp1.getNode()) Result = Tmp1; break; case TargetLowering::Expand: { SDValue Chain = Result.getOperand(0); SDValue Table = Result.getOperand(1); SDValue Index = Result.getOperand(2); MVT PTy = TLI.getPointerTy(); MachineFunction &MF = DAG.getMachineFunction(); unsigned EntrySize = MF.getJumpTableInfo()->getEntrySize(); Index= DAG.getNode(ISD::MUL, PTy, Index, DAG.getConstant(EntrySize, PTy)); SDValue Addr = DAG.getNode(ISD::ADD, PTy, Index, Table); MVT MemVT = MVT::getIntegerVT(EntrySize * 8); SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, PTy, Chain, Addr, PseudoSourceValue::getJumpTable(), 0, MemVT); Addr = LD; if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) { // For PIC, the sequence is: // BRIND(load(Jumptable + index) + RelocBase) // RelocBase can be JumpTable, GOT or some sort of global base. Addr = DAG.getNode(ISD::ADD, PTy, Addr, TLI.getPICJumpTableRelocBase(Table, DAG)); } Result = DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), Addr); } } break; case ISD::BRCOND: Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. // Ensure that libcalls are emitted before a return. Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); Tmp1 = LegalizeOp(Tmp1); LastCALLSEQ_END = DAG.getEntryNode(); switch (getTypeAction(Node->getOperand(1).getValueType())) { case Expand: assert(0 && "It's impossible to expand bools"); case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the condition. break; case Promote: { Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the condition. // The top bits of the promoted condition are not necessarily zero, ensure // that the value is properly zero extended. unsigned BitWidth = Tmp2.getValueSizeInBits(); if (!DAG.MaskedValueIsZero(Tmp2, APInt::getHighBitsSet(BitWidth, BitWidth-1))) Tmp2 = DAG.getZeroExtendInReg(Tmp2, MVT::i1); break; } } // Basic block destination (Op#2) is always legal. Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); switch (TLI.getOperationAction(ISD::BRCOND, MVT::Other)) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Legal: break; case TargetLowering::Custom: Tmp1 = TLI.LowerOperation(Result, DAG); if (Tmp1.getNode()) Result = Tmp1; break; case TargetLowering::Expand: // Expand brcond's setcc into its constituent parts and create a BR_CC // Node. if (Tmp2.getOpcode() == ISD::SETCC) { Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1, Tmp2.getOperand(2), Tmp2.getOperand(0), Tmp2.getOperand(1), Node->getOperand(2)); } else { Result = DAG.getNode(ISD::BR_CC, MVT::Other, Tmp1, DAG.getCondCode(ISD::SETNE), Tmp2, DAG.getConstant(0, Tmp2.getValueType()), Node->getOperand(2)); } break; } break; case ISD::BR_CC: Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. // Ensure that libcalls are emitted before a branch. Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); Tmp1 = LegalizeOp(Tmp1); Tmp2 = Node->getOperand(2); // LHS Tmp3 = Node->getOperand(3); // RHS Tmp4 = Node->getOperand(1); // CC LegalizeSetCC(TLI.getSetCCResultType(Tmp2.getValueType()), Tmp2, Tmp3,Tmp4); LastCALLSEQ_END = DAG.getEntryNode(); // If we didn't get both a LHS and RHS back from LegalizeSetCC, // the LHS is a legal SETCC itself. In this case, we need to compare // the result against zero to select between true and false values. if (Tmp3.getNode() == 0) { Tmp3 = DAG.getConstant(0, Tmp2.getValueType()); Tmp4 = DAG.getCondCode(ISD::SETNE); } Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp4, Tmp2, Tmp3, Node->getOperand(4)); switch (TLI.getOperationAction(ISD::BR_CC, Tmp3.getValueType())) { default: assert(0 && "Unexpected action for BR_CC!"); case TargetLowering::Legal: break; case TargetLowering::Custom: Tmp4 = TLI.LowerOperation(Result, DAG); if (Tmp4.getNode()) Result = Tmp4; break; } break; case ISD::LOAD: { LoadSDNode *LD = cast(Node); Tmp1 = LegalizeOp(LD->getChain()); // Legalize the chain. Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer. ISD::LoadExtType ExtType = LD->getExtensionType(); if (ExtType == ISD::NON_EXTLOAD) { MVT VT = Node->getValueType(0); Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); Tmp3 = Result.getValue(0); Tmp4 = Result.getValue(1); switch (TLI.getOperationAction(Node->getOpcode(), VT)) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Legal: // If this is an unaligned load and the target doesn't support it, // expand it. if (!TLI.allowsUnalignedMemoryAccesses()) { unsigned ABIAlignment = TLI.getTargetData()-> getABITypeAlignment(LD->getMemoryVT().getTypeForMVT()); if (LD->getAlignment() < ABIAlignment){ Result = ExpandUnalignedLoad(cast(Result.getNode()), DAG, TLI); Tmp3 = Result.getOperand(0); Tmp4 = Result.getOperand(1); Tmp3 = LegalizeOp(Tmp3); Tmp4 = LegalizeOp(Tmp4); } } break; case TargetLowering::Custom: Tmp1 = TLI.LowerOperation(Tmp3, DAG); if (Tmp1.getNode()) { Tmp3 = LegalizeOp(Tmp1); Tmp4 = LegalizeOp(Tmp1.getValue(1)); } break; case TargetLowering::Promote: { // Only promote a load of vector type to another. assert(VT.isVector() && "Cannot promote this load!"); // Change base type to a different vector type. MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); Tmp1 = DAG.getLoad(NVT, Tmp1, Tmp2, LD->getSrcValue(), LD->getSrcValueOffset(), LD->isVolatile(), LD->getAlignment()); Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp1)); Tmp4 = LegalizeOp(Tmp1.getValue(1)); break; } } // Since loads produce two values, make sure to remember that we // legalized both of them. AddLegalizedOperand(SDValue(Node, 0), Tmp3); AddLegalizedOperand(SDValue(Node, 1), Tmp4); return Op.getResNo() ? Tmp4 : Tmp3; } else { MVT SrcVT = LD->getMemoryVT(); unsigned SrcWidth = SrcVT.getSizeInBits(); int SVOffset = LD->getSrcValueOffset(); unsigned Alignment = LD->getAlignment(); bool isVolatile = LD->isVolatile(); if (SrcWidth != SrcVT.getStoreSizeInBits() && // Some targets pretend to have an i1 loading operation, and actually // load an i8. This trick is correct for ZEXTLOAD because the top 7 // bits are guaranteed to be zero; it helps the optimizers understand // that these bits are zero. It is also useful for EXTLOAD, since it // tells the optimizers that those bits are undefined. It would be // nice to have an effective generic way of getting these benefits... // Until such a way is found, don't insist on promoting i1 here. (SrcVT != MVT::i1 || TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) { // Promote to a byte-sized load if not loading an integral number of // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. unsigned NewWidth = SrcVT.getStoreSizeInBits(); MVT NVT = MVT::getIntegerVT(NewWidth); SDValue Ch; // The extra bits are guaranteed to be zero, since we stored them that // way. A zext load from NVT thus automatically gives zext from SrcVT. ISD::LoadExtType NewExtType = ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; Result = DAG.getExtLoad(NewExtType, Node->getValueType(0), Tmp1, Tmp2, LD->getSrcValue(), SVOffset, NVT, isVolatile, Alignment); Ch = Result.getValue(1); // The chain. if (ExtType == ISD::SEXTLOAD) // Having the top bits zero doesn't help when sign extending. Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), Result, DAG.getValueType(SrcVT)); else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) // All the top bits are guaranteed to be zero - inform the optimizers. Result = DAG.getNode(ISD::AssertZext, Result.getValueType(), Result, DAG.getValueType(SrcVT)); Tmp1 = LegalizeOp(Result); Tmp2 = LegalizeOp(Ch); } else if (SrcWidth & (SrcWidth - 1)) { // If not loading a power-of-2 number of bits, expand as two loads. assert(SrcVT.isExtended() && !SrcVT.isVector() && "Unsupported extload!"); unsigned RoundWidth = 1 << Log2_32(SrcWidth); assert(RoundWidth < SrcWidth); unsigned ExtraWidth = SrcWidth - RoundWidth; assert(ExtraWidth < RoundWidth); assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && "Load size not an integral number of bytes!"); MVT RoundVT = MVT::getIntegerVT(RoundWidth); MVT ExtraVT = MVT::getIntegerVT(ExtraWidth); SDValue Lo, Hi, Ch; unsigned IncrementSize; if (TLI.isLittleEndian()) { // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) // Load the bottom RoundWidth bits. Lo = DAG.getExtLoad(ISD::ZEXTLOAD, Node->getValueType(0), Tmp1, Tmp2, LD->getSrcValue(), SVOffset, RoundVT, isVolatile, Alignment); // Load the remaining ExtraWidth bits. IncrementSize = RoundWidth / 8; Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, DAG.getIntPtrConstant(IncrementSize)); Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), Tmp1, Tmp2, LD->getSrcValue(), SVOffset + IncrementSize, ExtraVT, isVolatile, MinAlign(Alignment, IncrementSize)); // Build a factor node to remember that this load is independent of the // other one. Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), Hi.getValue(1)); // Move the top bits to the right place. Hi = DAG.getNode(ISD::SHL, Hi.getValueType(), Hi, DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); // Join the hi and lo parts. Result = DAG.getNode(ISD::OR, Node->getValueType(0), Lo, Hi); } else { // Big endian - avoid unaligned loads. // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 // Load the top RoundWidth bits. Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), Tmp1, Tmp2, LD->getSrcValue(), SVOffset, RoundVT, isVolatile, Alignment); // Load the remaining ExtraWidth bits. IncrementSize = RoundWidth / 8; Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, DAG.getIntPtrConstant(IncrementSize)); Lo = DAG.getExtLoad(ISD::ZEXTLOAD, Node->getValueType(0), Tmp1, Tmp2, LD->getSrcValue(), SVOffset + IncrementSize, ExtraVT, isVolatile, MinAlign(Alignment, IncrementSize)); // Build a factor node to remember that this load is independent of the // other one. Ch = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), Hi.getValue(1)); // Move the top bits to the right place. Hi = DAG.getNode(ISD::SHL, Hi.getValueType(), Hi, DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); // Join the hi and lo parts. Result = DAG.getNode(ISD::OR, Node->getValueType(0), Lo, Hi); } Tmp1 = LegalizeOp(Result); Tmp2 = LegalizeOp(Ch); } else { switch (TLI.getLoadExtAction(ExtType, SrcVT)) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Custom: isCustom = true; // FALLTHROUGH case TargetLowering::Legal: Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset()); Tmp1 = Result.getValue(0); Tmp2 = Result.getValue(1); if (isCustom) { Tmp3 = TLI.LowerOperation(Result, DAG); if (Tmp3.getNode()) { Tmp1 = LegalizeOp(Tmp3); Tmp2 = LegalizeOp(Tmp3.getValue(1)); } } else { // If this is an unaligned load and the target doesn't support it, // expand it. if (!TLI.allowsUnalignedMemoryAccesses()) { unsigned ABIAlignment = TLI.getTargetData()-> getABITypeAlignment(LD->getMemoryVT().getTypeForMVT()); if (LD->getAlignment() < ABIAlignment){ Result = ExpandUnalignedLoad(cast(Result.getNode()), DAG, TLI); Tmp1 = Result.getOperand(0); Tmp2 = Result.getOperand(1); Tmp1 = LegalizeOp(Tmp1); Tmp2 = LegalizeOp(Tmp2); } } } break; case TargetLowering::Expand: // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND if (SrcVT == MVT::f32 && Node->getValueType(0) == MVT::f64) { SDValue Load = DAG.getLoad(SrcVT, Tmp1, Tmp2, LD->getSrcValue(), LD->getSrcValueOffset(), LD->isVolatile(), LD->getAlignment()); Result = DAG.getNode(ISD::FP_EXTEND, Node->getValueType(0), Load); Tmp1 = LegalizeOp(Result); // Relegalize new nodes. Tmp2 = LegalizeOp(Load.getValue(1)); break; } assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!"); // Turn the unsupported load into an EXTLOAD followed by an explicit // zero/sign extend inreg. Result = DAG.getExtLoad(ISD::EXTLOAD, Node->getValueType(0), Tmp1, Tmp2, LD->getSrcValue(), LD->getSrcValueOffset(), SrcVT, LD->isVolatile(), LD->getAlignment()); SDValue ValRes; if (ExtType == ISD::SEXTLOAD) ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), Result, DAG.getValueType(SrcVT)); else ValRes = DAG.getZeroExtendInReg(Result, SrcVT); Tmp1 = LegalizeOp(ValRes); // Relegalize new nodes. Tmp2 = LegalizeOp(Result.getValue(1)); // Relegalize new nodes. break; } } // Since loads produce two values, make sure to remember that we legalized // both of them. AddLegalizedOperand(SDValue(Node, 0), Tmp1); AddLegalizedOperand(SDValue(Node, 1), Tmp2); return Op.getResNo() ? Tmp2 : Tmp1; } } case ISD::EXTRACT_ELEMENT: { MVT OpTy = Node->getOperand(0).getValueType(); switch (getTypeAction(OpTy)) { default: assert(0 && "EXTRACT_ELEMENT action for type unimplemented!"); case Legal: if (cast(Node->getOperand(1))->getZExtValue()) { // 1 -> Hi Result = DAG.getNode(ISD::SRL, OpTy, Node->getOperand(0), DAG.getConstant(OpTy.getSizeInBits()/2, TLI.getShiftAmountTy())); Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Result); } else { // 0 -> Lo Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Node->getOperand(0)); } break; case Expand: // Get both the low and high parts. ExpandOp(Node->getOperand(0), Tmp1, Tmp2); if (cast(Node->getOperand(1))->getZExtValue()) Result = Tmp2; // 1 -> Hi else Result = Tmp1; // 0 -> Lo break; } break; } case ISD::CopyToReg: Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. assert(isTypeLegal(Node->getOperand(2).getValueType()) && "Register type must be legal!"); // Legalize the incoming value (must be a legal type). Tmp2 = LegalizeOp(Node->getOperand(2)); if (Node->getNumValues() == 1) { Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2); } else { assert(Node->getNumValues() == 2 && "Unknown CopyToReg"); if (Node->getNumOperands() == 4) { Tmp3 = LegalizeOp(Node->getOperand(3)); Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1), Tmp2, Tmp3); } else { Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1),Tmp2); } // Since this produces two values, make sure to remember that we legalized // both of them. AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0)); AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1)); return Result; } break; case ISD::RET: Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. // Ensure that libcalls are emitted before a return. Tmp1 = DAG.getNode(ISD::TokenFactor, MVT::Other, Tmp1, LastCALLSEQ_END); Tmp1 = LegalizeOp(Tmp1); LastCALLSEQ_END = DAG.getEntryNode(); switch (Node->getNumOperands()) { case 3: // ret val Tmp2 = Node->getOperand(1); Tmp3 = Node->getOperand(2); // Signness switch (getTypeAction(Tmp2.getValueType())) { case Legal: Result = DAG.UpdateNodeOperands(Result, Tmp1, LegalizeOp(Tmp2), Tmp3); break; case Expand: if (!Tmp2.getValueType().isVector()) { SDValue Lo, Hi; ExpandOp(Tmp2, Lo, Hi); // Big endian systems want the hi reg first. if (TLI.isBigEndian()) std::swap(Lo, Hi); if (Hi.getNode()) Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3); else Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3); Result = LegalizeOp(Result); } else { SDNode *InVal = Tmp2.getNode(); int InIx = Tmp2.getResNo(); unsigned NumElems = InVal->getValueType(InIx).getVectorNumElements(); MVT EVT = InVal->getValueType(InIx).getVectorElementType(); // Figure out if there is a simple type corresponding to this Vector // type. If so, convert to the vector type. MVT TVT = MVT::getVectorVT(EVT, NumElems); if (TLI.isTypeLegal(TVT)) { // Turn this into a return of the vector type. Tmp2 = LegalizeOp(Tmp2); Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); } else if (NumElems == 1) { // Turn this into a return of the scalar type. Tmp2 = ScalarizeVectorOp(Tmp2); Tmp2 = LegalizeOp(Tmp2); Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); // FIXME: Returns of gcc generic vectors smaller than a legal type // should be returned in integer registers! // The scalarized value type may not be legal, e.g. it might require // promotion or expansion. Relegalize the return. Result = LegalizeOp(Result); } else { // FIXME: Returns of gcc generic vectors larger than a legal vector // type should be returned by reference! SDValue Lo, Hi; SplitVectorOp(Tmp2, Lo, Hi); Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Tmp3, Hi,Tmp3); Result = LegalizeOp(Result); } } break; case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); Result = LegalizeOp(Result); break; } break; case 1: // ret void Result = DAG.UpdateNodeOperands(Result, Tmp1); break; default: { // ret SmallVector NewValues; NewValues.push_back(Tmp1); for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) switch (getTypeAction(Node->getOperand(i).getValueType())) { case Legal: NewValues.push_back(LegalizeOp(Node->getOperand(i))); NewValues.push_back(Node->getOperand(i+1)); break; case Expand: { SDValue Lo, Hi; assert(!Node->getOperand(i).getValueType().isExtended() && "FIXME: TODO: implement returning non-legal vector types!"); ExpandOp(Node->getOperand(i), Lo, Hi); NewValues.push_back(Lo); NewValues.push_back(Node->getOperand(i+1)); if (Hi.getNode()) { NewValues.push_back(Hi); NewValues.push_back(Node->getOperand(i+1)); } break; } case Promote: assert(0 && "Can't promote multiple return value yet!"); } if (NewValues.size() == Node->getNumOperands()) Result = DAG.UpdateNodeOperands(Result, &NewValues[0],NewValues.size()); else Result = DAG.getNode(ISD::RET, MVT::Other, &NewValues[0], NewValues.size()); break; } } if (Result.getOpcode() == ISD::RET) { switch (TLI.getOperationAction(Result.getOpcode(), MVT::Other)) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Legal: break; case TargetLowering::Custom: Tmp1 = TLI.LowerOperation(Result, DAG); if (Tmp1.getNode()) Result = Tmp1; break; } } break; case ISD::STORE: { StoreSDNode *ST = cast(Node); Tmp1 = LegalizeOp(ST->getChain()); // Legalize the chain. Tmp2 = LegalizeOp(ST->getBasePtr()); // Legalize the pointer. int SVOffset = ST->getSrcValueOffset(); unsigned Alignment = ST->getAlignment(); bool isVolatile = ST->isVolatile(); if (!ST->isTruncatingStore()) { // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' // FIXME: We shouldn't do this for TargetConstantFP's. // FIXME: move this to the DAG Combiner! Note that we can't regress due // to phase ordering between legalized code and the dag combiner. This // probably means that we need to integrate dag combiner and legalizer // together. // We generally can't do this one for long doubles. if (ConstantFPSDNode *CFP = dyn_cast(ST->getValue())) { if (CFP->getValueType(0) == MVT::f32 && getTypeAction(MVT::i32) == Legal) { Tmp3 = DAG.getConstant(CFP->getValueAPF(). bitcastToAPInt().zextOrTrunc(32), MVT::i32); Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), SVOffset, isVolatile, Alignment); break; } else if (CFP->getValueType(0) == MVT::f64) { // If this target supports 64-bit registers, do a single 64-bit store. if (getTypeAction(MVT::i64) == Legal) { Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). zextOrTrunc(64), MVT::i64); Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), SVOffset, isVolatile, Alignment); break; } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) { // Otherwise, if the target supports 32-bit registers, use 2 32-bit // stores. If the target supports neither 32- nor 64-bits, this // xform is certainly not worth it. const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt(); SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32); SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32); if (TLI.isBigEndian()) std::swap(Lo, Hi); Lo = DAG.getStore(Tmp1, Lo, Tmp2, ST->getSrcValue(), SVOffset, isVolatile, Alignment); Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, DAG.getIntPtrConstant(4)); Hi = DAG.getStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), SVOffset+4, isVolatile, MinAlign(Alignment, 4U)); Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); break; } } } switch (getTypeAction(ST->getMemoryVT())) { case Legal: { Tmp3 = LegalizeOp(ST->getValue()); Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, ST->getOffset()); MVT VT = Tmp3.getValueType(); switch (TLI.getOperationAction(ISD::STORE, VT)) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Legal: // If this is an unaligned store and the target doesn't support it, // expand it. if (!TLI.allowsUnalignedMemoryAccesses()) { unsigned ABIAlignment = TLI.getTargetData()-> getABITypeAlignment(ST->getMemoryVT().getTypeForMVT()); if (ST->getAlignment() < ABIAlignment) Result = ExpandUnalignedStore(cast(Result.getNode()), DAG, TLI); } break; case TargetLowering::Custom: Tmp1 = TLI.LowerOperation(Result, DAG); if (Tmp1.getNode()) Result = Tmp1; break; case TargetLowering::Promote: assert(VT.isVector() && "Unknown legal promote case!"); Tmp3 = DAG.getNode(ISD::BIT_CONVERT, TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3); Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), SVOffset, isVolatile, Alignment); break; } break; } case Promote: if (!ST->getMemoryVT().isVector()) { // Truncate the value and store the result. Tmp3 = PromoteOp(ST->getValue()); Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), SVOffset, ST->getMemoryVT(), isVolatile, Alignment); break; } // Fall thru to expand for vector case Expand: { unsigned IncrementSize = 0; SDValue Lo, Hi; // If this is a vector type, then we have to calculate the increment as // the product of the element size in bytes, and the number of elements // in the high half of the vector. if (ST->getValue().getValueType().isVector()) { SDNode *InVal = ST->getValue().getNode(); int InIx = ST->getValue().getResNo(); MVT InVT = InVal->getValueType(InIx); unsigned NumElems = InVT.getVectorNumElements(); MVT EVT = InVT.getVectorElementType(); // Figure out if there is a simple type corresponding to this Vector // type. If so, convert to the vector type. MVT TVT = MVT::getVectorVT(EVT, NumElems); if (TLI.isTypeLegal(TVT)) { // Turn this into a normal store of the vector type. Tmp3 = LegalizeOp(ST->getValue()); Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), SVOffset, isVolatile, Alignment); Result = LegalizeOp(Result); break; } else if (NumElems == 1) { // Turn this into a normal store of the scalar type. Tmp3 = ScalarizeVectorOp(ST->getValue()); Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), SVOffset, isVolatile, Alignment); // The scalarized value type may not be legal, e.g. it might require // promotion or expansion. Relegalize the scalar store. Result = LegalizeOp(Result); break; } else { // Check if we have widen this node with another value std::map::iterator I = WidenNodes.find(ST->getValue()); if (I != WidenNodes.end()) { Result = StoreWidenVectorOp(ST, Tmp1, Tmp2); break; } else { SplitVectorOp(ST->getValue(), Lo, Hi); IncrementSize = Lo.getNode()->getValueType(0).getVectorNumElements() * EVT.getSizeInBits()/8; } } } else { ExpandOp(ST->getValue(), Lo, Hi); IncrementSize = Hi.getNode() ? Hi.getValueType().getSizeInBits()/8 : 0; if (Hi.getNode() && TLI.isBigEndian()) std::swap(Lo, Hi); } Lo = DAG.getStore(Tmp1, Lo, Tmp2, ST->getSrcValue(), SVOffset, isVolatile, Alignment); if (Hi.getNode() == NULL) { // Must be int <-> float one-to-one expansion. Result = Lo; break; } Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, DAG.getIntPtrConstant(IncrementSize)); assert(isTypeLegal(Tmp2.getValueType()) && "Pointers must be legal!"); SVOffset += IncrementSize; Alignment = MinAlign(Alignment, IncrementSize); Hi = DAG.getStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), SVOffset, isVolatile, Alignment); Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); break; } // case Expand } } else { switch (getTypeAction(ST->getValue().getValueType())) { case Legal: Tmp3 = LegalizeOp(ST->getValue()); break; case Promote: if (!ST->getValue().getValueType().isVector()) { // We can promote the value, the truncstore will still take care of it. Tmp3 = PromoteOp(ST->getValue()); break; } // Vector case falls through to expand case Expand: // Just store the low part. This may become a non-trunc store, so make // sure to use getTruncStore, not UpdateNodeOperands below. ExpandOp(ST->getValue(), Tmp3, Tmp4); return DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), SVOffset, MVT::i8, isVolatile, Alignment); } MVT StVT = ST->getMemoryVT(); unsigned StWidth = StVT.getSizeInBits(); if (StWidth != StVT.getStoreSizeInBits()) { // Promote to a byte-sized store with upper bits zero if not // storing an integral number of bytes. For example, promote // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) MVT NVT = MVT::getIntegerVT(StVT.getStoreSizeInBits()); Tmp3 = DAG.getZeroExtendInReg(Tmp3, StVT); Result = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), SVOffset, NVT, isVolatile, Alignment); } else if (StWidth & (StWidth - 1)) { // If not storing a power-of-2 number of bits, expand as two stores. assert(StVT.isExtended() && !StVT.isVector() && "Unsupported truncstore!"); unsigned RoundWidth = 1 << Log2_32(StWidth); assert(RoundWidth < StWidth); unsigned ExtraWidth = StWidth - RoundWidth; assert(ExtraWidth < RoundWidth); assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && "Store size not an integral number of bytes!"); MVT RoundVT = MVT::getIntegerVT(RoundWidth); MVT ExtraVT = MVT::getIntegerVT(ExtraWidth); SDValue Lo, Hi; unsigned IncrementSize; if (TLI.isLittleEndian()) { // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) // Store the bottom RoundWidth bits. Lo = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), SVOffset, RoundVT, isVolatile, Alignment); // Store the remaining ExtraWidth bits. IncrementSize = RoundWidth / 8; Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, DAG.getIntPtrConstant(IncrementSize)); Hi = DAG.getNode(ISD::SRL, Tmp3.getValueType(), Tmp3, DAG.getConstant(RoundWidth, TLI.getShiftAmountTy())); Hi = DAG.getTruncStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), SVOffset + IncrementSize, ExtraVT, isVolatile, MinAlign(Alignment, IncrementSize)); } else { // Big endian - avoid unaligned stores. // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X // Store the top RoundWidth bits. Hi = DAG.getNode(ISD::SRL, Tmp3.getValueType(), Tmp3, DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy())); Hi = DAG.getTruncStore(Tmp1, Hi, Tmp2, ST->getSrcValue(), SVOffset, RoundVT, isVolatile, Alignment); // Store the remaining ExtraWidth bits. IncrementSize = RoundWidth / 8; Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2, DAG.getIntPtrConstant(IncrementSize)); Lo = DAG.getTruncStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), SVOffset + IncrementSize, ExtraVT, isVolatile, MinAlign(Alignment, IncrementSize)); } // The order of the stores doesn't matter. Result = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo, Hi); } else { if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() || Tmp2 != ST->getBasePtr()) Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2, ST->getOffset()); switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Legal: // If this is an unaligned store and the target doesn't support it, // expand it. if (!TLI.allowsUnalignedMemoryAccesses()) { unsigned ABIAlignment = TLI.getTargetData()-> getABITypeAlignment(ST->getMemoryVT().getTypeForMVT()); if (ST->getAlignment() < ABIAlignment) Result = ExpandUnalignedStore(cast(Result.getNode()), DAG, TLI); } break; case TargetLowering::Custom: Result = TLI.LowerOperation(Result, DAG); break; case Expand: // TRUNCSTORE:i16 i32 -> STORE i16 assert(isTypeLegal(StVT) && "Do not know how to expand this store!"); Tmp3 = DAG.getNode(ISD::TRUNCATE, StVT, Tmp3); Result = DAG.getStore(Tmp1, Tmp3, Tmp2, ST->getSrcValue(), SVOffset, isVolatile, Alignment); break; } } } break; } case ISD::PCMARKER: Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); break; case ISD::STACKSAVE: Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. Result = DAG.UpdateNodeOperands(Result, Tmp1); Tmp1 = Result.getValue(0); Tmp2 = Result.getValue(1); switch (TLI.getOperationAction(ISD::STACKSAVE, MVT::Other)) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Legal: break; case TargetLowering::Custom: Tmp3 = TLI.LowerOperation(Result, DAG); if (Tmp3.getNode()) { Tmp1 = LegalizeOp(Tmp3); Tmp2 = LegalizeOp(Tmp3.getValue(1)); } break; case TargetLowering::Expand: // Expand to CopyFromReg if the target set // StackPointerRegisterToSaveRestore. if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { Tmp1 = DAG.getCopyFromReg(Result.getOperand(0), SP, Node->getValueType(0)); Tmp2 = Tmp1.getValue(1); } else { Tmp1 = DAG.getNode(ISD::UNDEF, Node->getValueType(0)); Tmp2 = Node->getOperand(0); } break; } // Since stacksave produce two values, make sure to remember that we // legalized both of them. AddLegalizedOperand(SDValue(Node, 0), Tmp1); AddLegalizedOperand(SDValue(Node, 1), Tmp2); return Op.getResNo() ? Tmp2 : Tmp1; case ISD::STACKRESTORE: Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); switch (TLI.getOperationAction(ISD::STACKRESTORE, MVT::Other)) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Legal: break; case TargetLowering::Custom: Tmp1 = TLI.LowerOperation(Result, DAG); if (Tmp1.getNode()) Result = Tmp1; break; case TargetLowering::Expand: // Expand to CopyToReg if the target set // StackPointerRegisterToSaveRestore. if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { Result = DAG.getCopyToReg(Tmp1, SP, Tmp2); } else { Result = Tmp1; } break; } break; case ISD::READCYCLECOUNTER: Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain Result = DAG.UpdateNodeOperands(Result, Tmp1); switch (TLI.getOperationAction(ISD::READCYCLECOUNTER, Node->getValueType(0))) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Legal: Tmp1 = Result.getValue(0); Tmp2 = Result.getValue(1); break; case TargetLowering::Custom: Result = TLI.LowerOperation(Result, DAG); Tmp1 = LegalizeOp(Result.getValue(0)); Tmp2 = LegalizeOp(Result.getValue(1)); break; } // Since rdcc produce two values, make sure to remember that we legalized // both of them. AddLegalizedOperand(SDValue(Node, 0), Tmp1); AddLegalizedOperand(SDValue(Node, 1), Tmp2); return Result; case ISD::SELECT: switch (getTypeAction(Node->getOperand(0).getValueType())) { case Expand: assert(0 && "It's impossible to expand bools"); case Legal: Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the condition. break; case Promote: { assert(!Node->getOperand(0).getValueType().isVector() && "not possible"); Tmp1 = PromoteOp(Node->getOperand(0)); // Promote the condition. // Make sure the condition is either zero or one. unsigned BitWidth = Tmp1.getValueSizeInBits(); if (!DAG.MaskedValueIsZero(Tmp1, APInt::getHighBitsSet(BitWidth, BitWidth-1))) Tmp1 = DAG.getZeroExtendInReg(Tmp1, MVT::i1); break; } } Tmp2 = LegalizeOp(Node->getOperand(1)); // TrueVal Tmp3 = LegalizeOp(Node->getOperand(2)); // FalseVal Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); switch (TLI.getOperationAction(ISD::SELECT, Tmp2.getValueType())) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Legal: break; case TargetLowering::Custom: { Tmp1 = TLI.LowerOperation(Result, DAG); if (Tmp1.getNode()) Result = Tmp1; break; } case TargetLowering::Expand: if (Tmp1.getOpcode() == ISD::SETCC) { Result = DAG.getSelectCC(Tmp1.getOperand(0), Tmp1.getOperand(1), Tmp2, Tmp3, cast(Tmp1.getOperand(2))->get()); } else { Result = DAG.getSelectCC(Tmp1, DAG.getConstant(0, Tmp1.getValueType()), Tmp2, Tmp3, ISD::SETNE); } break; case TargetLowering::Promote: { MVT NVT = TLI.getTypeToPromoteTo(ISD::SELECT, Tmp2.getValueType()); unsigned ExtOp, TruncOp; if (Tmp2.getValueType().isVector()) { ExtOp = ISD::BIT_CONVERT; TruncOp = ISD::BIT_CONVERT; } else if (Tmp2.getValueType().isInteger()) { ExtOp = ISD::ANY_EXTEND; TruncOp = ISD::TRUNCATE; } else { ExtOp = ISD::FP_EXTEND; TruncOp = ISD::FP_ROUND; } // Promote each of the values to the new type. Tmp2 = DAG.getNode(ExtOp, NVT, Tmp2); Tmp3 = DAG.getNode(ExtOp, NVT, Tmp3); // Perform the larger operation, then round down. Result = DAG.getNode(ISD::SELECT, NVT, Tmp1, Tmp2,Tmp3); if (TruncOp != ISD::FP_ROUND) Result = DAG.getNode(TruncOp, Node->getValueType(0), Result); else Result = DAG.getNode(TruncOp, Node->getValueType(0), Result, DAG.getIntPtrConstant(0)); break; } } break; case ISD::SELECT_CC: { Tmp1 = Node->getOperand(0); // LHS Tmp2 = Node->getOperand(1); // RHS Tmp3 = LegalizeOp(Node->getOperand(2)); // True Tmp4 = LegalizeOp(Node->getOperand(3)); // False SDValue CC = Node->getOperand(4); LegalizeSetCC(TLI.getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC); // If we didn't get both a LHS and RHS back from LegalizeSetCC, // the LHS is a legal SETCC itself. In this case, we need to compare // the result against zero to select between true and false values. if (Tmp2.getNode() == 0) { Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); CC = DAG.getCondCode(ISD::SETNE); } Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Tmp4, CC); // Everything is legal, see if we should expand this op or something. switch (TLI.getOperationAction(ISD::SELECT_CC, Tmp3.getValueType())) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Legal: break; case TargetLowering::Custom: Tmp1 = TLI.LowerOperation(Result, DAG); if (Tmp1.getNode()) Result = Tmp1; break; } break; } case ISD::SETCC: Tmp1 = Node->getOperand(0); Tmp2 = Node->getOperand(1); Tmp3 = Node->getOperand(2); LegalizeSetCC(Node->getValueType(0), Tmp1, Tmp2, Tmp3); // If we had to Expand the SetCC operands into a SELECT node, then it may // not always be possible to return a true LHS & RHS. In this case, just // return the value we legalized, returned in the LHS if (Tmp2.getNode() == 0) { Result = Tmp1; break; } switch (TLI.getOperationAction(ISD::SETCC, Tmp1.getValueType())) { default: assert(0 && "Cannot handle this action for SETCC yet!"); case TargetLowering::Custom: isCustom = true; // FALLTHROUGH. case TargetLowering::Legal: Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); if (isCustom) { Tmp4 = TLI.LowerOperation(Result, DAG); if (Tmp4.getNode()) Result = Tmp4; } break; case TargetLowering::Promote: { // First step, figure out the appropriate operation to use. // Allow SETCC to not be supported for all legal data types // Mostly this targets FP MVT NewInTy = Node->getOperand(0).getValueType(); MVT OldVT = NewInTy; OldVT = OldVT; // Scan for the appropriate larger type to use. while (1) { NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1); assert(NewInTy.isInteger() == OldVT.isInteger() && "Fell off of the edge of the integer world"); assert(NewInTy.isFloatingPoint() == OldVT.isFloatingPoint() && "Fell off of the edge of the floating point world"); // If the target supports SETCC of this type, use it. if (TLI.isOperationLegal(ISD::SETCC, NewInTy)) break; } if (NewInTy.isInteger()) assert(0 && "Cannot promote Legal Integer SETCC yet"); else { Tmp1 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp1); Tmp2 = DAG.getNode(ISD::FP_EXTEND, NewInTy, Tmp2); } Tmp1 = LegalizeOp(Tmp1); Tmp2 = LegalizeOp(Tmp2); Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); Result = LegalizeOp(Result); break; } case TargetLowering::Expand: // Expand a setcc node into a select_cc of the same condition, lhs, and // rhs that selects between const 1 (true) and const 0 (false). MVT VT = Node->getValueType(0); Result = DAG.getNode(ISD::SELECT_CC, VT, Tmp1, Tmp2, DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3); break; } break; case ISD::VSETCC: { Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS SDValue CC = Node->getOperand(2); Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, CC); // Everything is legal, see if we should expand this op or something. switch (TLI.getOperationAction(ISD::VSETCC, Tmp1.getValueType())) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Legal: break; case TargetLowering::Custom: Tmp1 = TLI.LowerOperation(Result, DAG); if (Tmp1.getNode()) Result = Tmp1; break; case TargetLowering::Expand: { // Unroll into a nasty set of scalar code for now. MVT VT = Node->getValueType(0); unsigned NumElems = VT.getVectorNumElements(); MVT EltVT = VT.getVectorElementType(); MVT TmpEltVT = Tmp1.getValueType().getVectorElementType(); SmallVector Ops(NumElems); for (unsigned i = 0; i < NumElems; ++i) { SDValue In1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, TmpEltVT, Tmp1, DAG.getIntPtrConstant(i)); Ops[i] = DAG.getNode(ISD::SETCC, TLI.getSetCCResultType(TmpEltVT), In1, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, TmpEltVT, Tmp2, DAG.getIntPtrConstant(i)), CC); Ops[i] = DAG.getNode(ISD::SELECT, EltVT, Ops[i], DAG.getConstant(EltVT.getIntegerVTBitMask(),EltVT), DAG.getConstant(0, EltVT)); } Result = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], NumElems); break; } } break; } case ISD::SHL_PARTS: case ISD::SRA_PARTS: case ISD::SRL_PARTS: { SmallVector Ops; bool Changed = false; for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { Ops.push_back(LegalizeOp(Node->getOperand(i))); Changed |= Ops.back() != Node->getOperand(i); } if (Changed) Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size()); switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Legal: break; case TargetLowering::Custom: Tmp1 = TLI.LowerOperation(Result, DAG); if (Tmp1.getNode()) { SDValue Tmp2, RetVal(0, 0); for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) { Tmp2 = LegalizeOp(Tmp1.getValue(i)); AddLegalizedOperand(SDValue(Node, i), Tmp2); if (i == Op.getResNo()) RetVal = Tmp2; } assert(RetVal.getNode() && "Illegal result number"); return RetVal; } break; } // Since these produce multiple values, make sure to remember that we // legalized all of them. for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) AddLegalizedOperand(SDValue(Node, i), Result.getValue(i)); return Result.getValue(Op.getResNo()); } // Binary operators case ISD::ADD: case ISD::SUB: case ISD::MUL: case ISD::MULHS: case ISD::MULHU: case ISD::UDIV: case ISD::SDIV: case ISD::AND: case ISD::OR: case ISD::XOR: case ISD::SHL: case ISD::SRL: case ISD::SRA: case ISD::FADD: case ISD::FSUB: case ISD::FMUL: case ISD::FDIV: case ISD::FPOW: Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS switch (getTypeAction(Node->getOperand(1).getValueType())) { case Expand: assert(0 && "Not possible"); case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS. break; case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS. break; } if ((Node->getOpcode() == ISD::SHL || Node->getOpcode() == ISD::SRL || Node->getOpcode() == ISD::SRA) && !Node->getValueType(0).isVector()) { Tmp2 = LegalizeShiftAmount(Tmp2); } Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { default: assert(0 && "BinOp legalize operation not supported"); case TargetLowering::Legal: break; case TargetLowering::Custom: Tmp1 = TLI.LowerOperation(Result, DAG); if (Tmp1.getNode()) { Result = Tmp1; break; } // Fall through if the custom lower can't deal with the operation case TargetLowering::Expand: { MVT VT = Op.getValueType(); // See if multiply or divide can be lowered using two-result operations. SDVTList VTs = DAG.getVTList(VT, VT); if (Node->getOpcode() == ISD::MUL) { // We just need the low half of the multiply; try both the signed // and unsigned forms. If the target supports both SMUL_LOHI and // UMUL_LOHI, form a preference by checking which forms of plain // MULH it supports. bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, VT); bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, VT); bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, VT); bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, VT); unsigned OpToUse = 0; if (HasSMUL_LOHI && !HasMULHS) { OpToUse = ISD::SMUL_LOHI; } else if (HasUMUL_LOHI && !HasMULHU) { OpToUse = ISD::UMUL_LOHI; } else if (HasSMUL_LOHI) { OpToUse = ISD::SMUL_LOHI; } else if (HasUMUL_LOHI) { OpToUse = ISD::UMUL_LOHI; } if (OpToUse) { Result = SDValue(DAG.getNode(OpToUse, VTs, Tmp1, Tmp2).getNode(), 0); break; } } if (Node->getOpcode() == ISD::MULHS && TLI.isOperationLegal(ISD::SMUL_LOHI, VT)) { Result = SDValue(DAG.getNode(ISD::SMUL_LOHI, VTs, Tmp1, Tmp2).getNode(), 1); break; } if (Node->getOpcode() == ISD::MULHU && TLI.isOperationLegal(ISD::UMUL_LOHI, VT)) { Result = SDValue(DAG.getNode(ISD::UMUL_LOHI, VTs, Tmp1, Tmp2).getNode(), 1); break; } if (Node->getOpcode() == ISD::SDIV && TLI.isOperationLegal(ISD::SDIVREM, VT)) { Result = SDValue(DAG.getNode(ISD::SDIVREM, VTs, Tmp1, Tmp2).getNode(), 0); break; } if (Node->getOpcode() == ISD::UDIV && TLI.isOperationLegal(ISD::UDIVREM, VT)) { Result = SDValue(DAG.getNode(ISD::UDIVREM, VTs, Tmp1, Tmp2).getNode(), 0); break; } // Check to see if we have a libcall for this operator. RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; bool isSigned = false; switch (Node->getOpcode()) { case ISD::UDIV: case ISD::SDIV: if (VT == MVT::i32) { LC = Node->getOpcode() == ISD::UDIV ? RTLIB::UDIV_I32 : RTLIB::SDIV_I32; isSigned = Node->getOpcode() == ISD::SDIV; } break; case ISD::MUL: if (VT == MVT::i32) LC = RTLIB::MUL_I32; else if (VT == MVT::i64) LC = RTLIB::MUL_I64; break; case ISD::FPOW: LC = GetFPLibCall(VT, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, RTLIB::POW_PPCF128); break; default: break; } if (LC != RTLIB::UNKNOWN_LIBCALL) { SDValue Dummy; Result = ExpandLibCall(LC, Node, isSigned, Dummy); break; } assert(Node->getValueType(0).isVector() && "Cannot expand this binary operator!"); // Expand the operation into a bunch of nasty scalar code. Result = LegalizeOp(UnrollVectorOp(Op)); break; } case TargetLowering::Promote: { switch (Node->getOpcode()) { default: assert(0 && "Do not know how to promote this BinOp!"); case ISD::AND: case ISD::OR: case ISD::XOR: { MVT OVT = Node->getValueType(0); MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); assert(OVT.isVector() && "Cannot promote this BinOp!"); // Bit convert each of the values to the new type. Tmp1 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp1); Tmp2 = DAG.getNode(ISD::BIT_CONVERT, NVT, Tmp2); Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); // Bit convert the result back the original type. Result = DAG.getNode(ISD::BIT_CONVERT, OVT, Result); break; } } } } break; case ISD::SMUL_LOHI: case ISD::UMUL_LOHI: case ISD::SDIVREM: case ISD::UDIVREM: // These nodes will only be produced by target-specific lowering, so // they shouldn't be here if they aren't legal. assert(TLI.isOperationLegal(Node->getOpcode(), Node->getValueType(0)) && "This must be legal!"); Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); break; case ISD::FCOPYSIGN: // FCOPYSIGN does not require LHS/RHS to match type! Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS switch (getTypeAction(Node->getOperand(1).getValueType())) { case Expand: assert(0 && "Not possible"); case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the RHS. break; case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); // Promote the RHS. break; } Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { default: assert(0 && "Operation not supported"); case TargetLowering::Custom: Tmp1 = TLI.LowerOperation(Result, DAG); if (Tmp1.getNode()) Result = Tmp1; break; case TargetLowering::Legal: break; case TargetLowering::Expand: { // If this target supports fabs/fneg natively and select is cheap, // do this efficiently. if (!TLI.isSelectExpensive() && TLI.getOperationAction(ISD::FABS, Tmp1.getValueType()) == TargetLowering::Legal && TLI.getOperationAction(ISD::FNEG, Tmp1.getValueType()) == TargetLowering::Legal) { // Get the sign bit of the RHS. MVT IVT = Tmp2.getValueType() == MVT::f32 ? MVT::i32 : MVT::i64; SDValue SignBit = DAG.getNode(ISD::BIT_CONVERT, IVT, Tmp2); SignBit = DAG.getSetCC(TLI.getSetCCResultType(IVT), SignBit, DAG.getConstant(0, IVT), ISD::SETLT); // Get the absolute value of the result. SDValue AbsVal = DAG.getNode(ISD::FABS, Tmp1.getValueType(), Tmp1); // Select between the nabs and abs value based on the sign bit of // the input. Result = DAG.getNode(ISD::SELECT, AbsVal.getValueType(), SignBit, DAG.getNode(ISD::FNEG, AbsVal.getValueType(), AbsVal), AbsVal); Result = LegalizeOp(Result); break; } // Otherwise, do bitwise ops! MVT NVT = Node->getValueType(0) == MVT::f32 ? MVT::i32 : MVT::i64; Result = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), Result); Result = LegalizeOp(Result); break; } } break; case ISD::ADDC: case ISD::SUBC: Tmp1 = LegalizeOp(Node->getOperand(0)); Tmp2 = LegalizeOp(Node->getOperand(1)); Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); Tmp3 = Result.getValue(0); Tmp4 = Result.getValue(1); switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Legal: break; case TargetLowering::Custom: Tmp1 = TLI.LowerOperation(Tmp3, DAG); if (Tmp1.getNode() != NULL) { Tmp3 = LegalizeOp(Tmp1); Tmp4 = LegalizeOp(Tmp1.getValue(1)); } break; } // Since this produces two values, make sure to remember that we legalized // both of them. AddLegalizedOperand(SDValue(Node, 0), Tmp3); AddLegalizedOperand(SDValue(Node, 1), Tmp4); return Op.getResNo() ? Tmp4 : Tmp3; case ISD::ADDE: case ISD::SUBE: Tmp1 = LegalizeOp(Node->getOperand(0)); Tmp2 = LegalizeOp(Node->getOperand(1)); Tmp3 = LegalizeOp(Node->getOperand(2)); Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3); Tmp3 = Result.getValue(0); Tmp4 = Result.getValue(1); switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Legal: break; case TargetLowering::Custom: Tmp1 = TLI.LowerOperation(Tmp3, DAG); if (Tmp1.getNode() != NULL) { Tmp3 = LegalizeOp(Tmp1); Tmp4 = LegalizeOp(Tmp1.getValue(1)); } break; } // Since this produces two values, make sure to remember that we legalized // both of them. AddLegalizedOperand(SDValue(Node, 0), Tmp3); AddLegalizedOperand(SDValue(Node, 1), Tmp4); return Op.getResNo() ? Tmp4 : Tmp3; case ISD::BUILD_PAIR: { MVT PairTy = Node->getValueType(0); // TODO: handle the case where the Lo and Hi operands are not of legal type Tmp1 = LegalizeOp(Node->getOperand(0)); // Lo Tmp2 = LegalizeOp(Node->getOperand(1)); // Hi switch (TLI.getOperationAction(ISD::BUILD_PAIR, PairTy)) { case TargetLowering::Promote: case TargetLowering::Custom: assert(0 && "Cannot promote/custom this yet!"); case TargetLowering::Legal: if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1)) Result = DAG.getNode(ISD::BUILD_PAIR, PairTy, Tmp1, Tmp2); break; case TargetLowering::Expand: Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, PairTy, Tmp1); Tmp2 = DAG.getNode(ISD::ANY_EXTEND, PairTy, Tmp2); Tmp2 = DAG.getNode(ISD::SHL, PairTy, Tmp2, DAG.getConstant(PairTy.getSizeInBits()/2, TLI.getShiftAmountTy())); Result = DAG.getNode(ISD::OR, PairTy, Tmp1, Tmp2); break; } break; } case ISD::UREM: case ISD::SREM: case ISD::FREM: Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { case TargetLowering::Promote: assert(0 && "Cannot promote this yet!"); case TargetLowering::Custom: isCustom = true; // FALLTHROUGH case TargetLowering::Legal: Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); if (isCustom) { Tmp1 = TLI.LowerOperation(Result, DAG); if (Tmp1.getNode()) Result = Tmp1; } break; case TargetLowering::Expand: { unsigned DivOpc= (Node->getOpcode() == ISD::UREM) ? ISD::UDIV : ISD::SDIV; bool isSigned = DivOpc == ISD::SDIV; MVT VT = Node->getValueType(0); // See if remainder can be lowered using two-result operations. SDVTList VTs = DAG.getVTList(VT, VT); if (Node->getOpcode() == ISD::SREM && TLI.isOperationLegal(ISD::SDIVREM, VT)) { Result = SDValue(DAG.getNode(ISD::SDIVREM, VTs, Tmp1, Tmp2).getNode(), 1); break; } if (Node->getOpcode() == ISD::UREM && TLI.isOperationLegal(ISD::UDIVREM, VT)) { Result = SDValue(DAG.getNode(ISD::UDIVREM, VTs, Tmp1, Tmp2).getNode(), 1); break; } if (VT.isInteger()) { if (TLI.getOperationAction(DivOpc, VT) == TargetLowering::Legal) { // X % Y -> X-X/Y*Y Result = DAG.getNode(DivOpc, VT, Tmp1, Tmp2); Result = DAG.getNode(ISD::MUL, VT, Result, Tmp2); Result = DAG.getNode(ISD::SUB, VT, Tmp1, Result); } else if (VT.isVector()) { Result = LegalizeOp(UnrollVectorOp(Op)); } else { assert(VT == MVT::i32 && "Cannot expand this binary operator!"); RTLIB::Libcall LC = Node->getOpcode() == ISD::UREM ? RTLIB::UREM_I32 : RTLIB::SREM_I32; SDValue Dummy; Result = ExpandLibCall(LC, Node, isSigned, Dummy); } } else { assert(VT.isFloatingPoint() && "remainder op must have integer or floating-point type"); if (VT.isVector()) { Result = LegalizeOp(UnrollVectorOp(Op)); } else { // Floating point mod -> fmod libcall. RTLIB::Libcall LC = GetFPLibCall(VT, RTLIB::REM_F32, RTLIB::REM_F64, RTLIB::REM_F80, RTLIB::REM_PPCF128); SDValue Dummy; Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy); } } break; } } break; case ISD::VAARG: { Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. MVT VT = Node->getValueType(0); switch (TLI.getOperationAction(Node->getOpcode(), MVT::Other)) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Custom: isCustom = true; // FALLTHROUGH case TargetLowering::Legal: Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); Result = Result.getValue(0); Tmp1 = Result.getValue(1); if (isCustom) { Tmp2 = TLI.LowerOperation(Result, DAG); if (Tmp2.getNode()) { Result = LegalizeOp(Tmp2); Tmp1 = LegalizeOp(Tmp2.getValue(1)); } } break; case TargetLowering::Expand: { const Value *V = cast(Node->getOperand(2))->getValue(); SDValue VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2, V, 0); // Increment the pointer, VAList, to the next vaarg Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList, DAG.getConstant(TLI.getTargetData()-> getTypePaddedSize(VT.getTypeForMVT()), TLI.getPointerTy())); // Store the incremented VAList to the legalized pointer Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, V, 0); // Load the actual argument out of the pointer VAList Result = DAG.getLoad(VT, Tmp3, VAList, NULL, 0); Tmp1 = LegalizeOp(Result.getValue(1)); Result = LegalizeOp(Result); break; } } // Since VAARG produces two values, make sure to remember that we // legalized both of them. AddLegalizedOperand(SDValue(Node, 0), Result); AddLegalizedOperand(SDValue(Node, 1), Tmp1); return Op.getResNo() ? Tmp1 : Result; } case ISD::VACOPY: Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the dest pointer. Tmp3 = LegalizeOp(Node->getOperand(2)); // Legalize the source pointer. switch (TLI.getOperationAction(ISD::VACOPY, MVT::Other)) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Custom: isCustom = true; // FALLTHROUGH case TargetLowering::Legal: Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Tmp3, Node->getOperand(3), Node->getOperand(4)); if (isCustom) { Tmp1 = TLI.LowerOperation(Result, DAG); if (Tmp1.getNode()) Result = Tmp1; } break; case TargetLowering::Expand: // This defaults to loading a pointer from the input and storing it to the // output, returning the chain. const Value *VD = cast(Node->getOperand(3))->getValue(); const Value *VS = cast(Node->getOperand(4))->getValue(); Tmp4 = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp3, VS, 0); Result = DAG.getStore(Tmp4.getValue(1), Tmp4, Tmp2, VD, 0); break; } break; case ISD::VAEND: Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. switch (TLI.getOperationAction(ISD::VAEND, MVT::Other)) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Custom: isCustom = true; // FALLTHROUGH case TargetLowering::Legal: Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); if (isCustom) { Tmp1 = TLI.LowerOperation(Tmp1, DAG); if (Tmp1.getNode()) Result = Tmp1; } break; case TargetLowering::Expand: Result = Tmp1; // Default to a no-op, return the chain break; } break; case ISD::VASTART: Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain. Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer. Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, Node->getOperand(2)); switch (TLI.getOperationAction(ISD::VASTART, MVT::Other)) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Legal: break; case TargetLowering::Custom: Tmp1 = TLI.LowerOperation(Result, DAG); if (Tmp1.getNode()) Result = Tmp1; break; } break; case ISD::ROTL: case ISD::ROTR: Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2); switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { default: assert(0 && "ROTL/ROTR legalize operation not supported"); break; case TargetLowering::Legal: break; case TargetLowering::Custom: Tmp1 = TLI.LowerOperation(Result, DAG); if (Tmp1.getNode()) Result = Tmp1; break; case TargetLowering::Promote: assert(0 && "Do not know how to promote ROTL/ROTR"); break; case TargetLowering::Expand: assert(0 && "Do not know how to expand ROTL/ROTR"); break; } break; case ISD::BSWAP: Tmp1 = LegalizeOp(Node->getOperand(0)); // Op switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { case TargetLowering::Custom: assert(0 && "Cannot custom legalize this yet!"); case TargetLowering::Legal: Result = DAG.UpdateNodeOperands(Result, Tmp1); break; case TargetLowering::Promote: { MVT OVT = Tmp1.getValueType(); MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1); Result = DAG.getNode(ISD::SRL, NVT, Tmp1, DAG.getConstant(DiffBits, TLI.getShiftAmountTy())); break; } case TargetLowering::Expand: Result = ExpandBSWAP(Tmp1); break; } break; case ISD::CTPOP: case ISD::CTTZ: case ISD::CTLZ: Tmp1 = LegalizeOp(Node->getOperand(0)); // Op switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { case TargetLowering::Custom: case TargetLowering::Legal: Result = DAG.UpdateNodeOperands(Result, Tmp1); if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == TargetLowering::Custom) { Tmp1 = TLI.LowerOperation(Result, DAG); if (Tmp1.getNode()) { Result = Tmp1; } } break; case TargetLowering::Promote: { MVT OVT = Tmp1.getValueType(); MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); // Zero extend the argument. Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); // Perform the larger operation, then subtract if needed. Tmp1 = DAG.getNode(Node->getOpcode(), Node->getValueType(0), Tmp1); switch (Node->getOpcode()) { case ISD::CTPOP: Result = Tmp1; break; case ISD::CTTZ: //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) Tmp2 = DAG.getSetCC(TLI.getSetCCResultType(Tmp1.getValueType()), Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT), ISD::SETEQ); Result = DAG.getNode(ISD::SELECT, NVT, Tmp2, DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1); break; case ISD::CTLZ: // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) Result = DAG.getNode(ISD::SUB, NVT, Tmp1, DAG.getConstant(NVT.getSizeInBits() - OVT.getSizeInBits(), NVT)); break; } break; } case TargetLowering::Expand: Result = ExpandBitCount(Node->getOpcode(), Tmp1); break; } break; // Unary operators case ISD::FABS: case ISD::FNEG: case ISD::FSQRT: case ISD::FSIN: case ISD::FCOS: case ISD::FLOG: case ISD::FLOG2: case ISD::FLOG10: case ISD::FEXP: case ISD::FEXP2: case ISD::FTRUNC: case ISD::FFLOOR: case ISD::FCEIL: case ISD::FRINT: case ISD::FNEARBYINT: Tmp1 = LegalizeOp(Node->getOperand(0)); switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { case TargetLowering::Promote: case TargetLowering::Custom: isCustom = true; // FALLTHROUGH case TargetLowering::Legal: Result = DAG.UpdateNodeOperands(Result, Tmp1); if (isCustom) { Tmp1 = TLI.LowerOperation(Result, DAG); if (Tmp1.getNode()) Result = Tmp1; } break; case TargetLowering::Expand: switch (Node->getOpcode()) { default: assert(0 && "Unreachable!"); case ISD::FNEG: // Expand Y = FNEG(X) -> Y = SUB -0.0, X Tmp2 = DAG.getConstantFP(-0.0, Node->getValueType(0)); Result = DAG.getNode(ISD::FSUB, Node->getValueType(0), Tmp2, Tmp1); break; case ISD::FABS: { // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X). MVT VT = Node->getValueType(0); Tmp2 = DAG.getConstantFP(0.0, VT); Tmp2 = DAG.getSetCC(TLI.getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, ISD::SETUGT); Tmp3 = DAG.getNode(ISD::FNEG, VT, Tmp1); Result = DAG.getNode(ISD::SELECT, VT, Tmp2, Tmp1, Tmp3); break; } case ISD::FSQRT: case ISD::FSIN: case ISD::FCOS: case ISD::FLOG: case ISD::FLOG2: case ISD::FLOG10: case ISD::FEXP: case ISD::FEXP2: case ISD::FTRUNC: case ISD::FFLOOR: case ISD::FCEIL: case ISD::FRINT: case ISD::FNEARBYINT: { MVT VT = Node->getValueType(0); // Expand unsupported unary vector operators by unrolling them. if (VT.isVector()) { Result = LegalizeOp(UnrollVectorOp(Op)); break; } RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; switch(Node->getOpcode()) { case ISD::FSQRT: LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64, RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128); break; case ISD::FSIN: LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64, RTLIB::SIN_F80, RTLIB::SIN_PPCF128); break; case ISD::FCOS: LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64, RTLIB::COS_F80, RTLIB::COS_PPCF128); break; case ISD::FLOG: LC = GetFPLibCall(VT, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80, RTLIB::LOG_PPCF128); break; case ISD::FLOG2: LC = GetFPLibCall(VT, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128); break; case ISD::FLOG10: LC = GetFPLibCall(VT, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128); break; case ISD::FEXP: LC = GetFPLibCall(VT, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80, RTLIB::EXP_PPCF128); break; case ISD::FEXP2: LC = GetFPLibCall(VT, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128); break; case ISD::FTRUNC: LC = GetFPLibCall(VT, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128); break; case ISD::FFLOOR: LC = GetFPLibCall(VT, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128); break; case ISD::FCEIL: LC = GetFPLibCall(VT, RTLIB::CEIL_F32, RTLIB::CEIL_F64, RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128); break; case ISD::FRINT: LC = GetFPLibCall(VT, RTLIB::RINT_F32, RTLIB::RINT_F64, RTLIB::RINT_F80, RTLIB::RINT_PPCF128); break; case ISD::FNEARBYINT: LC = GetFPLibCall(VT, RTLIB::NEARBYINT_F32, RTLIB::NEARBYINT_F64, RTLIB::NEARBYINT_F80, RTLIB::NEARBYINT_PPCF128); break; break; default: assert(0 && "Unreachable!"); } SDValue Dummy; Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy); break; } } break; } break; case ISD::FPOWI: { MVT VT = Node->getValueType(0); // Expand unsupported unary vector operators by unrolling them. if (VT.isVector()) { Result = LegalizeOp(UnrollVectorOp(Op)); break; } // We always lower FPOWI into a libcall. No target support for it yet. RTLIB::Libcall LC = GetFPLibCall(VT, RTLIB::POWI_F32, RTLIB::POWI_F64, RTLIB::POWI_F80, RTLIB::POWI_PPCF128); SDValue Dummy; Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy); break; } case ISD::BIT_CONVERT: if (!isTypeLegal(Node->getOperand(0).getValueType())) { Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), Node->getValueType(0)); } else if (Op.getOperand(0).getValueType().isVector()) { // The input has to be a vector type, we have to either scalarize it, pack // it, or convert it based on whether the input vector type is legal. SDNode *InVal = Node->getOperand(0).getNode(); int InIx = Node->getOperand(0).getResNo(); unsigned NumElems = InVal->getValueType(InIx).getVectorNumElements(); MVT EVT = InVal->getValueType(InIx).getVectorElementType(); // Figure out if there is a simple type corresponding to this Vector // type. If so, convert to the vector type. MVT TVT = MVT::getVectorVT(EVT, NumElems); if (TLI.isTypeLegal(TVT)) { // Turn this into a bit convert of the vector input. Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), LegalizeOp(Node->getOperand(0))); break; } else if (NumElems == 1) { // Turn this into a bit convert of the scalar input. Result = DAG.getNode(ISD::BIT_CONVERT, Node->getValueType(0), ScalarizeVectorOp(Node->getOperand(0))); break; } else { // FIXME: UNIMP! Store then reload assert(0 && "Cast from unsupported vector type not implemented yet!"); } } else { switch (TLI.getOperationAction(ISD::BIT_CONVERT, Node->getOperand(0).getValueType())) { default: assert(0 && "Unknown operation action!"); case TargetLowering::Expand: Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), Node->getValueType(0)); break; case TargetLowering::Legal: Tmp1 = LegalizeOp(Node->getOperand(0)); Result = DAG.UpdateNodeOperands(Result, Tmp1); break; } } break; case ISD::CONVERT_RNDSAT: { ISD::CvtCode CvtCode = cast(Node)->getCvtCode(); switch (CvtCode) { default: assert(0 && "Unknown cvt code!"); case ISD::CVT_SF: case ISD::CVT_UF: case ISD::CVT_FF: break; case ISD::CVT_FS: case ISD::CVT_FU: case ISD::CVT_SS: case ISD::CVT_SU: case ISD::CVT_US: case ISD::CVT_UU: { SDValue DTyOp = Node->getOperand(1); SDValue STyOp = Node->getOperand(2); SDValue RndOp = Node->getOperand(3); SDValue SatOp = Node->getOperand(4); switch (getTypeAction(Node->getOperand(0).getValueType())) { case Expand: assert(0 && "Shouldn't need to expand other operators here!"); case Legal: Tmp1 = LegalizeOp(Node->getOperand(0)); Result = DAG.UpdateNodeOperands(Result, Tmp1, DTyOp, STyOp, RndOp, SatOp); if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == TargetLowering::Custom) { Tmp1 = TLI.LowerOperation(Result, DAG); if (Tmp1.getNode()) Result = Tmp1; } break; case Promote: Result = PromoteOp(Node->getOperand(0)); // For FP, make Op1 a i32 Result = DAG.getConvertRndSat(Op.getValueType(), Result, DTyOp, STyOp, RndOp, SatOp, CvtCode); break; } break; } } // end switch CvtCode break; } // Conversion operators. The source and destination have different types. case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: { bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; Result = LegalizeINT_TO_FP(Result, isSigned, Node->getValueType(0), Node->getOperand(0)); break; } case ISD::TRUNCATE: switch (getTypeAction(Node->getOperand(0).getValueType())) { case Legal: Tmp1 = LegalizeOp(Node->getOperand(0)); switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))) { default: assert(0 && "Unknown TRUNCATE legalization operation action!"); case TargetLowering::Custom: isCustom = true; // FALLTHROUGH case TargetLowering::Legal: Result = DAG.UpdateNodeOperands(Result, Tmp1); if (isCustom) { Tmp1 = TLI.LowerOperation(Result, DAG); if (Tmp1.getNode()) Result = Tmp1; } break; case TargetLowering::Expand: assert(Result.getValueType().isVector() && "must be vector type"); // Unroll the truncate. We should do better. Result = LegalizeOp(UnrollVectorOp(Result)); } break; case Expand: ExpandOp(Node->getOperand(0), Tmp1, Tmp2); // Since the result is legal, we should just be able to truncate the low // part of the source. Result = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), Tmp1); break; case Promote: Result = PromoteOp(Node->getOperand(0)); Result = DAG.getNode(ISD::TRUNCATE, Op.getValueType(), Result); break; } break; case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: switch (getTypeAction(Node->getOperand(0).getValueType())) { case Legal: Tmp1 = LegalizeOp(Node->getOperand(0)); switch (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0))){ default: assert(0 && "Unknown operation action!"); case TargetLowering::Custom: isCustom = true; // FALLTHROUGH case TargetLowering::Legal: Result = DAG.UpdateNodeOperands(Result, Tmp1); if (isCustom) { Tmp1 = TLI.LowerOperation(Result, DAG); if (Tmp1.getNode()) Result = Tmp1; } break; case TargetLowering::Promote: Result = PromoteLegalFP_TO_INT(Tmp1, Node->getValueType(0), Node->getOpcode() == ISD::FP_TO_SINT); break; case TargetLowering::Expand: if (Node->getOpcode() == ISD::FP_TO_UINT) { SDValue True, False; MVT VT = Node->getOperand(0).getValueType(); MVT NVT = Node->getValueType(0); const uint64_t zero[] = {0, 0}; APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero)); APInt x = APInt::getSignBit(NVT.getSizeInBits()); (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); Tmp2 = DAG.getConstantFP(apf, VT); Tmp3 = DAG.getSetCC(TLI.getSetCCResultType(VT), Node->getOperand(0), Tmp2, ISD::SETLT); True = DAG.getNode(ISD::FP_TO_SINT, NVT, Node->getOperand(0)); False = DAG.getNode(ISD::FP_TO_SINT, NVT, DAG.getNode(ISD::FSUB, VT, Node->getOperand(0), Tmp2)); False = DAG.getNode(ISD::XOR, NVT, False, DAG.getConstant(x, NVT)); Result = DAG.getNode(ISD::SELECT, NVT, Tmp3, True, False); break; } else { assert(0 && "Do not know how to expand FP_TO_SINT yet!"); } break; } break; case Expand: { MVT VT = Op.getValueType(); MVT OVT = Node->getOperand(0).getValueType(); // Convert ppcf128 to i32 if (OVT == MVT::ppcf128 && VT == MVT::i32) { if (Node->getOpcode() == ISD::FP_TO_SINT) { Result = DAG.getNode(ISD::FP_ROUND_INREG, MVT::ppcf128, Node->getOperand(0), DAG.getValueType(MVT::f64)); Result = DAG.getNode(ISD::FP_ROUND, MVT::f64, Result, DAG.getIntPtrConstant(1)); Result = DAG.getNode(ISD::FP_TO_SINT, VT, Result); } else { const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; APFloat apf = APFloat(APInt(128, 2, TwoE31)); Tmp2 = DAG.getConstantFP(apf, OVT); // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X // FIXME: generated code sucks. Result = DAG.getNode(ISD::SELECT_CC, VT, Node->getOperand(0), Tmp2, DAG.getNode(ISD::ADD, MVT::i32, DAG.getNode(ISD::FP_TO_SINT, VT, DAG.getNode(ISD::FSUB, OVT, Node->getOperand(0), Tmp2)), DAG.getConstant(0x80000000, MVT::i32)), DAG.getNode(ISD::FP_TO_SINT, VT, Node->getOperand(0)), DAG.getCondCode(ISD::SETGE)); } break; } // Convert f32 / f64 to i32 / i64 / i128. RTLIB::Libcall LC = (Node->getOpcode() == ISD::FP_TO_SINT) ? RTLIB::getFPTOSINT(OVT, VT) : RTLIB::getFPTOUINT(OVT, VT); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpectd fp-to-int conversion!"); SDValue Dummy; Result = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Dummy); break; } case Promote: Tmp1 = PromoteOp(Node->getOperand(0)); Result = DAG.UpdateNodeOperands(Result, LegalizeOp(Tmp1)); Result = LegalizeOp(Result); break; } break; case ISD::FP_EXTEND: { MVT DstVT = Op.getValueType(); MVT SrcVT = Op.getOperand(0).getValueType(); if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) { // The only other way we can lower this is to turn it into a STORE, // LOAD pair, targetting a temporary location (a stack slot). Result = EmitStackConvert(Node->getOperand(0), SrcVT, DstVT); break; } switch (getTypeAction(Node->getOperand(0).getValueType())) { case Expand: assert(0 && "Shouldn't need to expand other operators here!"); case Legal: Tmp1 = LegalizeOp(Node->getOperand(0)); Result = DAG.UpdateNodeOperands(Result, Tmp1); break; case Promote: Tmp1 = PromoteOp(Node->getOperand(0)); Result = DAG.getNode(ISD::FP_EXTEND, Op.getValueType(), Tmp1); break; } break; } case ISD::FP_ROUND: { MVT DstVT = Op.getValueType(); MVT SrcVT = Op.getOperand(0).getValueType(); if (TLI.getConvertAction(SrcVT, DstVT) == TargetLowering::Expand) { if (SrcVT == MVT::ppcf128) { SDValue Lo; ExpandOp(Node->getOperand(0), Lo, Result); // Round it the rest of the way (e.g. to f32) if needed. if (DstVT!=MVT::f64) Result = DAG.getNode(ISD::FP_ROUND, DstVT, Result, Op.getOperand(1)); break; } // The only other way we can lower this is to turn it into a STORE, // LOAD pair, targetting a temporary location (a stack slot). Result = EmitStackConvert(Node->getOperand(0), DstVT, DstVT); break; } switch (getTypeAction(Node->getOperand(0).getValueType())) { case Expand: assert(0 && "Shouldn't need to expand other operators here!"); case Legal: Tmp1 = LegalizeOp(Node->getOperand(0)); Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); break; case Promote: Tmp1 = PromoteOp(Node->getOperand(0)); Result = DAG.getNode(ISD::FP_ROUND, Op.getValueType(), Tmp1, Node->getOperand(1)); break; } break; } case ISD::ANY_EXTEND: case ISD::ZERO_EXTEND: case ISD::SIGN_EXTEND: switch (getTypeAction(Node->getOperand(0).getValueType())) { case Expand: assert(0 && "Shouldn't need to expand other operators here!"); case Legal: Tmp1 = LegalizeOp(Node->getOperand(0)); Result = DAG.UpdateNodeOperands(Result, Tmp1); if (TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)) == TargetLowering::Custom) { Tmp1 = TLI.LowerOperation(Result, DAG); if (Tmp1.getNode()) Result = Tmp1; } break; case Promote: switch (Node->getOpcode()) { case ISD::ANY_EXTEND: Tmp1 = PromoteOp(Node->getOperand(0)); Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Tmp1); break; case ISD::ZERO_EXTEND: Result = PromoteOp(Node->getOperand(0)); Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result); Result = DAG.getZeroExtendInReg(Result, Node->getOperand(0).getValueType()); break; case ISD::SIGN_EXTEND: Result = PromoteOp(Node->getOperand(0)); Result = DAG.getNode(ISD::ANY_EXTEND, Op.getValueType(), Result); Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), Result, DAG.getValueType(Node->getOperand(0).getValueType())); break; } } break; case ISD::FP_ROUND_INREG: case ISD::SIGN_EXTEND_INREG: { Tmp1 = LegalizeOp(Node->getOperand(0)); MVT ExtraVT = cast(Node->getOperand(1))->getVT(); // If this operation is not supported, convert it to a shl/shr or load/store // pair. switch (TLI.getOperationAction(Node->getOpcode(), ExtraVT)) { default: assert(0 && "This action not supported for this op yet!"); case TargetLowering::Legal: Result = DAG.UpdateNodeOperands(Result, Tmp1, Node->getOperand(1)); break; case TargetLowering::Expand: // If this is an integer extend and shifts are supported, do that. if (Node->getOpcode() == ISD::SIGN_EXTEND_INREG) { // NOTE: we could fall back on load/store here too for targets without // SAR. However, it is doubtful that any exist. unsigned BitsDiff = Node->getValueType(0).getSizeInBits() - ExtraVT.getSizeInBits(); SDValue ShiftCst = DAG.getConstant(BitsDiff, TLI.getShiftAmountTy()); Result = DAG.getNode(ISD::SHL, Node->getValueType(0), Node->getOperand(0), ShiftCst); Result = DAG.getNode(ISD::SRA, Node->getValueType(0), Result, ShiftCst); } else if (Node->getOpcode() == ISD::FP_ROUND_INREG) { // The only way we can lower this is to turn it into a TRUNCSTORE, // EXTLOAD pair, targetting a temporary location (a stack slot). // NOTE: there is a choice here between constantly creating new stack // slots and always reusing the same one. We currently always create // new ones, as reuse may inhibit scheduling. Result = EmitStackConvert(Node->getOperand(0), ExtraVT, Node->getValueType(0)); } else { assert(0 && "Unknown op"); } break; } break; } case ISD::TRAMPOLINE: { SDValue Ops[6]; for (unsigned i = 0; i != 6; ++i) Ops[i] = LegalizeOp(Node->getOperand(i)); Result = DAG.UpdateNodeOperands(Result, Ops, 6); // The only option for this node is to custom lower it. Result = TLI.LowerOperation(Result, DAG); assert(Result.getNode() && "Should always custom lower!"); // Since trampoline produces two values, make sure to remember that we // legalized both of them. Tmp1 = LegalizeOp(Result.getValue(1)); Result = LegalizeOp(Result); AddLegalizedOperand(SDValue(Node, 0), Result); AddLegalizedOperand(SDValue(Node, 1), Tmp1); return Op.getResNo() ? Tmp1 : Result; } case ISD::FLT_ROUNDS_: { MVT VT = Node->getValueType(0); switch (TLI.getOperationAction(Node->getOpcode(), VT)) { default: assert(0 && "This action not supported for this op yet!"); case TargetLowering::Custom: Result = TLI.LowerOperation(Op, DAG); if (Result.getNode()) break; // Fall Thru case TargetLowering::Legal: // If this operation is not supported, lower it to constant 1 Result = DAG.getConstant(1, VT); break; } break; } case ISD::TRAP: { MVT VT = Node->getValueType(0); switch (TLI.getOperationAction(Node->getOpcode(), VT)) { default: assert(0 && "This action not supported for this op yet!"); case TargetLowering::Legal: Tmp1 = LegalizeOp(Node->getOperand(0)); Result = DAG.UpdateNodeOperands(Result, Tmp1); break; case TargetLowering::Custom: Result = TLI.LowerOperation(Op, DAG); if (Result.getNode()) break; // Fall Thru case TargetLowering::Expand: // If this operation is not supported, lower it to 'abort()' call Tmp1 = LegalizeOp(Node->getOperand(0)); TargetLowering::ArgListTy Args; std::pair CallResult = TLI.LowerCallTo(Tmp1, Type::VoidTy, false, false, false, false, CallingConv::C, false, DAG.getExternalSymbol("abort", TLI.getPointerTy()), Args, DAG); Result = CallResult.second; break; } break; } case ISD::SADDO: case ISD::SSUBO: { MVT VT = Node->getValueType(0); switch (TLI.getOperationAction(Node->getOpcode(), VT)) { default: assert(0 && "This action not supported for this op yet!"); case TargetLowering::Custom: Result = TLI.LowerOperation(Op, DAG); if (Result.getNode()) break; // FALLTHROUGH case TargetLowering::Legal: { SDValue LHS = LegalizeOp(Node->getOperand(0)); SDValue RHS = LegalizeOp(Node->getOperand(1)); SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? ISD::ADD : ISD::SUB, LHS.getValueType(), LHS, RHS); MVT OType = Node->getValueType(1); SDValue Zero = DAG.getConstant(0, LHS.getValueType()); // LHSSign -> LHS >= 0 // RHSSign -> RHS >= 0 // SumSign -> Sum >= 0 // // Add: // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) // Sub: // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) // SDValue LHSSign = DAG.getSetCC(OType, LHS, Zero, ISD::SETGE); SDValue RHSSign = DAG.getSetCC(OType, RHS, Zero, ISD::SETGE); SDValue SignsMatch = DAG.getSetCC(OType, LHSSign, RHSSign, Node->getOpcode() == ISD::SADDO ? ISD::SETEQ : ISD::SETNE); SDValue SumSign = DAG.getSetCC(OType, Sum, Zero, ISD::SETGE); SDValue SumSignNE = DAG.getSetCC(OType, LHSSign, SumSign, ISD::SETNE); SDValue Cmp = DAG.getNode(ISD::AND, OType, SignsMatch, SumSignNE); MVT ValueVTs[] = { LHS.getValueType(), OType }; SDValue Ops[] = { Sum, Cmp }; Result = DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(&ValueVTs[0], 2), &Ops[0], 2); SDNode *RNode = Result.getNode(); DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), SDValue(RNode, 0)); DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(RNode, 1)); break; } } break; } case ISD::UADDO: case ISD::USUBO: { MVT VT = Node->getValueType(0); switch (TLI.getOperationAction(Node->getOpcode(), VT)) { default: assert(0 && "This action not supported for this op yet!"); case TargetLowering::Custom: Result = TLI.LowerOperation(Op, DAG); if (Result.getNode()) break; // FALLTHROUGH case TargetLowering::Legal: { SDValue LHS = LegalizeOp(Node->getOperand(0)); SDValue RHS = LegalizeOp(Node->getOperand(1)); SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ? ISD::ADD : ISD::SUB, LHS.getValueType(), LHS, RHS); MVT OType = Node->getValueType(1); SDValue Cmp = DAG.getSetCC(OType, Sum, LHS, Node->getOpcode () == ISD::UADDO ? ISD::SETULT : ISD::SETUGT); MVT ValueVTs[] = { LHS.getValueType(), OType }; SDValue Ops[] = { Sum, Cmp }; Result = DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(&ValueVTs[0], 2), &Ops[0], 2); SDNode *RNode = Result.getNode(); DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), SDValue(RNode, 0)); DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(RNode, 1)); break; } } break; } case ISD::SMULO: case ISD::UMULO: { MVT VT = Node->getValueType(0); switch (TLI.getOperationAction(Node->getOpcode(), VT)) { default: assert(0 && "This action is not supported at all!"); case TargetLowering::Custom: Result = TLI.LowerOperation(Op, DAG); if (Result.getNode()) break; // Fall Thru case TargetLowering::Legal: // FIXME: According to Hacker's Delight, this can be implemented in // target independent lowering, but it would be inefficient, since it // requires a division + a branch. assert(0 && "Target independent lowering is not supported for SMULO/UMULO!"); break; } break; } } assert(Result.getValueType() == Op.getValueType() && "Bad legalization!"); // Make sure that the generated code is itself legal. if (Result != Op) Result = LegalizeOp(Result); // Note that LegalizeOp may be reentered even from single-use nodes, which // means that we always must cache transformed nodes. AddLegalizedOperand(Op, Result); return Result; } /// PromoteOp - Given an operation that produces a value in an invalid type, /// promote it to compute the value into a larger type. The produced value will /// have the correct bits for the low portion of the register, but no guarantee /// is made about the top bits: it may be zero, sign-extended, or garbage. SDValue SelectionDAGLegalize::PromoteOp(SDValue Op) { MVT VT = Op.getValueType(); MVT NVT = TLI.getTypeToTransformTo(VT); assert(getTypeAction(VT) == Promote && "Caller should expand or legalize operands that are not promotable!"); assert(NVT.bitsGT(VT) && NVT.isInteger() == VT.isInteger() && "Cannot promote to smaller type!"); SDValue Tmp1, Tmp2, Tmp3; SDValue Result; SDNode *Node = Op.getNode(); DenseMap::iterator I = PromotedNodes.find(Op); if (I != PromotedNodes.end()) return I->second; switch (Node->getOpcode()) { case ISD::CopyFromReg: assert(0 && "CopyFromReg must be legal!"); default: #ifndef NDEBUG cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; #endif assert(0 && "Do not know how to promote this operator!"); abort(); case ISD::UNDEF: Result = DAG.getNode(ISD::UNDEF, NVT); break; case ISD::Constant: if (VT != MVT::i1) Result = DAG.getNode(ISD::SIGN_EXTEND, NVT, Op); else Result = DAG.getNode(ISD::ZERO_EXTEND, NVT, Op); assert(isa(Result) && "Didn't constant fold zext?"); break; case ISD::ConstantFP: Result = DAG.getNode(ISD::FP_EXTEND, NVT, Op); assert(isa(Result) && "Didn't constant fold fp_extend?"); break; case ISD::SETCC: { MVT VT0 = Node->getOperand(0).getValueType(); assert(isTypeLegal(TLI.getSetCCResultType(VT0)) && "SetCC type is not legal??"); Result = DAG.getNode(ISD::SETCC, TLI.getSetCCResultType(VT0), Node->getOperand(0), Node->getOperand(1), Node->getOperand(2)); break; } case ISD::TRUNCATE: switch (getTypeAction(Node->getOperand(0).getValueType())) { case Legal: Result = LegalizeOp(Node->getOperand(0)); assert(Result.getValueType().bitsGE(NVT) && "This truncation doesn't make sense!"); if (Result.getValueType().bitsGT(NVT)) // Truncate to NVT instead of VT Result = DAG.getNode(ISD::TRUNCATE, NVT, Result); break; case Promote: // The truncation is not required, because we don't guarantee anything // about high bits anyway. Result = PromoteOp(Node->getOperand(0)); break; case Expand: ExpandOp(Node->getOperand(0), Tmp1, Tmp2); // Truncate the low part of the expanded value to the result type Result = DAG.getNode(ISD::TRUNCATE, NVT, Tmp1); } break; case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: case ISD::ANY_EXTEND: switch (getTypeAction(Node->getOperand(0).getValueType())) { case Expand: assert(0 && "BUG: Smaller reg should have been promoted!"); case Legal: // Input is legal? Just do extend all the way to the larger type. Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0)); break; case Promote: // Promote the reg if it's smaller. Result = PromoteOp(Node->getOperand(0)); // The high bits are not guaranteed to be anything. Insert an extend. if (Node->getOpcode() == ISD::SIGN_EXTEND) Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result, DAG.getValueType(Node->getOperand(0).getValueType())); else if (Node->getOpcode() == ISD::ZERO_EXTEND) Result = DAG.getZeroExtendInReg(Result, Node->getOperand(0).getValueType()); break; } break; case ISD::CONVERT_RNDSAT: { ISD::CvtCode CvtCode = cast(Node)->getCvtCode(); assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU || CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU || CvtCode == ISD::CVT_SF || CvtCode == ISD::CVT_UF) && "can only promote integers"); Result = DAG.getConvertRndSat(NVT, Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), Node->getOperand(3), Node->getOperand(4), CvtCode); break; } case ISD::BIT_CONVERT: Result = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), Node->getValueType(0)); Result = PromoteOp(Result); break; case ISD::FP_EXTEND: assert(0 && "Case not implemented. Dynamically dead with 2 FP types!"); case ISD::FP_ROUND: switch (getTypeAction(Node->getOperand(0).getValueType())) { case Expand: assert(0 && "BUG: Cannot expand FP regs!"); case Promote: assert(0 && "Unreachable with 2 FP types!"); case Legal: if (Node->getConstantOperandVal(1) == 0) { // Input is legal? Do an FP_ROUND_INREG. Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Node->getOperand(0), DAG.getValueType(VT)); } else { // Just remove the truncate, it isn't affecting the value. Result = DAG.getNode(ISD::FP_ROUND, NVT, Node->getOperand(0), Node->getOperand(1)); } break; } break; case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: switch (getTypeAction(Node->getOperand(0).getValueType())) { case Legal: // No extra round required here. Result = DAG.getNode(Node->getOpcode(), NVT, Node->getOperand(0)); break; case Promote: Result = PromoteOp(Node->getOperand(0)); if (Node->getOpcode() == ISD::SINT_TO_FP) Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, Result.getValueType(), Result, DAG.getValueType(Node->getOperand(0).getValueType())); else Result = DAG.getZeroExtendInReg(Result, Node->getOperand(0).getValueType()); // No extra round required here. Result = DAG.getNode(Node->getOpcode(), NVT, Result); break; case Expand: Result = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, NVT, Node->getOperand(0)); // Round if we cannot tolerate excess precision. if (NoExcessFPPrecision) Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, DAG.getValueType(VT)); break; } break; case ISD::SIGN_EXTEND_INREG: Result = PromoteOp(Node->getOperand(0)); Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Result, Node->getOperand(1)); break; case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: switch (getTypeAction(Node->getOperand(0).getValueType())) { case Legal: case Expand: Tmp1 = Node->getOperand(0); break; case Promote: // The input result is prerounded, so we don't have to do anything // special. Tmp1 = PromoteOp(Node->getOperand(0)); break; } // If we're promoting a UINT to a larger size, check to see if the new node // will be legal. If it isn't, check to see if FP_TO_SINT is legal, since // we can use that instead. This allows us to generate better code for // FP_TO_UINT for small destination sizes on targets where FP_TO_UINT is not // legal, such as PowerPC. if (Node->getOpcode() == ISD::FP_TO_UINT && !TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) && (TLI.isOperationLegal(ISD::FP_TO_SINT, NVT) || TLI.getOperationAction(ISD::FP_TO_SINT, NVT)==TargetLowering::Custom)){ Result = DAG.getNode(ISD::FP_TO_SINT, NVT, Tmp1); } else { Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); } break; case ISD::FABS: case ISD::FNEG: Tmp1 = PromoteOp(Node->getOperand(0)); assert(Tmp1.getValueType() == NVT); Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); // NOTE: we do not have to do any extra rounding here for // NoExcessFPPrecision, because we know the input will have the appropriate // precision, and these operations don't modify precision at all. break; case ISD::FLOG: case ISD::FLOG2: case ISD::FLOG10: case ISD::FEXP: case ISD::FEXP2: case ISD::FSQRT: case ISD::FSIN: case ISD::FCOS: case ISD::FTRUNC: case ISD::FFLOOR: case ISD::FCEIL: case ISD::FRINT: case ISD::FNEARBYINT: Tmp1 = PromoteOp(Node->getOperand(0)); assert(Tmp1.getValueType() == NVT); Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1); if (NoExcessFPPrecision) Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, DAG.getValueType(VT)); break; case ISD::FPOW: case ISD::FPOWI: { // Promote f32 pow(i) to f64 pow(i). Note that this could insert a libcall // directly as well, which may be better. Tmp1 = PromoteOp(Node->getOperand(0)); Tmp2 = Node->getOperand(1); if (Node->getOpcode() == ISD::FPOW) Tmp2 = PromoteOp(Tmp2); assert(Tmp1.getValueType() == NVT); Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); if (NoExcessFPPrecision) Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, DAG.getValueType(VT)); break; } case ISD::ATOMIC_CMP_SWAP: { AtomicSDNode* AtomNode = cast(Node); Tmp2 = PromoteOp(Node->getOperand(2)); Tmp3 = PromoteOp(Node->getOperand(3)); Result = DAG.getAtomic(Node->getOpcode(), AtomNode->getMemoryVT(), AtomNode->getChain(), AtomNode->getBasePtr(), Tmp2, Tmp3, AtomNode->getSrcValue(), AtomNode->getAlignment()); // Remember that we legalized the chain. AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); break; } case ISD::ATOMIC_LOAD_ADD: case ISD::ATOMIC_LOAD_SUB: case ISD::ATOMIC_LOAD_AND: case ISD::ATOMIC_LOAD_OR: case ISD::ATOMIC_LOAD_XOR: case ISD::ATOMIC_LOAD_NAND: case ISD::ATOMIC_LOAD_MIN: case ISD::ATOMIC_LOAD_MAX: case ISD::ATOMIC_LOAD_UMIN: case ISD::ATOMIC_LOAD_UMAX: case ISD::ATOMIC_SWAP: { AtomicSDNode* AtomNode = cast(Node); Tmp2 = PromoteOp(Node->getOperand(2)); Result = DAG.getAtomic(Node->getOpcode(), AtomNode->getMemoryVT(), AtomNode->getChain(), AtomNode->getBasePtr(), Tmp2, AtomNode->getSrcValue(), AtomNode->getAlignment()); // Remember that we legalized the chain. AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); break; } case ISD::AND: case ISD::OR: case ISD::XOR: case ISD::ADD: case ISD::SUB: case ISD::MUL: // The input may have strange things in the top bits of the registers, but // these operations don't care. They may have weird bits going out, but // that too is okay if they are integer operations. Tmp1 = PromoteOp(Node->getOperand(0)); Tmp2 = PromoteOp(Node->getOperand(1)); assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); break; case ISD::FADD: case ISD::FSUB: case ISD::FMUL: Tmp1 = PromoteOp(Node->getOperand(0)); Tmp2 = PromoteOp(Node->getOperand(1)); assert(Tmp1.getValueType() == NVT && Tmp2.getValueType() == NVT); Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); // Floating point operations will give excess precision that we may not be // able to tolerate. If we DO allow excess precision, just leave it, // otherwise excise it. // FIXME: Why would we need to round FP ops more than integer ones? // Is Round(Add(Add(A,B),C)) != Round(Add(Round(Add(A,B)), C)) if (NoExcessFPPrecision) Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, DAG.getValueType(VT)); break; case ISD::SDIV: case ISD::SREM: // These operators require that their input be sign extended. Tmp1 = PromoteOp(Node->getOperand(0)); Tmp2 = PromoteOp(Node->getOperand(1)); if (NVT.isInteger()) { Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, DAG.getValueType(VT)); Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2, DAG.getValueType(VT)); } Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); // Perform FP_ROUND: this is probably overly pessimistic. if (NVT.isFloatingPoint() && NoExcessFPPrecision) Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, DAG.getValueType(VT)); break; case ISD::FDIV: case ISD::FREM: case ISD::FCOPYSIGN: // These operators require that their input be fp extended. switch (getTypeAction(Node->getOperand(0).getValueType())) { case Expand: assert(0 && "not implemented"); case Legal: Tmp1 = LegalizeOp(Node->getOperand(0)); break; case Promote: Tmp1 = PromoteOp(Node->getOperand(0)); break; } switch (getTypeAction(Node->getOperand(1).getValueType())) { case Expand: assert(0 && "not implemented"); case Legal: Tmp2 = LegalizeOp(Node->getOperand(1)); break; case Promote: Tmp2 = PromoteOp(Node->getOperand(1)); break; } Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); // Perform FP_ROUND: this is probably overly pessimistic. if (NoExcessFPPrecision && Node->getOpcode() != ISD::FCOPYSIGN) Result = DAG.getNode(ISD::FP_ROUND_INREG, NVT, Result, DAG.getValueType(VT)); break; case ISD::UDIV: case ISD::UREM: // These operators require that their input be zero extended. Tmp1 = PromoteOp(Node->getOperand(0)); Tmp2 = PromoteOp(Node->getOperand(1)); assert(NVT.isInteger() && "Operators don't apply to FP!"); Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT); Result = DAG.getNode(Node->getOpcode(), NVT, Tmp1, Tmp2); break; case ISD::SHL: Tmp1 = PromoteOp(Node->getOperand(0)); Result = DAG.getNode(ISD::SHL, NVT, Tmp1, Node->getOperand(1)); break; case ISD::SRA: // The input value must be properly sign extended. Tmp1 = PromoteOp(Node->getOperand(0)); Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, DAG.getValueType(VT)); Result = DAG.getNode(ISD::SRA, NVT, Tmp1, Node->getOperand(1)); break; case ISD::SRL: // The input value must be properly zero extended. Tmp1 = PromoteOp(Node->getOperand(0)); Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); Result = DAG.getNode(ISD::SRL, NVT, Tmp1, Node->getOperand(1)); break; case ISD::VAARG: Tmp1 = Node->getOperand(0); // Get the chain. Tmp2 = Node->getOperand(1); // Get the pointer. if (TLI.getOperationAction(ISD::VAARG, VT) == TargetLowering::Custom) { Tmp3 = DAG.getVAArg(VT, Tmp1, Tmp2, Node->getOperand(2)); Result = TLI.LowerOperation(Tmp3, DAG); } else { const Value *V = cast(Node->getOperand(2))->getValue(); SDValue VAList = DAG.getLoad(TLI.getPointerTy(), Tmp1, Tmp2, V, 0); // Increment the pointer, VAList, to the next vaarg Tmp3 = DAG.getNode(ISD::ADD, TLI.getPointerTy(), VAList, DAG.getConstant(VT.getSizeInBits()/8, TLI.getPointerTy())); // Store the incremented VAList to the legalized pointer Tmp3 = DAG.getStore(VAList.getValue(1), Tmp3, Tmp2, V, 0); // Load the actual argument out of the pointer VAList Result = DAG.getExtLoad(ISD::EXTLOAD, NVT, Tmp3, VAList, NULL, 0, VT); } // Remember that we legalized the chain. AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); break; case ISD::LOAD: { LoadSDNode *LD = cast(Node); ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(Node) ? ISD::EXTLOAD : LD->getExtensionType(); Result = DAG.getExtLoad(ExtType, NVT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(), LD->getSrcValueOffset(), LD->getMemoryVT(), LD->isVolatile(), LD->getAlignment()); // Remember that we legalized the chain. AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); break; } case ISD::SELECT: { Tmp2 = PromoteOp(Node->getOperand(1)); // Legalize the op0 Tmp3 = PromoteOp(Node->getOperand(2)); // Legalize the op1 MVT VT2 = Tmp2.getValueType(); assert(VT2 == Tmp3.getValueType() && "PromoteOp SELECT: Operands 2 and 3 ValueTypes don't match"); // Ensure that the resulting node is at least the same size as the operands' // value types, because we cannot assume that TLI.getSetCCValueType() is // constant. Result = DAG.getNode(ISD::SELECT, VT2, Node->getOperand(0), Tmp2, Tmp3); break; } case ISD::SELECT_CC: Tmp2 = PromoteOp(Node->getOperand(2)); // True Tmp3 = PromoteOp(Node->getOperand(3)); // False Result = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), Node->getOperand(1), Tmp2, Tmp3, Node->getOperand(4)); break; case ISD::BSWAP: Tmp1 = Node->getOperand(0); Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Tmp1); Tmp1 = DAG.getNode(ISD::BSWAP, NVT, Tmp1); Result = DAG.getNode(ISD::SRL, NVT, Tmp1, DAG.getConstant(NVT.getSizeInBits() - VT.getSizeInBits(), TLI.getShiftAmountTy())); break; case ISD::CTPOP: case ISD::CTTZ: case ISD::CTLZ: // Zero extend the argument Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0)); // Perform the larger operation, then subtract if needed. Tmp1 = DAG.getNode(Node->getOpcode(), NVT, Tmp1); switch(Node->getOpcode()) { case ISD::CTPOP: Result = Tmp1; break; case ISD::CTTZ: // if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT) Tmp2 = DAG.getSetCC(TLI.getSetCCResultType(Tmp1.getValueType()), Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT), ISD::SETEQ); Result = DAG.getNode(ISD::SELECT, NVT, Tmp2, DAG.getConstant(VT.getSizeInBits(), NVT), Tmp1); break; case ISD::CTLZ: //Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) Result = DAG.getNode(ISD::SUB, NVT, Tmp1, DAG.getConstant(NVT.getSizeInBits() - VT.getSizeInBits(), NVT)); break; } break; case ISD::EXTRACT_SUBVECTOR: Result = PromoteOp(ExpandEXTRACT_SUBVECTOR(Op)); break; case ISD::EXTRACT_VECTOR_ELT: Result = PromoteOp(ExpandEXTRACT_VECTOR_ELT(Op)); break; } assert(Result.getNode() && "Didn't set a result!"); // Make sure the result is itself legal. Result = LegalizeOp(Result); // Remember that we promoted this! AddPromotedOperand(Op, Result); return Result; } /// ExpandEXTRACT_VECTOR_ELT - Expand an EXTRACT_VECTOR_ELT operation into /// a legal EXTRACT_VECTOR_ELT operation, scalar code, or memory traffic, /// based on the vector type. The return type of this matches the element type /// of the vector, which may not be legal for the target. SDValue SelectionDAGLegalize::ExpandEXTRACT_VECTOR_ELT(SDValue Op) { // We know that operand #0 is the Vec vector. If the index is a constant // or if the invec is a supported hardware type, we can use it. Otherwise, // lower to a store then an indexed load. SDValue Vec = Op.getOperand(0); SDValue Idx = Op.getOperand(1); MVT TVT = Vec.getValueType(); unsigned NumElems = TVT.getVectorNumElements(); switch (TLI.getOperationAction(ISD::EXTRACT_VECTOR_ELT, TVT)) { default: assert(0 && "This action is not supported yet!"); case TargetLowering::Custom: { Vec = LegalizeOp(Vec); Op = DAG.UpdateNodeOperands(Op, Vec, Idx); SDValue Tmp3 = TLI.LowerOperation(Op, DAG); if (Tmp3.getNode()) return Tmp3; break; } case TargetLowering::Legal: if (isTypeLegal(TVT)) { Vec = LegalizeOp(Vec); Op = DAG.UpdateNodeOperands(Op, Vec, Idx); return Op; } break; case TargetLowering::Promote: assert(TVT.isVector() && "not vector type"); // fall thru to expand since vectors are by default are promote case TargetLowering::Expand: break; } if (NumElems == 1) { // This must be an access of the only element. Return it. Op = ScalarizeVectorOp(Vec); } else if (!TLI.isTypeLegal(TVT) && isa(Idx)) { unsigned NumLoElts = 1 << Log2_32(NumElems-1); ConstantSDNode *CIdx = cast(Idx); SDValue Lo, Hi; SplitVectorOp(Vec, Lo, Hi); if (CIdx->getZExtValue() < NumLoElts) { Vec = Lo; } else { Vec = Hi; Idx = DAG.getConstant(CIdx->getZExtValue() - NumLoElts, Idx.getValueType()); } // It's now an extract from the appropriate high or low part. Recurse. Op = DAG.UpdateNodeOperands(Op, Vec, Idx); Op = ExpandEXTRACT_VECTOR_ELT(Op); } else { // Store the value to a temporary stack slot, then LOAD the scalar // element back out. SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); SDValue Ch = DAG.getStore(DAG.getEntryNode(), Vec, StackPtr, NULL, 0); // Add the offset to the index. unsigned EltSize = Op.getValueType().getSizeInBits()/8; Idx = DAG.getNode(ISD::MUL, Idx.getValueType(), Idx, DAG.getConstant(EltSize, Idx.getValueType())); if (Idx.getValueType().bitsGT(TLI.getPointerTy())) Idx = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), Idx); else Idx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), Idx); StackPtr = DAG.getNode(ISD::ADD, Idx.getValueType(), Idx, StackPtr); Op = DAG.getLoad(Op.getValueType(), Ch, StackPtr, NULL, 0); } return Op; } /// ExpandEXTRACT_SUBVECTOR - Expand a EXTRACT_SUBVECTOR operation. For now /// we assume the operation can be split if it is not already legal. SDValue SelectionDAGLegalize::ExpandEXTRACT_SUBVECTOR(SDValue Op) { // We know that operand #0 is the Vec vector. For now we assume the index // is a constant and that the extracted result is a supported hardware type. SDValue Vec = Op.getOperand(0); SDValue Idx = LegalizeOp(Op.getOperand(1)); unsigned NumElems = Vec.getValueType().getVectorNumElements(); if (NumElems == Op.getValueType().getVectorNumElements()) { // This must be an access of the desired vector length. Return it. return Vec; } ConstantSDNode *CIdx = cast(Idx); SDValue Lo, Hi; SplitVectorOp(Vec, Lo, Hi); if (CIdx->getZExtValue() < NumElems/2) { Vec = Lo; } else { Vec = Hi; Idx = DAG.getConstant(CIdx->getZExtValue() - NumElems/2, Idx.getValueType()); } // It's now an extract from the appropriate high or low part. Recurse. Op = DAG.UpdateNodeOperands(Op, Vec, Idx); return ExpandEXTRACT_SUBVECTOR(Op); } /// LegalizeSetCCOperands - Attempts to create a legal LHS and RHS for a SETCC /// with condition CC on the current target. This usually involves legalizing /// or promoting the arguments. In the case where LHS and RHS must be expanded, /// there may be no choice but to create a new SetCC node to represent the /// legalized value of setcc lhs, rhs. In this case, the value is returned in /// LHS, and the SDValue returned in RHS has a nil SDNode value. void SelectionDAGLegalize::LegalizeSetCCOperands(SDValue &LHS, SDValue &RHS, SDValue &CC) { SDValue Tmp1, Tmp2, Tmp3, Result; switch (getTypeAction(LHS.getValueType())) { case Legal: Tmp1 = LegalizeOp(LHS); // LHS Tmp2 = LegalizeOp(RHS); // RHS break; case Promote: Tmp1 = PromoteOp(LHS); // LHS Tmp2 = PromoteOp(RHS); // RHS // If this is an FP compare, the operands have already been extended. if (LHS.getValueType().isInteger()) { MVT VT = LHS.getValueType(); MVT NVT = TLI.getTypeToTransformTo(VT); // Otherwise, we have to insert explicit sign or zero extends. Note // that we could insert sign extends for ALL conditions, but zero extend // is cheaper on many machines (an AND instead of two shifts), so prefer // it. switch (cast(CC)->get()) { default: assert(0 && "Unknown integer comparison!"); case ISD::SETEQ: case ISD::SETNE: case ISD::SETUGE: case ISD::SETUGT: case ISD::SETULE: case ISD::SETULT: // ALL of these operations will work if we either sign or zero extend // the operands (including the unsigned comparisons!). Zero extend is // usually a simpler/cheaper operation, so prefer it. Tmp1 = DAG.getZeroExtendInReg(Tmp1, VT); Tmp2 = DAG.getZeroExtendInReg(Tmp2, VT); break; case ISD::SETGE: case ISD::SETGT: case ISD::SETLT: case ISD::SETLE: Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp1, DAG.getValueType(VT)); Tmp2 = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Tmp2, DAG.getValueType(VT)); Tmp1 = LegalizeOp(Tmp1); // Relegalize new nodes. Tmp2 = LegalizeOp(Tmp2); // Relegalize new nodes. break; } } break; case Expand: { MVT VT = LHS.getValueType(); if (VT == MVT::f32 || VT == MVT::f64) { // Expand into one or more soft-fp libcall(s). RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; switch (cast(CC)->get()) { case ISD::SETEQ: case ISD::SETOEQ: LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; break; case ISD::SETNE: case ISD::SETUNE: LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : RTLIB::UNE_F64; break; case ISD::SETGE: case ISD::SETOGE: LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; break; case ISD::SETLT: case ISD::SETOLT: LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; break; case ISD::SETLE: case ISD::SETOLE: LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; break; case ISD::SETGT: case ISD::SETOGT: LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; break; case ISD::SETUO: LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; break; case ISD::SETO: LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : RTLIB::O_F64; break; default: LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : RTLIB::UO_F64; switch (cast(CC)->get()) { case ISD::SETONE: // SETONE = SETOLT | SETOGT LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; // Fallthrough case ISD::SETUGT: LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : RTLIB::OGT_F64; break; case ISD::SETUGE: LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : RTLIB::OGE_F64; break; case ISD::SETULT: LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : RTLIB::OLT_F64; break; case ISD::SETULE: LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : RTLIB::OLE_F64; break; case ISD::SETUEQ: LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : RTLIB::OEQ_F64; break; default: assert(0 && "Unsupported FP setcc!"); } } SDValue Dummy; SDValue Ops[2] = { LHS, RHS }; Tmp1 = ExpandLibCall(LC1, DAG.getMergeValues(Ops, 2).getNode(), false /*sign irrelevant*/, Dummy); Tmp2 = DAG.getConstant(0, MVT::i32); CC = DAG.getCondCode(TLI.getCmpLibcallCC(LC1)); if (LC2 != RTLIB::UNKNOWN_LIBCALL) { Tmp1 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC); LHS = ExpandLibCall(LC2, DAG.getMergeValues(Ops, 2).getNode(), false /*sign irrelevant*/, Dummy); Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultType(LHS.getValueType()), LHS, Tmp2, DAG.getCondCode(TLI.getCmpLibcallCC(LC2))); Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2); Tmp2 = SDValue(); } LHS = LegalizeOp(Tmp1); RHS = Tmp2; return; } SDValue LHSLo, LHSHi, RHSLo, RHSHi; ExpandOp(LHS, LHSLo, LHSHi); ExpandOp(RHS, RHSLo, RHSHi); ISD::CondCode CCCode = cast(CC)->get(); if (VT==MVT::ppcf128) { // FIXME: This generated code sucks. We want to generate // FCMPU crN, hi1, hi2 // BNE crN, L: // FCMPU crN, lo1, lo2 // The following can be improved, but not that much. Tmp1 = DAG.getSetCC(TLI.getSetCCResultType(LHSHi.getValueType()), LHSHi, RHSHi, ISD::SETOEQ); Tmp2 = DAG.getSetCC(TLI.getSetCCResultType(LHSLo.getValueType()), LHSLo, RHSLo, CCCode); Tmp3 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2); Tmp1 = DAG.getSetCC(TLI.getSetCCResultType(LHSHi.getValueType()), LHSHi, RHSHi, ISD::SETUNE); Tmp2 = DAG.getSetCC(TLI.getSetCCResultType(LHSHi.getValueType()), LHSHi, RHSHi, CCCode); Tmp1 = DAG.getNode(ISD::AND, Tmp1.getValueType(), Tmp1, Tmp2); Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp3); Tmp2 = SDValue(); break; } switch (CCCode) { case ISD::SETEQ: case ISD::SETNE: if (RHSLo == RHSHi) if (ConstantSDNode *RHSCST = dyn_cast(RHSLo)) if (RHSCST->isAllOnesValue()) { // Comparison to -1. Tmp1 = DAG.getNode(ISD::AND, LHSLo.getValueType(), LHSLo, LHSHi); Tmp2 = RHSLo; break; } Tmp1 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSLo, RHSLo); Tmp2 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSHi, RHSHi); Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2); Tmp2 = DAG.getConstant(0, Tmp1.getValueType()); break; default: // If this is a comparison of the sign bit, just look at the top part. // X > -1, x < 0 if (ConstantSDNode *CST = dyn_cast(RHS)) if ((cast(CC)->get() == ISD::SETLT && CST->isNullValue()) || // X < 0 (cast(CC)->get() == ISD::SETGT && CST->isAllOnesValue())) { // X > -1 Tmp1 = LHSHi; Tmp2 = RHSHi; break; } // FIXME: This generated code sucks. ISD::CondCode LowCC; switch (CCCode) { default: assert(0 && "Unknown integer setcc!"); case ISD::SETLT: case ISD::SETULT: LowCC = ISD::SETULT; break; case ISD::SETGT: case ISD::SETUGT: LowCC = ISD::SETUGT; break; case ISD::SETLE: case ISD::SETULE: LowCC = ISD::SETULE; break; case ISD::SETGE: case ISD::SETUGE: LowCC = ISD::SETUGE; break; } // Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison // Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2; // NOTE: on targets without efficient SELECT of bools, we can always use // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3) TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, NULL); Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSLo.getValueType()), LHSLo, RHSLo, LowCC, false, DagCombineInfo); if (!Tmp1.getNode()) Tmp1 = DAG.getSetCC(TLI.getSetCCResultType(LHSLo.getValueType()), LHSLo, RHSLo, LowCC); Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi.getValueType()), LHSHi, RHSHi, CCCode, false, DagCombineInfo); if (!Tmp2.getNode()) Tmp2 = DAG.getNode(ISD::SETCC, TLI.getSetCCResultType(LHSHi.getValueType()), LHSHi, RHSHi,CC); ConstantSDNode *Tmp1C = dyn_cast(Tmp1.getNode()); ConstantSDNode *Tmp2C = dyn_cast(Tmp2.getNode()); if ((Tmp1C && Tmp1C->isNullValue()) || (Tmp2C && Tmp2C->isNullValue() && (CCCode == ISD::SETLE || CCCode == ISD::SETGE || CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) || (Tmp2C && Tmp2C->getAPIntValue() == 1 && (CCCode == ISD::SETLT || CCCode == ISD::SETGT || CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) { // low part is known false, returns high part. // For LE / GE, if high part is known false, ignore the low part. // For LT / GT, if high part is known true, ignore the low part. Tmp1 = Tmp2; Tmp2 = SDValue(); } else { Result = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi.getValueType()), LHSHi, RHSHi, ISD::SETEQ, false, DagCombineInfo); if (!Result.getNode()) Result=DAG.getSetCC(TLI.getSetCCResultType(LHSHi.getValueType()), LHSHi, RHSHi, ISD::SETEQ); Result = LegalizeOp(DAG.getNode(ISD::SELECT, Tmp1.getValueType(), Result, Tmp1, Tmp2)); Tmp1 = Result; Tmp2 = SDValue(); } } } } LHS = Tmp1; RHS = Tmp2; } /// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and /// condition code CC on the current target. This routine assumes LHS and rHS /// have already been legalized by LegalizeSetCCOperands. It expands SETCC with /// illegal condition code into AND / OR of multiple SETCC values. void SelectionDAGLegalize::LegalizeSetCCCondCode(MVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC) { MVT OpVT = LHS.getValueType(); ISD::CondCode CCCode = cast(CC)->get(); switch (TLI.getCondCodeAction(CCCode, OpVT)) { default: assert(0 && "Unknown condition code action!"); case TargetLowering::Legal: // Nothing to do. break; case TargetLowering::Expand: { ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; unsigned Opc = 0; switch (CCCode) { default: assert(0 && "Don't know how to expand this condition!"); abort(); case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO; Opc = ISD::AND; break; case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO; Opc = ISD::AND; break; case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO; Opc = ISD::AND; break; case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO; Opc = ISD::AND; break; case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO; Opc = ISD::AND; break; case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO; Opc = ISD::AND; break; case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR; break; case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR; break; case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR; break; case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR; break; case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR; break; case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR; break; // FIXME: Implement more expansions. } SDValue SetCC1 = DAG.getSetCC(VT, LHS, RHS, CC1); SDValue SetCC2 = DAG.getSetCC(VT, LHS, RHS, CC2); LHS = DAG.getNode(Opc, VT, SetCC1, SetCC2); RHS = SDValue(); CC = SDValue(); break; } } } /// EmitStackConvert - Emit a store/load combination to the stack. This stores /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does /// a load from the stack slot to DestVT, extending it if needed. /// The resultant code need not be legal. SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, MVT SlotVT, MVT DestVT) { // Create the stack frame object. unsigned SrcAlign = TLI.getTargetData()->getPrefTypeAlignment( SrcOp.getValueType().getTypeForMVT()); SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); FrameIndexSDNode *StackPtrFI = cast(FIPtr); int SPFI = StackPtrFI->getIndex(); unsigned SrcSize = SrcOp.getValueType().getSizeInBits(); unsigned SlotSize = SlotVT.getSizeInBits(); unsigned DestSize = DestVT.getSizeInBits(); unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment( DestVT.getTypeForMVT()); // Emit a store to the stack slot. Use a truncstore if the input value is // later than DestVT. SDValue Store; if (SrcSize > SlotSize) Store = DAG.getTruncStore(DAG.getEntryNode(), SrcOp, FIPtr, PseudoSourceValue::getFixedStack(SPFI), 0, SlotVT, false, SrcAlign); else { assert(SrcSize == SlotSize && "Invalid store"); Store = DAG.getStore(DAG.getEntryNode(), SrcOp, FIPtr, PseudoSourceValue::getFixedStack(SPFI), 0, false, SrcAlign); } // Result is a load from the stack slot. if (SlotSize == DestSize) return DAG.getLoad(DestVT, Store, FIPtr, NULL, 0, false, DestAlign); assert(SlotSize < DestSize && "Unknown extension!"); return DAG.getExtLoad(ISD::EXTLOAD, DestVT, Store, FIPtr, NULL, 0, SlotVT, false, DestAlign); } SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { // Create a vector sized/aligned stack slot, store the value to element #0, // then load the whole vector back out. SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); FrameIndexSDNode *StackPtrFI = cast(StackPtr); int SPFI = StackPtrFI->getIndex(); SDValue Ch = DAG.getStore(DAG.getEntryNode(), Node->getOperand(0), StackPtr, PseudoSourceValue::getFixedStack(SPFI), 0); return DAG.getLoad(Node->getValueType(0), Ch, StackPtr, PseudoSourceValue::getFixedStack(SPFI), 0); } /// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't /// support the operation, but do support the resultant vector type. SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { // If the only non-undef value is the low element, turn this into a // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. unsigned NumElems = Node->getNumOperands(); bool isOnlyLowElement = true; SDValue SplatValue = Node->getOperand(0); // FIXME: it would be far nicer to change this into map // and use a bitmask instead of a list of elements. std::map > Values; Values[SplatValue].push_back(0); bool isConstant = true; if (!isa(SplatValue) && !isa(SplatValue) && SplatValue.getOpcode() != ISD::UNDEF) isConstant = false; for (unsigned i = 1; i < NumElems; ++i) { SDValue V = Node->getOperand(i); Values[V].push_back(i); if (V.getOpcode() != ISD::UNDEF) isOnlyLowElement = false; if (SplatValue != V) SplatValue = SDValue(0,0); // If this isn't a constant element or an undef, we can't use a constant // pool load. if (!isa(V) && !isa(V) && V.getOpcode() != ISD::UNDEF) isConstant = false; } if (isOnlyLowElement) { // If the low element is an undef too, then this whole things is an undef. if (Node->getOperand(0).getOpcode() == ISD::UNDEF) return DAG.getNode(ISD::UNDEF, Node->getValueType(0)); // Otherwise, turn this into a scalar_to_vector node. return DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), Node->getOperand(0)); } // If all elements are constants, create a load from the constant pool. if (isConstant) { MVT VT = Node->getValueType(0); std::vector CV; for (unsigned i = 0, e = NumElems; i != e; ++i) { if (ConstantFPSDNode *V = dyn_cast(Node->getOperand(i))) { CV.push_back(const_cast(V->getConstantFPValue())); } else if (ConstantSDNode *V = dyn_cast(Node->getOperand(i))) { CV.push_back(const_cast(V->getConstantIntValue())); } else { assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); const Type *OpNTy = Node->getOperand(0).getValueType().getTypeForMVT(); CV.push_back(UndefValue::get(OpNTy)); } } Constant *CP = ConstantVector::get(CV); SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy()); unsigned Alignment = 1 << cast(CPIdx)->getAlignment(); return DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, PseudoSourceValue::getConstantPool(), 0, false, Alignment); } if (SplatValue.getNode()) { // Splat of one value? // Build the shuffle constant vector: <0, 0, 0, 0> MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems); SDValue Zero = DAG.getConstant(0, MaskVT.getVectorElementType()); std::vector ZeroVec(NumElems, Zero); SDValue SplatMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &ZeroVec[0], ZeroVec.size()); // If the target supports VECTOR_SHUFFLE and this shuffle mask, use it. if (isShuffleLegal(Node->getValueType(0), SplatMask)) { // Get the splatted value into the low element of a vector register. SDValue LowValVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), SplatValue); // Return shuffle(LowValVec, undef, <0,0,0,0>) return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), LowValVec, DAG.getNode(ISD::UNDEF, Node->getValueType(0)), SplatMask); } } // If there are only two unique elements, we may be able to turn this into a // vector shuffle. if (Values.size() == 2) { // Get the two values in deterministic order. SDValue Val1 = Node->getOperand(1); SDValue Val2; std::map >::iterator MI = Values.begin(); if (MI->first != Val1) Val2 = MI->first; else Val2 = (++MI)->first; // If Val1 is an undef, make sure end ends up as Val2, to ensure that our // vector shuffle has the undef vector on the RHS. if (Val1.getOpcode() == ISD::UNDEF) std::swap(Val1, Val2); // Build the shuffle constant vector: e.g. <0, 4, 0, 4> MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems); MVT MaskEltVT = MaskVT.getVectorElementType(); std::vector MaskVec(NumElems); // Set elements of the shuffle mask for Val1. std::vector &Val1Elts = Values[Val1]; for (unsigned i = 0, e = Val1Elts.size(); i != e; ++i) MaskVec[Val1Elts[i]] = DAG.getConstant(0, MaskEltVT); // Set elements of the shuffle mask for Val2. std::vector &Val2Elts = Values[Val2]; for (unsigned i = 0, e = Val2Elts.size(); i != e; ++i) if (Val2.getOpcode() != ISD::UNDEF) MaskVec[Val2Elts[i]] = DAG.getConstant(NumElems, MaskEltVT); else MaskVec[Val2Elts[i]] = DAG.getNode(ISD::UNDEF, MaskEltVT); SDValue ShuffleMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); // If the target supports SCALAR_TO_VECTOR and this shuffle mask, use it. if (TLI.isOperationLegal(ISD::SCALAR_TO_VECTOR, Node->getValueType(0)) && isShuffleLegal(Node->getValueType(0), ShuffleMask)) { Val1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), Val1); Val2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, Node->getValueType(0), Val2); SDValue Ops[] = { Val1, Val2, ShuffleMask }; // Return shuffle(LoValVec, HiValVec, <0,1,0,1>) return DAG.getNode(ISD::VECTOR_SHUFFLE, Node->getValueType(0), Ops, 3); } } // Otherwise, we can't handle this case efficiently. Allocate a sufficiently // aligned object on the stack, store each element into it, then load // the result as a vector. MVT VT = Node->getValueType(0); // Create the stack frame object. SDValue FIPtr = DAG.CreateStackTemporary(VT); // Emit a store of each element to the stack slot. SmallVector Stores; unsigned TypeByteSize = Node->getOperand(0).getValueType().getSizeInBits()/8; // Store (in the right endianness) the elements to memory. for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { // Ignore undef elements. if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; unsigned Offset = TypeByteSize*i; SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType()); Idx = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr, Idx); Stores.push_back(DAG.getStore(DAG.getEntryNode(), Node->getOperand(i), Idx, NULL, 0)); } SDValue StoreChain; if (!Stores.empty()) // Not all undef elements? StoreChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Stores[0], Stores.size()); else StoreChain = DAG.getEntryNode(); // Result is a load from the stack slot. return DAG.getLoad(VT, StoreChain, FIPtr, NULL, 0); } void SelectionDAGLegalize::ExpandShiftParts(unsigned NodeOp, SDValue Op, SDValue Amt, SDValue &Lo, SDValue &Hi) { // Expand the subcomponents. SDValue LHSL, LHSH; ExpandOp(Op, LHSL, LHSH); SDValue Ops[] = { LHSL, LHSH, Amt }; MVT VT = LHSL.getValueType(); Lo = DAG.getNode(NodeOp, DAG.getNodeValueTypes(VT, VT), 2, Ops, 3); Hi = Lo.getValue(1); } /// ExpandShift - Try to find a clever way to expand this shift operation out to /// smaller elements. If we can't find a way that is more efficient than a /// libcall on this target, return false. Otherwise, return true with the /// low-parts expanded into Lo and Hi. bool SelectionDAGLegalize::ExpandShift(unsigned Opc, SDValue Op,SDValue Amt, SDValue &Lo, SDValue &Hi) { assert((Opc == ISD::SHL || Opc == ISD::SRA || Opc == ISD::SRL) && "This is not a shift!"); MVT NVT = TLI.getTypeToTransformTo(Op.getValueType()); SDValue ShAmt = LegalizeOp(Amt); MVT ShTy = ShAmt.getValueType(); unsigned ShBits = ShTy.getSizeInBits(); unsigned VTBits = Op.getValueType().getSizeInBits(); unsigned NVTBits = NVT.getSizeInBits(); // Handle the case when Amt is an immediate. if (ConstantSDNode *CN = dyn_cast(Amt.getNode())) { unsigned Cst = CN->getZExtValue(); // Expand the incoming operand to be shifted, so that we have its parts SDValue InL, InH; ExpandOp(Op, InL, InH); switch(Opc) { case ISD::SHL: if (Cst > VTBits) { Lo = DAG.getConstant(0, NVT); Hi = DAG.getConstant(0, NVT); } else if (Cst > NVTBits) { Lo = DAG.getConstant(0, NVT); Hi = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst-NVTBits,ShTy)); } else if (Cst == NVTBits) { Lo = DAG.getConstant(0, NVT); Hi = InL; } else { Lo = DAG.getNode(ISD::SHL, NVT, InL, DAG.getConstant(Cst, ShTy)); Hi = DAG.getNode(ISD::OR, NVT, DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(Cst, ShTy)), DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(NVTBits-Cst, ShTy))); } return true; case ISD::SRL: if (Cst > VTBits) { Lo = DAG.getConstant(0, NVT); Hi = DAG.getConstant(0, NVT); } else if (Cst > NVTBits) { Lo = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst-NVTBits,ShTy)); Hi = DAG.getConstant(0, NVT); } else if (Cst == NVTBits) { Lo = InH; Hi = DAG.getConstant(0, NVT); } else { Lo = DAG.getNode(ISD::OR, NVT, DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)), DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); Hi = DAG.getNode(ISD::SRL, NVT, InH, DAG.getConstant(Cst, ShTy)); } return true; case ISD::SRA: if (Cst > VTBits) { Hi = Lo = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(NVTBits-1, ShTy)); } else if (Cst > NVTBits) { Lo = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(Cst-NVTBits, ShTy)); Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(NVTBits-1, ShTy)); } else if (Cst == NVTBits) { Lo = InH; Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(NVTBits-1, ShTy)); } else { Lo = DAG.getNode(ISD::OR, NVT, DAG.getNode(ISD::SRL, NVT, InL, DAG.getConstant(Cst, ShTy)), DAG.getNode(ISD::SHL, NVT, InH, DAG.getConstant(NVTBits-Cst, ShTy))); Hi = DAG.getNode(ISD::SRA, NVT, InH, DAG.getConstant(Cst, ShTy)); } return true; } } // Okay, the shift amount isn't constant. However, if we can tell that it is // >= 32 or < 32, we can still simplify it, without knowing the actual value. APInt Mask = APInt::getHighBitsSet(ShBits, ShBits - Log2_32(NVTBits)); APInt KnownZero, KnownOne; DAG.ComputeMaskedBits(Amt, Mask, KnownZero, KnownOne); // If we know that if any of the high bits of the shift amount are one, then // we can do this as a couple of simple shifts. if (KnownOne.intersects(Mask)) { // Mask out the high bit, which we know is set. Amt = DAG.getNode(ISD::AND, Amt.getValueType(), Amt, DAG.getConstant(~Mask, Amt.getValueType())); // Expand the incoming operand to be shifted, so that we have its parts SDValue InL, InH; ExpandOp(Op, InL, InH); switch(Opc) { case ISD::SHL: Lo = DAG.getConstant(0, NVT); // Low part is zero. Hi = DAG.getNode(ISD::SHL, NVT, InL, Amt); // High part from Lo part. return true; case ISD::SRL: Hi = DAG.getConstant(0, NVT); // Hi part is zero. Lo = DAG.getNode(ISD::SRL, NVT, InH, Amt); // Lo part from Hi part. return true; case ISD::SRA: Hi = DAG.getNode(ISD::SRA, NVT, InH, // Sign extend high part. DAG.getConstant(NVTBits-1, Amt.getValueType())); Lo = DAG.getNode(ISD::SRA, NVT, InH, Amt); // Lo part from Hi part. return true; } } // If we know that the high bits of the shift amount are all zero, then we can // do this as a couple of simple shifts. if ((KnownZero & Mask) == Mask) { // Compute 32-amt. SDValue Amt2 = DAG.getNode(ISD::SUB, Amt.getValueType(), DAG.getConstant(NVTBits, Amt.getValueType()), Amt); // Expand the incoming operand to be shifted, so that we have its parts SDValue InL, InH; ExpandOp(Op, InL, InH); switch(Opc) { case ISD::SHL: Lo = DAG.getNode(ISD::SHL, NVT, InL, Amt); Hi = DAG.getNode(ISD::OR, NVT, DAG.getNode(ISD::SHL, NVT, InH, Amt), DAG.getNode(ISD::SRL, NVT, InL, Amt2)); return true; case ISD::SRL: Hi = DAG.getNode(ISD::SRL, NVT, InH, Amt); Lo = DAG.getNode(ISD::OR, NVT, DAG.getNode(ISD::SRL, NVT, InL, Amt), DAG.getNode(ISD::SHL, NVT, InH, Amt2)); return true; case ISD::SRA: Hi = DAG.getNode(ISD::SRA, NVT, InH, Amt); Lo = DAG.getNode(ISD::OR, NVT, DAG.getNode(ISD::SRL, NVT, InL, Amt), DAG.getNode(ISD::SHL, NVT, InH, Amt2)); return true; } } return false; } // ExpandLibCall - Expand a node into a call to a libcall. If the result value // does not fit into a register, return the lo part and set the hi part to the // by-reg argument. If it does fit into a single register, return the result // and leave the Hi part unset. SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned, SDValue &Hi) { assert(!IsLegalizingCall && "Cannot overlap legalization of calls!"); // The input chain to this libcall is the entry node of the function. // Legalizing the call will automatically add the previous call to the // dependence. SDValue InChain = DAG.getEntryNode(); TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { MVT ArgVT = Node->getOperand(i).getValueType(); const Type *ArgTy = ArgVT.getTypeForMVT(); Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy; Entry.isSExt = isSigned; Entry.isZExt = !isSigned; Args.push_back(Entry); } SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), TLI.getPointerTy()); // Splice the libcall in wherever FindInputOutputChains tells us to. const Type *RetTy = Node->getValueType(0).getTypeForMVT(); std::pair CallInfo = TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false, CallingConv::C, false, Callee, Args, DAG); // Legalize the call sequence, starting with the chain. This will advance // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that // was added by LowerCallTo (guaranteeing proper serialization of calls). LegalizeOp(CallInfo.second); SDValue Result; switch (getTypeAction(CallInfo.first.getValueType())) { default: assert(0 && "Unknown thing"); case Legal: Result = CallInfo.first; break; case Expand: ExpandOp(CallInfo.first, Result, Hi); break; } return Result; } /// LegalizeINT_TO_FP - Legalize a [US]INT_TO_FP operation. /// SDValue SelectionDAGLegalize:: LegalizeINT_TO_FP(SDValue Result, bool isSigned, MVT DestTy, SDValue Op) { bool isCustom = false; SDValue Tmp1; switch (getTypeAction(Op.getValueType())) { case Legal: switch (TLI.getOperationAction(isSigned ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, Op.getValueType())) { default: assert(0 && "Unknown operation action!"); case TargetLowering::Custom: isCustom = true; // FALLTHROUGH case TargetLowering::Legal: Tmp1 = LegalizeOp(Op); if (Result.getNode()) Result = DAG.UpdateNodeOperands(Result, Tmp1); else Result = DAG.getNode(isSigned ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, DestTy, Tmp1); if (isCustom) { Tmp1 = TLI.LowerOperation(Result, DAG); if (Tmp1.getNode()) Result = Tmp1; } break; case TargetLowering::Expand: Result = ExpandLegalINT_TO_FP(isSigned, LegalizeOp(Op), DestTy); break; case TargetLowering::Promote: Result = PromoteLegalINT_TO_FP(LegalizeOp(Op), DestTy, isSigned); break; } break; case Expand: Result = ExpandIntToFP(isSigned, DestTy, Op); break; case Promote: Tmp1 = PromoteOp(Op); if (isSigned) { Tmp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp1.getValueType(), Tmp1, DAG.getValueType(Op.getValueType())); } else { Tmp1 = DAG.getZeroExtendInReg(Tmp1, Op.getValueType()); } if (Result.getNode()) Result = DAG.UpdateNodeOperands(Result, Tmp1); else Result = DAG.getNode(isSigned ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, DestTy, Tmp1); Result = LegalizeOp(Result); // The 'op' is not necessarily legal! break; } return Result; } /// ExpandIntToFP - Expand a [US]INT_TO_FP operation. /// SDValue SelectionDAGLegalize:: ExpandIntToFP(bool isSigned, MVT DestTy, SDValue Source) { MVT SourceVT = Source.getValueType(); bool ExpandSource = getTypeAction(SourceVT) == Expand; // Expand unsupported int-to-fp vector casts by unrolling them. if (DestTy.isVector()) { if (!ExpandSource) return LegalizeOp(UnrollVectorOp(Source)); MVT DestEltTy = DestTy.getVectorElementType(); if (DestTy.getVectorNumElements() == 1) { SDValue Scalar = ScalarizeVectorOp(Source); SDValue Result = LegalizeINT_TO_FP(SDValue(), isSigned, DestEltTy, Scalar); return DAG.getNode(ISD::BUILD_VECTOR, DestTy, Result); } SDValue Lo, Hi; SplitVectorOp(Source, Lo, Hi); MVT SplitDestTy = MVT::getVectorVT(DestEltTy, DestTy.getVectorNumElements() / 2); SDValue LoResult = LegalizeINT_TO_FP(SDValue(), isSigned, SplitDestTy, Lo); SDValue HiResult = LegalizeINT_TO_FP(SDValue(), isSigned, SplitDestTy, Hi); return LegalizeOp(DAG.getNode(ISD::CONCAT_VECTORS, DestTy, LoResult, HiResult)); } // Special case for i32 source to take advantage of UINTTOFP_I32_F32, etc. if (!isSigned && SourceVT != MVT::i32) { // The integer value loaded will be incorrectly if the 'sign bit' of the // incoming integer is set. To handle this, we dynamically test to see if // it is set, and, if so, add a fudge factor. SDValue Hi; if (ExpandSource) { SDValue Lo; ExpandOp(Source, Lo, Hi); Source = DAG.getNode(ISD::BUILD_PAIR, SourceVT, Lo, Hi); } else { // The comparison for the sign bit will use the entire operand. Hi = Source; } // Check to see if the target has a custom way to lower this. If so, use // it. (Note we've already expanded the operand in this case.) switch (TLI.getOperationAction(ISD::UINT_TO_FP, SourceVT)) { default: assert(0 && "This action not implemented for this operation!"); case TargetLowering::Legal: case TargetLowering::Expand: break; // This case is handled below. case TargetLowering::Custom: { SDValue NV = TLI.LowerOperation(DAG.getNode(ISD::UINT_TO_FP, DestTy, Source), DAG); if (NV.getNode()) return LegalizeOp(NV); break; // The target decided this was legal after all } } // If this is unsigned, and not supported, first perform the conversion to // signed, then adjust the result if the sign bit is set. SDValue SignedConv = ExpandIntToFP(true, DestTy, Source); SDValue SignSet = DAG.getSetCC(TLI.getSetCCResultType(Hi.getValueType()), Hi, DAG.getConstant(0, Hi.getValueType()), ISD::SETLT); SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); SDValue CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(), SignSet, Four, Zero); uint64_t FF = 0x5f800000ULL; if (TLI.isLittleEndian()) FF <<= 32; static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); unsigned Alignment = 1 << cast(CPIdx)->getAlignment(); CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset); Alignment = std::min(Alignment, 4u); SDValue FudgeInReg; if (DestTy == MVT::f32) FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, PseudoSourceValue::getConstantPool(), 0, false, Alignment); else if (DestTy.bitsGT(MVT::f32)) // FIXME: Avoid the extend by construction the right constantpool? FudgeInReg = DAG.getExtLoad(ISD::EXTLOAD, DestTy, DAG.getEntryNode(), CPIdx, PseudoSourceValue::getConstantPool(), 0, MVT::f32, false, Alignment); else assert(0 && "Unexpected conversion"); MVT SCVT = SignedConv.getValueType(); if (SCVT != DestTy) { // Destination type needs to be expanded as well. The FADD now we are // constructing will be expanded into a libcall. if (SCVT.getSizeInBits() != DestTy.getSizeInBits()) { assert(SCVT.getSizeInBits() * 2 == DestTy.getSizeInBits()); SignedConv = DAG.getNode(ISD::BUILD_PAIR, DestTy, SignedConv, SignedConv.getValue(1)); } SignedConv = DAG.getNode(ISD::BIT_CONVERT, DestTy, SignedConv); } return DAG.getNode(ISD::FADD, DestTy, SignedConv, FudgeInReg); } // Check to see if the target has a custom way to lower this. If so, use it. switch (TLI.getOperationAction(ISD::SINT_TO_FP, SourceVT)) { default: assert(0 && "This action not implemented for this operation!"); case TargetLowering::Legal: case TargetLowering::Expand: break; // This case is handled below. case TargetLowering::Custom: { SDValue NV = TLI.LowerOperation(DAG.getNode(ISD::SINT_TO_FP, DestTy, Source), DAG); if (NV.getNode()) return LegalizeOp(NV); break; // The target decided this was legal after all } } // Expand the source, then glue it back together for the call. We must expand // the source in case it is shared (this pass of legalize must traverse it). if (ExpandSource) { SDValue SrcLo, SrcHi; ExpandOp(Source, SrcLo, SrcHi); Source = DAG.getNode(ISD::BUILD_PAIR, SourceVT, SrcLo, SrcHi); } RTLIB::Libcall LC = isSigned ? RTLIB::getSINTTOFP(SourceVT, DestTy) : RTLIB::getUINTTOFP(SourceVT, DestTy); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unknown int value type"); Source = DAG.getNode(ISD::SINT_TO_FP, DestTy, Source); SDValue HiPart; SDValue Result = ExpandLibCall(LC, Source.getNode(), isSigned, HiPart); if (Result.getValueType() != DestTy && HiPart.getNode()) Result = DAG.getNode(ISD::BUILD_PAIR, DestTy, Result, HiPart); return Result; } /// ExpandLegalINT_TO_FP - This function is responsible for legalizing a /// INT_TO_FP operation of the specified operand when the target requests that /// we expand it. At this point, we know that the result and operand types are /// legal for the target. SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0, MVT DestVT) { if (Op0.getValueType() == MVT::i32) { // simple 32-bit [signed|unsigned] integer to float/double expansion // Get the stack frame index of a 8 byte buffer. SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); // word offset constant for Hi/Lo address computation SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy()); // set up Hi and Lo (into buffer) address based on endian SDValue Hi = StackSlot; SDValue Lo = DAG.getNode(ISD::ADD, TLI.getPointerTy(), StackSlot,WordOff); if (TLI.isLittleEndian()) std::swap(Hi, Lo); // if signed map to unsigned space SDValue Op0Mapped; if (isSigned) { // constant used to invert sign bit (signed to unsigned mapping) SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32); Op0Mapped = DAG.getNode(ISD::XOR, MVT::i32, Op0, SignBit); } else { Op0Mapped = Op0; } // store the lo of the constructed double - based on integer input SDValue Store1 = DAG.getStore(DAG.getEntryNode(), Op0Mapped, Lo, NULL, 0); // initial hi portion of constructed double SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32); // store the hi of the constructed double - biased exponent SDValue Store2=DAG.getStore(Store1, InitialHi, Hi, NULL, 0); // load the constructed double SDValue Load = DAG.getLoad(MVT::f64, Store2, StackSlot, NULL, 0); // FP constant to bias correct the final result SDValue Bias = DAG.getConstantFP(isSigned ? BitsToDouble(0x4330000080000000ULL) : BitsToDouble(0x4330000000000000ULL), MVT::f64); // subtract the bias SDValue Sub = DAG.getNode(ISD::FSUB, MVT::f64, Load, Bias); // final result SDValue Result; // handle final rounding if (DestVT == MVT::f64) { // do nothing Result = Sub; } else if (DestVT.bitsLT(MVT::f64)) { Result = DAG.getNode(ISD::FP_ROUND, DestVT, Sub, DAG.getIntPtrConstant(0)); } else if (DestVT.bitsGT(MVT::f64)) { Result = DAG.getNode(ISD::FP_EXTEND, DestVT, Sub); } return Result; } assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, DestVT, Op0); SDValue SignSet = DAG.getSetCC(TLI.getSetCCResultType(Op0.getValueType()), Op0, DAG.getConstant(0, Op0.getValueType()), ISD::SETLT); SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4); SDValue CstOffset = DAG.getNode(ISD::SELECT, Zero.getValueType(), SignSet, Four, Zero); // If the sign bit of the integer is set, the large number will be treated // as a negative number. To counteract this, the dynamic code adds an // offset depending on the data type. uint64_t FF; switch (Op0.getValueType().getSimpleVT()) { default: assert(0 && "Unsupported integer type!"); case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) } if (TLI.isLittleEndian()) FF <<= 32; static Constant *FudgeFactor = ConstantInt::get(Type::Int64Ty, FF); SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy()); unsigned Alignment = 1 << cast(CPIdx)->getAlignment(); CPIdx = DAG.getNode(ISD::ADD, TLI.getPointerTy(), CPIdx, CstOffset); Alignment = std::min(Alignment, 4u); SDValue FudgeInReg; if (DestVT == MVT::f32) FudgeInReg = DAG.getLoad(MVT::f32, DAG.getEntryNode(), CPIdx, PseudoSourceValue::getConstantPool(), 0, false, Alignment); else { FudgeInReg = LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, DestVT, DAG.getEntryNode(), CPIdx, PseudoSourceValue::getConstantPool(), 0, MVT::f32, false, Alignment)); } return DAG.getNode(ISD::FADD, DestVT, Tmp1, FudgeInReg); } /// PromoteLegalINT_TO_FP - This function is responsible for legalizing a /// *INT_TO_FP operation of the specified operand when the target requests that /// we promote it. At this point, we know that the result and operand types are /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP /// operation that takes a larger input. SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, MVT DestVT, bool isSigned) { // First step, figure out the appropriate *INT_TO_FP operation to use. MVT NewInTy = LegalOp.getValueType(); unsigned OpToUse = 0; // Scan for the appropriate larger type to use. while (1) { NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT()+1); assert(NewInTy.isInteger() && "Ran out of possibilities!"); // If the target supports SINT_TO_FP of this type, use it. switch (TLI.getOperationAction(ISD::SINT_TO_FP, NewInTy)) { default: break; case TargetLowering::Legal: if (!TLI.isTypeLegal(NewInTy)) break; // Can't use this datatype. // FALL THROUGH. case TargetLowering::Custom: OpToUse = ISD::SINT_TO_FP; break; } if (OpToUse) break; if (isSigned) continue; // If the target supports UINT_TO_FP of this type, use it. switch (TLI.getOperationAction(ISD::UINT_TO_FP, NewInTy)) { default: break; case TargetLowering::Legal: if (!TLI.isTypeLegal(NewInTy)) break; // Can't use this datatype. // FALL THROUGH. case TargetLowering::Custom: OpToUse = ISD::UINT_TO_FP; break; } if (OpToUse) break; // Otherwise, try a larger type. } // Okay, we found the operation and type to use. Zero extend our input to the // desired type then run the operation on it. return DAG.getNode(OpToUse, DestVT, DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, NewInTy, LegalOp)); } /// PromoteLegalFP_TO_INT - This function is responsible for legalizing a /// FP_TO_*INT operation of the specified operand when the target requests that /// we promote it. At this point, we know that the result and operand types are /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT /// operation that returns a larger result. SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, MVT DestVT, bool isSigned) { // First step, figure out the appropriate FP_TO*INT operation to use. MVT NewOutTy = DestVT; unsigned OpToUse = 0; // Scan for the appropriate larger type to use. while (1) { NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT()+1); assert(NewOutTy.isInteger() && "Ran out of possibilities!"); // If the target supports FP_TO_SINT returning this type, use it. switch (TLI.getOperationAction(ISD::FP_TO_SINT, NewOutTy)) { default: break; case TargetLowering::Legal: if (!TLI.isTypeLegal(NewOutTy)) break; // Can't use this datatype. // FALL THROUGH. case TargetLowering::Custom: OpToUse = ISD::FP_TO_SINT; break; } if (OpToUse) break; // If the target supports FP_TO_UINT of this type, use it. switch (TLI.getOperationAction(ISD::FP_TO_UINT, NewOutTy)) { default: break; case TargetLowering::Legal: if (!TLI.isTypeLegal(NewOutTy)) break; // Can't use this datatype. // FALL THROUGH. case TargetLowering::Custom: OpToUse = ISD::FP_TO_UINT; break; } if (OpToUse) break; // Otherwise, try a larger type. } // Okay, we found the operation and type to use. SDValue Operation = DAG.getNode(OpToUse, NewOutTy, LegalOp); // If the operation produces an invalid type, it must be custom lowered. Use // the target lowering hooks to expand it. Just keep the low part of the // expanded operation, we know that we're truncating anyway. if (getTypeAction(NewOutTy) == Expand) { SmallVector Results; TLI.ReplaceNodeResults(Operation.getNode(), Results, DAG); assert(Results.size() == 1 && "Incorrect FP_TO_XINT lowering!"); Operation = Results[0]; } // Truncate the result of the extended FP_TO_*INT operation to the desired // size. return DAG.getNode(ISD::TRUNCATE, DestVT, Operation); } /// ExpandBSWAP - Open code the operations for BSWAP of the specified operation. /// SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op) { MVT VT = Op.getValueType(); MVT SHVT = TLI.getShiftAmountTy(); SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; switch (VT.getSimpleVT()) { default: assert(0 && "Unhandled Expand type in BSWAP!"); abort(); case MVT::i16: Tmp2 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); return DAG.getNode(ISD::OR, VT, Tmp1, Tmp2); case MVT::i32: Tmp4 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT)); Tmp3 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT)); Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(0xFF0000, VT)); Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(0xFF00, VT)); Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3); Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1); return DAG.getNode(ISD::OR, VT, Tmp4, Tmp2); case MVT::i64: Tmp8 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(56, SHVT)); Tmp7 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(40, SHVT)); Tmp6 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(24, SHVT)); Tmp5 = DAG.getNode(ISD::SHL, VT, Op, DAG.getConstant(8, SHVT)); Tmp4 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(8, SHVT)); Tmp3 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(24, SHVT)); Tmp2 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(40, SHVT)); Tmp1 = DAG.getNode(ISD::SRL, VT, Op, DAG.getConstant(56, SHVT)); Tmp7 = DAG.getNode(ISD::AND, VT, Tmp7, DAG.getConstant(255ULL<<48, VT)); Tmp6 = DAG.getNode(ISD::AND, VT, Tmp6, DAG.getConstant(255ULL<<40, VT)); Tmp5 = DAG.getNode(ISD::AND, VT, Tmp5, DAG.getConstant(255ULL<<32, VT)); Tmp4 = DAG.getNode(ISD::AND, VT, Tmp4, DAG.getConstant(255ULL<<24, VT)); Tmp3 = DAG.getNode(ISD::AND, VT, Tmp3, DAG.getConstant(255ULL<<16, VT)); Tmp2 = DAG.getNode(ISD::AND, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT)); Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp7); Tmp6 = DAG.getNode(ISD::OR, VT, Tmp6, Tmp5); Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp3); Tmp2 = DAG.getNode(ISD::OR, VT, Tmp2, Tmp1); Tmp8 = DAG.getNode(ISD::OR, VT, Tmp8, Tmp6); Tmp4 = DAG.getNode(ISD::OR, VT, Tmp4, Tmp2); return DAG.getNode(ISD::OR, VT, Tmp8, Tmp4); } } /// ExpandBitCount - Expand the specified bitcount instruction into operations. /// SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op) { switch (Opc) { default: assert(0 && "Cannot expand this yet!"); case ISD::CTPOP: { static const uint64_t mask[6] = { 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL }; MVT VT = Op.getValueType(); MVT ShVT = TLI.getShiftAmountTy(); unsigned len = VT.getSizeInBits(); for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8]) SDValue Tmp2 = DAG.getConstant(mask[i], VT); SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); Op = DAG.getNode(ISD::ADD, VT, DAG.getNode(ISD::AND, VT, Op, Tmp2), DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::SRL, VT, Op, Tmp3),Tmp2)); } return Op; } case ISD::CTLZ: { // for now, we do this: // x = x | (x >> 1); // x = x | (x >> 2); // ... // x = x | (x >>16); // x = x | (x >>32); // for 64-bit input // return popcount(~x); // // but see also: http://www.hackersdelight.org/HDcode/nlz.cc MVT VT = Op.getValueType(); MVT ShVT = TLI.getShiftAmountTy(); unsigned len = VT.getSizeInBits(); for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT); Op = DAG.getNode(ISD::OR, VT, Op, DAG.getNode(ISD::SRL, VT, Op, Tmp3)); } Op = DAG.getNode(ISD::XOR, VT, Op, DAG.getConstant(~0ULL, VT)); return DAG.getNode(ISD::CTPOP, VT, Op); } case ISD::CTTZ: { // for now, we use: { return popcount(~x & (x - 1)); } // unless the target has ctlz but not ctpop, in which case we use: // { return 32 - nlz(~x & (x-1)); } // see also http://www.hackersdelight.org/HDcode/ntz.cc MVT VT = Op.getValueType(); SDValue Tmp2 = DAG.getConstant(~0ULL, VT); SDValue Tmp3 = DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::XOR, VT, Op, Tmp2), DAG.getNode(ISD::SUB, VT, Op, DAG.getConstant(1, VT))); // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. if (!TLI.isOperationLegal(ISD::CTPOP, VT) && TLI.isOperationLegal(ISD::CTLZ, VT)) return DAG.getNode(ISD::SUB, VT, DAG.getConstant(VT.getSizeInBits(), VT), DAG.getNode(ISD::CTLZ, VT, Tmp3)); return DAG.getNode(ISD::CTPOP, VT, Tmp3); } } } /// ExpandOp - Expand the specified SDValue into its two component pieces /// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, the /// LegalizedNodes map is filled in for any results that are not expanded, the /// ExpandedNodes map is filled in for any results that are expanded, and the /// Lo/Hi values are returned. void SelectionDAGLegalize::ExpandOp(SDValue Op, SDValue &Lo, SDValue &Hi){ MVT VT = Op.getValueType(); MVT NVT = TLI.getTypeToTransformTo(VT); SDNode *Node = Op.getNode(); assert(getTypeAction(VT) == Expand && "Not an expanded type!"); assert(((NVT.isInteger() && NVT.bitsLT(VT)) || VT.isFloatingPoint() || VT.isVector()) && "Cannot expand to FP value or to larger int value!"); // See if we already expanded it. DenseMap >::iterator I = ExpandedNodes.find(Op); if (I != ExpandedNodes.end()) { Lo = I->second.first; Hi = I->second.second; return; } switch (Node->getOpcode()) { case ISD::CopyFromReg: assert(0 && "CopyFromReg must be legal!"); case ISD::FP_ROUND_INREG: if (VT == MVT::ppcf128 && TLI.getOperationAction(ISD::FP_ROUND_INREG, VT) == TargetLowering::Custom) { SDValue SrcLo, SrcHi, Src; ExpandOp(Op.getOperand(0), SrcLo, SrcHi); Src = DAG.getNode(ISD::BUILD_PAIR, VT, SrcLo, SrcHi); SDValue Result = TLI.LowerOperation( DAG.getNode(ISD::FP_ROUND_INREG, VT, Src, Op.getOperand(1)), DAG); assert(Result.getNode()->getOpcode() == ISD::BUILD_PAIR); Lo = Result.getNode()->getOperand(0); Hi = Result.getNode()->getOperand(1); break; } // fall through default: #ifndef NDEBUG cerr << "NODE: "; Node->dump(&DAG); cerr << "\n"; #endif assert(0 && "Do not know how to expand this operator!"); abort(); case ISD::EXTRACT_ELEMENT: ExpandOp(Node->getOperand(0), Lo, Hi); if (cast(Node->getOperand(1))->getZExtValue()) return ExpandOp(Hi, Lo, Hi); return ExpandOp(Lo, Lo, Hi); case ISD::EXTRACT_VECTOR_ELT: // ExpandEXTRACT_VECTOR_ELT tolerates invalid result types. Lo = ExpandEXTRACT_VECTOR_ELT(Op); return ExpandOp(Lo, Lo, Hi); case ISD::UNDEF: Lo = DAG.getNode(ISD::UNDEF, NVT); Hi = DAG.getNode(ISD::UNDEF, NVT); break; case ISD::Constant: { unsigned NVTBits = NVT.getSizeInBits(); const APInt &Cst = cast(Node)->getAPIntValue(); Lo = DAG.getConstant(APInt(Cst).trunc(NVTBits), NVT); Hi = DAG.getConstant(Cst.lshr(NVTBits).trunc(NVTBits), NVT); break; } case ISD::ConstantFP: { ConstantFPSDNode *CFP = cast(Node); if (CFP->getValueType(0) == MVT::ppcf128) { APInt api = CFP->getValueAPF().bitcastToAPInt(); Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[1])), MVT::f64); Hi = DAG.getConstantFP(APFloat(APInt(64, 1, &api.getRawData()[0])), MVT::f64); break; } Lo = ExpandConstantFP(CFP, false, DAG, TLI); if (getTypeAction(Lo.getValueType()) == Expand) ExpandOp(Lo, Lo, Hi); break; } case ISD::BUILD_PAIR: // Return the operands. Lo = Node->getOperand(0); Hi = Node->getOperand(1); break; case ISD::MERGE_VALUES: if (Node->getNumValues() == 1) { ExpandOp(Op.getOperand(0), Lo, Hi); break; } // FIXME: For now only expand i64,chain = MERGE_VALUES (x, y) assert(Op.getResNo() == 0 && Node->getNumValues() == 2 && Op.getValue(1).getValueType() == MVT::Other && "unhandled MERGE_VALUES"); ExpandOp(Op.getOperand(0), Lo, Hi); // Remember that we legalized the chain. AddLegalizedOperand(Op.getValue(1), LegalizeOp(Op.getOperand(1))); break; case ISD::SIGN_EXTEND_INREG: ExpandOp(Node->getOperand(0), Lo, Hi); // sext_inreg the low part if needed. Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, NVT, Lo, Node->getOperand(1)); // The high part gets the sign extension from the lo-part. This handles // things like sextinreg V:i64 from i8. Hi = DAG.getNode(ISD::SRA, NVT, Lo, DAG.getConstant(NVT.getSizeInBits()-1, TLI.getShiftAmountTy())); break; case ISD::BSWAP: { ExpandOp(Node->getOperand(0), Lo, Hi); SDValue TempLo = DAG.getNode(ISD::BSWAP, NVT, Hi); Hi = DAG.getNode(ISD::BSWAP, NVT, Lo); Lo = TempLo; break; } case ISD::CTPOP: ExpandOp(Node->getOperand(0), Lo, Hi); Lo = DAG.getNode(ISD::ADD, NVT, // ctpop(HL) -> ctpop(H)+ctpop(L) DAG.getNode(ISD::CTPOP, NVT, Lo), DAG.getNode(ISD::CTPOP, NVT, Hi)); Hi = DAG.getConstant(0, NVT); break; case ISD::CTLZ: { // ctlz (HL) -> ctlz(H) != 32 ? ctlz(H) : (ctlz(L)+32) ExpandOp(Node->getOperand(0), Lo, Hi); SDValue BitsC = DAG.getConstant(NVT.getSizeInBits(), NVT); SDValue HLZ = DAG.getNode(ISD::CTLZ, NVT, Hi); SDValue TopNotZero = DAG.getSetCC(TLI.getSetCCResultType(NVT), HLZ, BitsC, ISD::SETNE); SDValue LowPart = DAG.getNode(ISD::CTLZ, NVT, Lo); LowPart = DAG.getNode(ISD::ADD, NVT, LowPart, BitsC); Lo = DAG.getNode(ISD::SELECT, NVT, TopNotZero, HLZ, LowPart); Hi = DAG.getConstant(0, NVT); break; } case ISD::CTTZ: { // cttz (HL) -> cttz(L) != 32 ? cttz(L) : (cttz(H)+32) ExpandOp(Node->getOperand(0), Lo, Hi); SDValue BitsC = DAG.getConstant(NVT.getSizeInBits(), NVT); SDValue LTZ = DAG.getNode(ISD::CTTZ, NVT, Lo); SDValue BotNotZero = DAG.getSetCC(TLI.getSetCCResultType(NVT), LTZ, BitsC, ISD::SETNE); SDValue HiPart = DAG.getNode(ISD::CTTZ, NVT, Hi); HiPart = DAG.getNode(ISD::ADD, NVT, HiPart, BitsC); Lo = DAG.getNode(ISD::SELECT, NVT, BotNotZero, LTZ, HiPart); Hi = DAG.getConstant(0, NVT); break; } case ISD::VAARG: { SDValue Ch = Node->getOperand(0); // Legalize the chain. SDValue Ptr = Node->getOperand(1); // Legalize the pointer. Lo = DAG.getVAArg(NVT, Ch, Ptr, Node->getOperand(2)); Hi = DAG.getVAArg(NVT, Lo.getValue(1), Ptr, Node->getOperand(2)); // Remember that we legalized the chain. Hi = LegalizeOp(Hi); AddLegalizedOperand(Op.getValue(1), Hi.getValue(1)); if (TLI.isBigEndian()) std::swap(Lo, Hi); break; } case ISD::LOAD: { LoadSDNode *LD = cast(Node); SDValue Ch = LD->getChain(); // Legalize the chain. SDValue Ptr = LD->getBasePtr(); // Legalize the pointer. ISD::LoadExtType ExtType = LD->getExtensionType(); const Value *SV = LD->getSrcValue(); int SVOffset = LD->getSrcValueOffset(); unsigned Alignment = LD->getAlignment(); bool isVolatile = LD->isVolatile(); if (ExtType == ISD::NON_EXTLOAD) { Lo = DAG.getLoad(NVT, Ch, Ptr, SV, SVOffset, isVolatile, Alignment); if (VT == MVT::f32 || VT == MVT::f64) { // f32->i32 or f64->i64 one to one expansion. // Remember that we legalized the chain. AddLegalizedOperand(SDValue(Node, 1), LegalizeOp(Lo.getValue(1))); // Recursively expand the new load. if (getTypeAction(NVT) == Expand) ExpandOp(Lo, Lo, Hi); break; } // Increment the pointer to the other half. unsigned IncrementSize = Lo.getValueType().getSizeInBits()/8; Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, DAG.getIntPtrConstant(IncrementSize)); SVOffset += IncrementSize; Alignment = MinAlign(Alignment, IncrementSize); Hi = DAG.getLoad(NVT, Ch, Ptr, SV, SVOffset, isVolatile, Alignment); // Build a factor node to remember that this load is independent of the // other one. SDValue TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), Hi.getValue(1)); // Remember that we legalized the chain. AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); if (TLI.isBigEndian()) std::swap(Lo, Hi); } else { MVT EVT = LD->getMemoryVT(); if ((VT == MVT::f64 && EVT == MVT::f32) || (VT == MVT::ppcf128 && (EVT==MVT::f64 || EVT==MVT::f32))) { // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND SDValue Load = DAG.getLoad(EVT, Ch, Ptr, SV, SVOffset, isVolatile, Alignment); // Remember that we legalized the chain. AddLegalizedOperand(SDValue(Node, 1), LegalizeOp(Load.getValue(1))); ExpandOp(DAG.getNode(ISD::FP_EXTEND, VT, Load), Lo, Hi); break; } if (EVT == NVT) Lo = DAG.getLoad(NVT, Ch, Ptr, SV, SVOffset, isVolatile, Alignment); else Lo = DAG.getExtLoad(ExtType, NVT, Ch, Ptr, SV, SVOffset, EVT, isVolatile, Alignment); // Remember that we legalized the chain. AddLegalizedOperand(SDValue(Node, 1), LegalizeOp(Lo.getValue(1))); if (ExtType == ISD::SEXTLOAD) { // The high part is obtained by SRA'ing all but one of the bits of the // lo part. unsigned LoSize = Lo.getValueType().getSizeInBits(); Hi = DAG.getNode(ISD::SRA, NVT, Lo, DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); } else if (ExtType == ISD::ZEXTLOAD) { // The high part is just a zero. Hi = DAG.getConstant(0, NVT); } else /* if (ExtType == ISD::EXTLOAD) */ { // The high part is undefined. Hi = DAG.getNode(ISD::UNDEF, NVT); } } break; } case ISD::AND: case ISD::OR: case ISD::XOR: { // Simple logical operators -> two trivial pieces. SDValue LL, LH, RL, RH; ExpandOp(Node->getOperand(0), LL, LH); ExpandOp(Node->getOperand(1), RL, RH); Lo = DAG.getNode(Node->getOpcode(), NVT, LL, RL); Hi = DAG.getNode(Node->getOpcode(), NVT, LH, RH); break; } case ISD::SELECT: { SDValue LL, LH, RL, RH; ExpandOp(Node->getOperand(1), LL, LH); ExpandOp(Node->getOperand(2), RL, RH); if (getTypeAction(NVT) == Expand) NVT = TLI.getTypeToExpandTo(NVT); Lo = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LL, RL); if (VT != MVT::f32) Hi = DAG.getNode(ISD::SELECT, NVT, Node->getOperand(0), LH, RH); break; } case ISD::SELECT_CC: { SDValue TL, TH, FL, FH; ExpandOp(Node->getOperand(2), TL, TH); ExpandOp(Node->getOperand(3), FL, FH); if (getTypeAction(NVT) == Expand) NVT = TLI.getTypeToExpandTo(NVT); Lo = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), Node->getOperand(1), TL, FL, Node->getOperand(4)); if (VT != MVT::f32) Hi = DAG.getNode(ISD::SELECT_CC, NVT, Node->getOperand(0), Node->getOperand(1), TH, FH, Node->getOperand(4)); break; } case ISD::ANY_EXTEND: // The low part is any extension of the input (which degenerates to a copy). Lo = DAG.getNode(ISD::ANY_EXTEND, NVT, Node->getOperand(0)); // The high part is undefined. Hi = DAG.getNode(ISD::UNDEF, NVT); break; case ISD::SIGN_EXTEND: { // The low part is just a sign extension of the input (which degenerates to // a copy). Lo = DAG.getNode(ISD::SIGN_EXTEND, NVT, Node->getOperand(0)); // The high part is obtained by SRA'ing all but one of the bits of the lo // part. unsigned LoSize = Lo.getValueType().getSizeInBits(); Hi = DAG.getNode(ISD::SRA, NVT, Lo, DAG.getConstant(LoSize-1, TLI.getShiftAmountTy())); break; } case ISD::ZERO_EXTEND: // The low part is just a zero extension of the input (which degenerates to // a copy). Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, Node->getOperand(0)); // The high part is just a zero. Hi = DAG.getConstant(0, NVT); break; case ISD::TRUNCATE: { // The input value must be larger than this value. Expand *it*. SDValue NewLo; ExpandOp(Node->getOperand(0), NewLo, Hi); // The low part is now either the right size, or it is closer. If not the // right size, make an illegal truncate so we recursively expand it. if (NewLo.getValueType() != Node->getValueType(0)) NewLo = DAG.getNode(ISD::TRUNCATE, Node->getValueType(0), NewLo); ExpandOp(NewLo, Lo, Hi); break; } case ISD::BIT_CONVERT: { SDValue Tmp; if (TLI.getOperationAction(ISD::BIT_CONVERT, VT) == TargetLowering::Custom){ // If the target wants to, allow it to lower this itself. switch (getTypeAction(Node->getOperand(0).getValueType())) { case Expand: assert(0 && "cannot expand FP!"); case Legal: Tmp = LegalizeOp(Node->getOperand(0)); break; case Promote: Tmp = PromoteOp (Node->getOperand(0)); break; } Tmp = TLI.LowerOperation(DAG.getNode(ISD::BIT_CONVERT, VT, Tmp), DAG); } // f32 / f64 must be expanded to i32 / i64. if (VT == MVT::f32 || VT == MVT::f64) { Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); if (getTypeAction(NVT) == Expand) ExpandOp(Lo, Lo, Hi); break; } // If source operand will be expanded to the same type as VT, i.e. // i64 <- f64, i32 <- f32, expand the source operand instead. MVT VT0 = Node->getOperand(0).getValueType(); if (getTypeAction(VT0) == Expand && TLI.getTypeToTransformTo(VT0) == VT) { ExpandOp(Node->getOperand(0), Lo, Hi); break; } // Turn this into a load/store pair by default. if (Tmp.getNode() == 0) Tmp = EmitStackConvert(Node->getOperand(0), VT, VT); ExpandOp(Tmp, Lo, Hi); break; } case ISD::READCYCLECOUNTER: { assert(TLI.getOperationAction(ISD::READCYCLECOUNTER, VT) == TargetLowering::Custom && "Must custom expand ReadCycleCounter"); SDValue Tmp = TLI.LowerOperation(Op, DAG); assert(Tmp.getNode() && "Node must be custom expanded!"); ExpandOp(Tmp.getValue(0), Lo, Hi); AddLegalizedOperand(SDValue(Node, 1), // Remember we legalized the chain. LegalizeOp(Tmp.getValue(1))); break; } case ISD::ATOMIC_CMP_SWAP: { // This operation does not need a loop. SDValue Tmp = TLI.LowerOperation(Op, DAG); assert(Tmp.getNode() && "Node must be custom expanded!"); ExpandOp(Tmp.getValue(0), Lo, Hi); AddLegalizedOperand(SDValue(Node, 1), // Remember we legalized the chain. LegalizeOp(Tmp.getValue(1))); break; } case ISD::ATOMIC_LOAD_ADD: case ISD::ATOMIC_LOAD_SUB: case ISD::ATOMIC_LOAD_AND: case ISD::ATOMIC_LOAD_OR: case ISD::ATOMIC_LOAD_XOR: case ISD::ATOMIC_LOAD_NAND: case ISD::ATOMIC_SWAP: { // These operations require a loop to be generated. We can't do that yet, // so substitute a target-dependent pseudo and expand that later. SDValue In2Lo, In2Hi, In2; ExpandOp(Op.getOperand(2), In2Lo, In2Hi); In2 = DAG.getNode(ISD::BUILD_PAIR, VT, In2Lo, In2Hi); AtomicSDNode* Anode = cast(Node); SDValue Replace = DAG.getAtomic(Op.getOpcode(), Anode->getMemoryVT(), Op.getOperand(0), Op.getOperand(1), In2, Anode->getSrcValue(), Anode->getAlignment()); SDValue Result = TLI.LowerOperation(Replace, DAG); ExpandOp(Result.getValue(0), Lo, Hi); // Remember that we legalized the chain. AddLegalizedOperand(SDValue(Node,1), LegalizeOp(Result.getValue(1))); break; } // These operators cannot be expanded directly, emit them as calls to // library functions. case ISD::FP_TO_SINT: { if (TLI.getOperationAction(ISD::FP_TO_SINT, VT) == TargetLowering::Custom) { SDValue Op; switch (getTypeAction(Node->getOperand(0).getValueType())) { case Expand: assert(0 && "cannot expand FP!"); case Legal: Op = LegalizeOp(Node->getOperand(0)); break; case Promote: Op = PromoteOp (Node->getOperand(0)); break; } Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_SINT, VT, Op), DAG); // Now that the custom expander is done, expand the result, which is still // VT. if (Op.getNode()) { ExpandOp(Op, Lo, Hi); break; } } RTLIB::Libcall LC = RTLIB::getFPTOSINT(Node->getOperand(0).getValueType(), VT); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected uint-to-fp conversion!"); Lo = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Hi); break; } case ISD::FP_TO_UINT: { if (TLI.getOperationAction(ISD::FP_TO_UINT, VT) == TargetLowering::Custom) { SDValue Op; switch (getTypeAction(Node->getOperand(0).getValueType())) { case Expand: assert(0 && "cannot expand FP!"); case Legal: Op = LegalizeOp(Node->getOperand(0)); break; case Promote: Op = PromoteOp (Node->getOperand(0)); break; } Op = TLI.LowerOperation(DAG.getNode(ISD::FP_TO_UINT, VT, Op), DAG); // Now that the custom expander is done, expand the result. if (Op.getNode()) { ExpandOp(Op, Lo, Hi); break; } } RTLIB::Libcall LC = RTLIB::getFPTOUINT(Node->getOperand(0).getValueType(), VT); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-uint conversion!"); Lo = ExpandLibCall(LC, Node, false/*sign irrelevant*/, Hi); break; } case ISD::SHL: { // If the target wants custom lowering, do so. SDValue ShiftAmt = LegalizeOp(Node->getOperand(1)); if (TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Custom) { SDValue Op = DAG.getNode(ISD::SHL, VT, Node->getOperand(0), ShiftAmt); Op = TLI.LowerOperation(Op, DAG); if (Op.getNode()) { // Now that the custom expander is done, expand the result, which is // still VT. ExpandOp(Op, Lo, Hi); break; } } // If ADDC/ADDE are supported and if the shift amount is a constant 1, emit // this X << 1 as X+X. if (ConstantSDNode *ShAmt = dyn_cast(ShiftAmt)) { if (ShAmt->getAPIntValue() == 1 && TLI.isOperationLegal(ISD::ADDC, NVT) && TLI.isOperationLegal(ISD::ADDE, NVT)) { SDValue LoOps[2], HiOps[3]; ExpandOp(Node->getOperand(0), LoOps[0], HiOps[0]); SDVTList VTList = DAG.getVTList(LoOps[0].getValueType(), MVT::Flag); LoOps[1] = LoOps[0]; Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); HiOps[1] = HiOps[0]; HiOps[2] = Lo.getValue(1); Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); break; } } // If we can emit an efficient shift operation, do so now. if (ExpandShift(ISD::SHL, Node->getOperand(0), ShiftAmt, Lo, Hi)) break; // If this target supports SHL_PARTS, use it. TargetLowering::LegalizeAction Action = TLI.getOperationAction(ISD::SHL_PARTS, NVT); if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || Action == TargetLowering::Custom) { ExpandShiftParts(ISD::SHL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); break; } // Otherwise, emit a libcall. Lo = ExpandLibCall(RTLIB::SHL_I64, Node, false/*left shift=unsigned*/, Hi); break; } case ISD::SRA: { // If the target wants custom lowering, do so. SDValue ShiftAmt = LegalizeOp(Node->getOperand(1)); if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Custom) { SDValue Op = DAG.getNode(ISD::SRA, VT, Node->getOperand(0), ShiftAmt); Op = TLI.LowerOperation(Op, DAG); if (Op.getNode()) { // Now that the custom expander is done, expand the result, which is // still VT. ExpandOp(Op, Lo, Hi); break; } } // If we can emit an efficient shift operation, do so now. if (ExpandShift(ISD::SRA, Node->getOperand(0), ShiftAmt, Lo, Hi)) break; // If this target supports SRA_PARTS, use it. TargetLowering::LegalizeAction Action = TLI.getOperationAction(ISD::SRA_PARTS, NVT); if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || Action == TargetLowering::Custom) { ExpandShiftParts(ISD::SRA_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); break; } // Otherwise, emit a libcall. Lo = ExpandLibCall(RTLIB::SRA_I64, Node, true/*ashr is signed*/, Hi); break; } case ISD::SRL: { // If the target wants custom lowering, do so. SDValue ShiftAmt = LegalizeOp(Node->getOperand(1)); if (TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Custom) { SDValue Op = DAG.getNode(ISD::SRL, VT, Node->getOperand(0), ShiftAmt); Op = TLI.LowerOperation(Op, DAG); if (Op.getNode()) { // Now that the custom expander is done, expand the result, which is // still VT. ExpandOp(Op, Lo, Hi); break; } } // If we can emit an efficient shift operation, do so now. if (ExpandShift(ISD::SRL, Node->getOperand(0), ShiftAmt, Lo, Hi)) break; // If this target supports SRL_PARTS, use it. TargetLowering::LegalizeAction Action = TLI.getOperationAction(ISD::SRL_PARTS, NVT); if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) || Action == TargetLowering::Custom) { ExpandShiftParts(ISD::SRL_PARTS, Node->getOperand(0), ShiftAmt, Lo, Hi); break; } // Otherwise, emit a libcall. Lo = ExpandLibCall(RTLIB::SRL_I64, Node, false/*lshr is unsigned*/, Hi); break; } case ISD::ADD: case ISD::SUB: { // If the target wants to custom expand this, let them. if (TLI.getOperationAction(Node->getOpcode(), VT) == TargetLowering::Custom) { SDValue Result = TLI.LowerOperation(Op, DAG); if (Result.getNode()) { ExpandOp(Result, Lo, Hi); break; } } // Expand the subcomponents. SDValue LHSL, LHSH, RHSL, RHSH; ExpandOp(Node->getOperand(0), LHSL, LHSH); ExpandOp(Node->getOperand(1), RHSL, RHSH); SDValue LoOps[2], HiOps[3]; LoOps[0] = LHSL; LoOps[1] = RHSL; HiOps[0] = LHSH; HiOps[1] = RHSH; //cascaded check to see if any smaller size has a a carry flag. unsigned OpV = Node->getOpcode() == ISD::ADD ? ISD::ADDC : ISD::SUBC; bool hasCarry = false; for (unsigned BitSize = NVT.getSizeInBits(); BitSize != 0; BitSize /= 2) { MVT AVT = MVT::getIntegerVT(BitSize); if (TLI.isOperationLegal(OpV, AVT)) { hasCarry = true; break; } } if(hasCarry) { SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); if (Node->getOpcode() == ISD::ADD) { Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); HiOps[2] = Lo.getValue(1); Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); } else { Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); HiOps[2] = Lo.getValue(1); Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); } break; } else { if (Node->getOpcode() == ISD::ADD) { Lo = DAG.getNode(ISD::ADD, NVT, LoOps, 2); Hi = DAG.getNode(ISD::ADD, NVT, HiOps, 2); SDValue Cmp1 = DAG.getSetCC(TLI.getSetCCResultType(NVT), Lo, LoOps[0], ISD::SETULT); SDValue Carry1 = DAG.getNode(ISD::SELECT, NVT, Cmp1, DAG.getConstant(1, NVT), DAG.getConstant(0, NVT)); SDValue Cmp2 = DAG.getSetCC(TLI.getSetCCResultType(NVT), Lo, LoOps[1], ISD::SETULT); SDValue Carry2 = DAG.getNode(ISD::SELECT, NVT, Cmp2, DAG.getConstant(1, NVT), Carry1); Hi = DAG.getNode(ISD::ADD, NVT, Hi, Carry2); } else { Lo = DAG.getNode(ISD::SUB, NVT, LoOps, 2); Hi = DAG.getNode(ISD::SUB, NVT, HiOps, 2); SDValue Cmp = DAG.getSetCC(NVT, LoOps[0], LoOps[1], ISD::SETULT); SDValue Borrow = DAG.getNode(ISD::SELECT, NVT, Cmp, DAG.getConstant(1, NVT), DAG.getConstant(0, NVT)); Hi = DAG.getNode(ISD::SUB, NVT, Hi, Borrow); } break; } } case ISD::ADDC: case ISD::SUBC: { // Expand the subcomponents. SDValue LHSL, LHSH, RHSL, RHSH; ExpandOp(Node->getOperand(0), LHSL, LHSH); ExpandOp(Node->getOperand(1), RHSL, RHSH); SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); SDValue LoOps[2] = { LHSL, RHSL }; SDValue HiOps[3] = { LHSH, RHSH }; if (Node->getOpcode() == ISD::ADDC) { Lo = DAG.getNode(ISD::ADDC, VTList, LoOps, 2); HiOps[2] = Lo.getValue(1); Hi = DAG.getNode(ISD::ADDE, VTList, HiOps, 3); } else { Lo = DAG.getNode(ISD::SUBC, VTList, LoOps, 2); HiOps[2] = Lo.getValue(1); Hi = DAG.getNode(ISD::SUBE, VTList, HiOps, 3); } // Remember that we legalized the flag. AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); break; } case ISD::ADDE: case ISD::SUBE: { // Expand the subcomponents. SDValue LHSL, LHSH, RHSL, RHSH; ExpandOp(Node->getOperand(0), LHSL, LHSH); ExpandOp(Node->getOperand(1), RHSL, RHSH); SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Flag); SDValue LoOps[3] = { LHSL, RHSL, Node->getOperand(2) }; SDValue HiOps[3] = { LHSH, RHSH }; Lo = DAG.getNode(Node->getOpcode(), VTList, LoOps, 3); HiOps[2] = Lo.getValue(1); Hi = DAG.getNode(Node->getOpcode(), VTList, HiOps, 3); // Remember that we legalized the flag. AddLegalizedOperand(Op.getValue(1), LegalizeOp(Hi.getValue(1))); break; } case ISD::MUL: { // If the target wants to custom expand this, let them. if (TLI.getOperationAction(ISD::MUL, VT) == TargetLowering::Custom) { SDValue New = TLI.LowerOperation(Op, DAG); if (New.getNode()) { ExpandOp(New, Lo, Hi); break; } } bool HasMULHS = TLI.isOperationLegal(ISD::MULHS, NVT); bool HasMULHU = TLI.isOperationLegal(ISD::MULHU, NVT); bool HasSMUL_LOHI = TLI.isOperationLegal(ISD::SMUL_LOHI, NVT); bool HasUMUL_LOHI = TLI.isOperationLegal(ISD::UMUL_LOHI, NVT); if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { SDValue LL, LH, RL, RH; ExpandOp(Node->getOperand(0), LL, LH); ExpandOp(Node->getOperand(1), RL, RH); unsigned OuterBitSize = Op.getValueSizeInBits(); unsigned InnerBitSize = RH.getValueSizeInBits(); unsigned LHSSB = DAG.ComputeNumSignBits(Op.getOperand(0)); unsigned RHSSB = DAG.ComputeNumSignBits(Op.getOperand(1)); APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); if (DAG.MaskedValueIsZero(Node->getOperand(0), HighMask) && DAG.MaskedValueIsZero(Node->getOperand(1), HighMask)) { // The inputs are both zero-extended. if (HasUMUL_LOHI) { // We can emit a umul_lohi. Lo = DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); Hi = SDValue(Lo.getNode(), 1); break; } if (HasMULHU) { // We can emit a mulhu+mul. Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL); break; } } if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) { // The input values are both sign-extended. if (HasSMUL_LOHI) { // We can emit a smul_lohi. Lo = DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); Hi = SDValue(Lo.getNode(), 1); break; } if (HasMULHS) { // We can emit a mulhs+mul. Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); Hi = DAG.getNode(ISD::MULHS, NVT, LL, RL); break; } } if (HasUMUL_LOHI) { // Lo,Hi = umul LHS, RHS. SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(NVT, NVT), LL, RL); Lo = UMulLOHI; Hi = UMulLOHI.getValue(1); RH = DAG.getNode(ISD::MUL, NVT, LL, RH); LH = DAG.getNode(ISD::MUL, NVT, LH, RL); Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH); Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH); break; } if (HasMULHU) { Lo = DAG.getNode(ISD::MUL, NVT, LL, RL); Hi = DAG.getNode(ISD::MULHU, NVT, LL, RL); RH = DAG.getNode(ISD::MUL, NVT, LL, RH); LH = DAG.getNode(ISD::MUL, NVT, LH, RL); Hi = DAG.getNode(ISD::ADD, NVT, Hi, RH); Hi = DAG.getNode(ISD::ADD, NVT, Hi, LH); break; } } // If nothing else, we can make a libcall. Lo = ExpandLibCall(RTLIB::MUL_I64, Node, false/*sign irrelevant*/, Hi); break; } case ISD::SDIV: Lo = ExpandLibCall(RTLIB::SDIV_I64, Node, true, Hi); break; case ISD::UDIV: Lo = ExpandLibCall(RTLIB::UDIV_I64, Node, true, Hi); break; case ISD::SREM: Lo = ExpandLibCall(RTLIB::SREM_I64, Node, true, Hi); break; case ISD::UREM: Lo = ExpandLibCall(RTLIB::UREM_I64, Node, true, Hi); break; case ISD::FADD: Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::ADD_F32, RTLIB::ADD_F64, RTLIB::ADD_F80, RTLIB::ADD_PPCF128), Node, false, Hi); break; case ISD::FSUB: Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::SUB_F32, RTLIB::SUB_F64, RTLIB::SUB_F80, RTLIB::SUB_PPCF128), Node, false, Hi); break; case ISD::FMUL: Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::MUL_F32, RTLIB::MUL_F64, RTLIB::MUL_F80, RTLIB::MUL_PPCF128), Node, false, Hi); break; case ISD::FDIV: Lo = ExpandLibCall(GetFPLibCall(VT, RTLIB::DIV_F32, RTLIB::DIV_F64, RTLIB::DIV_F80, RTLIB::DIV_PPCF128), Node, false, Hi); break; case ISD::FP_EXTEND: { if (VT == MVT::ppcf128) { assert(Node->getOperand(0).getValueType()==MVT::f32 || Node->getOperand(0).getValueType()==MVT::f64); const uint64_t zero = 0; if (Node->getOperand(0).getValueType()==MVT::f32) Hi = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Node->getOperand(0)); else Hi = Node->getOperand(0); Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); break; } RTLIB::Libcall LC = RTLIB::getFPEXT(Node->getOperand(0).getValueType(), VT); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_EXTEND!"); Lo = ExpandLibCall(LC, Node, true, Hi); break; } case ISD::FP_ROUND: { RTLIB::Libcall LC = RTLIB::getFPROUND(Node->getOperand(0).getValueType(), VT); assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported FP_ROUND!"); Lo = ExpandLibCall(LC, Node, true, Hi); break; } case ISD::FSQRT: case ISD::FSIN: case ISD::FCOS: case ISD::FLOG: case ISD::FLOG2: case ISD::FLOG10: case ISD::FEXP: case ISD::FEXP2: case ISD::FTRUNC: case ISD::FFLOOR: case ISD::FCEIL: case ISD::FRINT: case ISD::FNEARBYINT: case ISD::FPOW: case ISD::FPOWI: { RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; switch(Node->getOpcode()) { case ISD::FSQRT: LC = GetFPLibCall(VT, RTLIB::SQRT_F32, RTLIB::SQRT_F64, RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128); break; case ISD::FSIN: LC = GetFPLibCall(VT, RTLIB::SIN_F32, RTLIB::SIN_F64, RTLIB::SIN_F80, RTLIB::SIN_PPCF128); break; case ISD::FCOS: LC = GetFPLibCall(VT, RTLIB::COS_F32, RTLIB::COS_F64, RTLIB::COS_F80, RTLIB::COS_PPCF128); break; case ISD::FLOG: LC = GetFPLibCall(VT, RTLIB::LOG_F32, RTLIB::LOG_F64, RTLIB::LOG_F80, RTLIB::LOG_PPCF128); break; case ISD::FLOG2: LC = GetFPLibCall(VT, RTLIB::LOG2_F32, RTLIB::LOG2_F64, RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128); break; case ISD::FLOG10: LC = GetFPLibCall(VT, RTLIB::LOG10_F32, RTLIB::LOG10_F64, RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128); break; case ISD::FEXP: LC = GetFPLibCall(VT, RTLIB::EXP_F32, RTLIB::EXP_F64, RTLIB::EXP_F80, RTLIB::EXP_PPCF128); break; case ISD::FEXP2: LC = GetFPLibCall(VT, RTLIB::EXP2_F32, RTLIB::EXP2_F64, RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128); break; case ISD::FTRUNC: LC = GetFPLibCall(VT, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128); break; case ISD::FFLOOR: LC = GetFPLibCall(VT, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128); break; case ISD::FCEIL: LC = GetFPLibCall(VT, RTLIB::CEIL_F32, RTLIB::CEIL_F64, RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128); break; case ISD::FRINT: LC = GetFPLibCall(VT, RTLIB::RINT_F32, RTLIB::RINT_F64, RTLIB::RINT_F80, RTLIB::RINT_PPCF128); break; case ISD::FNEARBYINT: LC = GetFPLibCall(VT, RTLIB::NEARBYINT_F32, RTLIB::NEARBYINT_F64, RTLIB::NEARBYINT_F80, RTLIB::NEARBYINT_PPCF128); break; case ISD::FPOW: LC = GetFPLibCall(VT, RTLIB::POW_F32, RTLIB::POW_F64, RTLIB::POW_F80, RTLIB::POW_PPCF128); break; case ISD::FPOWI: LC = GetFPLibCall(VT, RTLIB::POWI_F32, RTLIB::POWI_F64, RTLIB::POWI_F80, RTLIB::POWI_PPCF128); break; default: assert(0 && "Unreachable!"); } Lo = ExpandLibCall(LC, Node, false, Hi); break; } case ISD::FABS: { if (VT == MVT::ppcf128) { SDValue Tmp; ExpandOp(Node->getOperand(0), Lo, Tmp); Hi = DAG.getNode(ISD::FABS, NVT, Tmp); // lo = hi==fabs(hi) ? lo : -lo; Lo = DAG.getNode(ISD::SELECT_CC, NVT, Hi, Tmp, Lo, DAG.getNode(ISD::FNEG, NVT, Lo), DAG.getCondCode(ISD::SETEQ)); break; } SDValue Mask = (VT == MVT::f64) ? DAG.getConstantFP(BitsToDouble(~(1ULL << 63)), VT) : DAG.getConstantFP(BitsToFloat(~(1U << 31)), VT); Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask); Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); Lo = DAG.getNode(ISD::AND, NVT, Lo, Mask); if (getTypeAction(NVT) == Expand) ExpandOp(Lo, Lo, Hi); break; } case ISD::FNEG: { if (VT == MVT::ppcf128) { ExpandOp(Node->getOperand(0), Lo, Hi); Lo = DAG.getNode(ISD::FNEG, MVT::f64, Lo); Hi = DAG.getNode(ISD::FNEG, MVT::f64, Hi); break; } SDValue Mask = (VT == MVT::f64) ? DAG.getConstantFP(BitsToDouble(1ULL << 63), VT) : DAG.getConstantFP(BitsToFloat(1U << 31), VT); Mask = DAG.getNode(ISD::BIT_CONVERT, NVT, Mask); Lo = DAG.getNode(ISD::BIT_CONVERT, NVT, Node->getOperand(0)); Lo = DAG.getNode(ISD::XOR, NVT, Lo, Mask); if (getTypeAction(NVT) == Expand) ExpandOp(Lo, Lo, Hi); break; } case ISD::FCOPYSIGN: { Lo = ExpandFCOPYSIGNToBitwiseOps(Node, NVT, DAG, TLI); if (getTypeAction(NVT) == Expand) ExpandOp(Lo, Lo, Hi); break; } case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: { bool isSigned = Node->getOpcode() == ISD::SINT_TO_FP; MVT SrcVT = Node->getOperand(0).getValueType(); // Promote the operand if needed. Do this before checking for // ppcf128 so conversions of i16 and i8 work. if (getTypeAction(SrcVT) == Promote) { SDValue Tmp = PromoteOp(Node->getOperand(0)); Tmp = isSigned ? DAG.getNode(ISD::SIGN_EXTEND_INREG, Tmp.getValueType(), Tmp, DAG.getValueType(SrcVT)) : DAG.getZeroExtendInReg(Tmp, SrcVT); Node = DAG.UpdateNodeOperands(Op, Tmp).getNode(); SrcVT = Node->getOperand(0).getValueType(); } if (VT == MVT::ppcf128 && SrcVT == MVT::i32) { static const uint64_t zero = 0; if (isSigned) { Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, MVT::f64, Node->getOperand(0))); Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); } else { static const uint64_t TwoE32[] = { 0x41f0000000000000LL, 0 }; Hi = LegalizeOp(DAG.getNode(ISD::SINT_TO_FP, MVT::f64, Node->getOperand(0))); Lo = DAG.getConstantFP(APFloat(APInt(64, 1, &zero)), MVT::f64); Hi = DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi); // X>=0 ? {(f64)x, 0} : {(f64)x, 0} + 2^32 ExpandOp(DAG.getNode(ISD::SELECT_CC, MVT::ppcf128, Node->getOperand(0), DAG.getConstant(0, MVT::i32), DAG.getNode(ISD::FADD, MVT::ppcf128, Hi, DAG.getConstantFP( APFloat(APInt(128, 2, TwoE32)), MVT::ppcf128)), Hi, DAG.getCondCode(ISD::SETLT)), Lo, Hi); } break; } if (VT == MVT::ppcf128 && SrcVT == MVT::i64 && !isSigned) { // si64->ppcf128 done by libcall, below static const uint64_t TwoE64[] = { 0x43f0000000000000LL, 0 }; ExpandOp(DAG.getNode(ISD::SINT_TO_FP, MVT::ppcf128, Node->getOperand(0)), Lo, Hi); Hi = DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi); // x>=0 ? (ppcf128)(i64)x : (ppcf128)(i64)x + 2^64 ExpandOp(DAG.getNode(ISD::SELECT_CC, MVT::ppcf128, Node->getOperand(0), DAG.getConstant(0, MVT::i64), DAG.getNode(ISD::FADD, MVT::ppcf128, Hi, DAG.getConstantFP( APFloat(APInt(128, 2, TwoE64)), MVT::ppcf128)), Hi, DAG.getCondCode(ISD::SETLT)), Lo, Hi); break; } Lo = ExpandIntToFP(Node->getOpcode() == ISD::SINT_TO_FP, VT, Node->getOperand(0)); if (getTypeAction(Lo.getValueType()) == Expand) // float to i32 etc. can be 'expanded' to a single node. ExpandOp(Lo, Lo, Hi); break; } } // Make sure the resultant values have been legalized themselves, unless this // is a type that requires multi-step expansion. if (getTypeAction(NVT) != Expand && NVT != MVT::isVoid) { Lo = LegalizeOp(Lo); if (Hi.getNode()) // Don't legalize the high part if it is expanded to a single node. Hi = LegalizeOp(Hi); } // Remember in a map if the values will be reused later. bool isNew = ExpandedNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))).second; assert(isNew && "Value already expanded?!?"); isNew = isNew; } /// SplitVectorOp - Given an operand of vector type, break it down into /// two smaller values, still of vector type. void SelectionDAGLegalize::SplitVectorOp(SDValue Op, SDValue &Lo, SDValue &Hi) { assert(Op.getValueType().isVector() && "Cannot split non-vector type!"); SDNode *Node = Op.getNode(); unsigned NumElements = Op.getValueType().getVectorNumElements(); assert(NumElements > 1 && "Cannot split a single element vector!"); MVT NewEltVT = Op.getValueType().getVectorElementType(); unsigned NewNumElts_Lo = 1 << Log2_32(NumElements-1); unsigned NewNumElts_Hi = NumElements - NewNumElts_Lo; MVT NewVT_Lo = MVT::getVectorVT(NewEltVT, NewNumElts_Lo); MVT NewVT_Hi = MVT::getVectorVT(NewEltVT, NewNumElts_Hi); // See if we already split it. std::map >::iterator I = SplitNodes.find(Op); if (I != SplitNodes.end()) { Lo = I->second.first; Hi = I->second.second; return; } switch (Node->getOpcode()) { default: #ifndef NDEBUG Node->dump(&DAG); #endif assert(0 && "Unhandled operation in SplitVectorOp!"); case ISD::UNDEF: Lo = DAG.getNode(ISD::UNDEF, NewVT_Lo); Hi = DAG.getNode(ISD::UNDEF, NewVT_Hi); break; case ISD::BUILD_PAIR: Lo = Node->getOperand(0); Hi = Node->getOperand(1); break; case ISD::INSERT_VECTOR_ELT: { if (ConstantSDNode *Idx = dyn_cast(Node->getOperand(2))) { SplitVectorOp(Node->getOperand(0), Lo, Hi); unsigned Index = Idx->getZExtValue(); SDValue ScalarOp = Node->getOperand(1); if (Index < NewNumElts_Lo) Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, NewVT_Lo, Lo, ScalarOp, DAG.getIntPtrConstant(Index)); else Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, NewVT_Hi, Hi, ScalarOp, DAG.getIntPtrConstant(Index - NewNumElts_Lo)); break; } SDValue Tmp = PerformInsertVectorEltInMemory(Node->getOperand(0), Node->getOperand(1), Node->getOperand(2)); SplitVectorOp(Tmp, Lo, Hi); break; } case ISD::VECTOR_SHUFFLE: { // Build the low part. SDValue Mask = Node->getOperand(2); SmallVector Ops; MVT PtrVT = TLI.getPointerTy(); // Insert all of the elements from the input that are needed. We use // buildvector of extractelement here because the input vectors will have // to be legalized, so this makes the code simpler. for (unsigned i = 0; i != NewNumElts_Lo; ++i) { SDValue IdxNode = Mask.getOperand(i); if (IdxNode.getOpcode() == ISD::UNDEF) { Ops.push_back(DAG.getNode(ISD::UNDEF, NewEltVT)); continue; } unsigned Idx = cast(IdxNode)->getZExtValue(); SDValue InVec = Node->getOperand(0); if (Idx >= NumElements) { InVec = Node->getOperand(1); Idx -= NumElements; } Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewEltVT, InVec, DAG.getConstant(Idx, PtrVT))); } Lo = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &Ops[0], Ops.size()); Ops.clear(); for (unsigned i = NewNumElts_Lo; i != NumElements; ++i) { SDValue IdxNode = Mask.getOperand(i); if (IdxNode.getOpcode() == ISD::UNDEF) { Ops.push_back(DAG.getNode(ISD::UNDEF, NewEltVT)); continue; } unsigned Idx = cast(IdxNode)->getZExtValue(); SDValue InVec = Node->getOperand(0); if (Idx >= NumElements) { InVec = Node->getOperand(1); Idx -= NumElements; } Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewEltVT, InVec, DAG.getConstant(Idx, PtrVT))); } Hi = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Hi, &Ops[0], Ops.size()); break; } case ISD::BUILD_VECTOR: { SmallVector LoOps(Node->op_begin(), Node->op_begin()+NewNumElts_Lo); Lo = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Lo, &LoOps[0], LoOps.size()); SmallVector HiOps(Node->op_begin()+NewNumElts_Lo, Node->op_end()); Hi = DAG.getNode(ISD::BUILD_VECTOR, NewVT_Hi, &HiOps[0], HiOps.size()); break; } case ISD::CONCAT_VECTORS: { // FIXME: Handle non-power-of-two vectors? unsigned NewNumSubvectors = Node->getNumOperands() / 2; if (NewNumSubvectors == 1) { Lo = Node->getOperand(0); Hi = Node->getOperand(1); } else { SmallVector LoOps(Node->op_begin(), Node->op_begin()+NewNumSubvectors); Lo = DAG.getNode(ISD::CONCAT_VECTORS, NewVT_Lo, &LoOps[0], LoOps.size()); SmallVector HiOps(Node->op_begin()+NewNumSubvectors, Node->op_end()); Hi = DAG.getNode(ISD::CONCAT_VECTORS, NewVT_Hi, &HiOps[0], HiOps.size()); } break; } case ISD::EXTRACT_SUBVECTOR: { SDValue Vec = Op.getOperand(0); SDValue Idx = Op.getOperand(1); MVT IdxVT = Idx.getValueType(); Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, NewVT_Lo, Vec, Idx); ConstantSDNode *CIdx = dyn_cast(Idx); if (CIdx) { Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, NewVT_Hi, Vec, DAG.getConstant(CIdx->getZExtValue() + NewNumElts_Lo, IdxVT)); } else { Idx = DAG.getNode(ISD::ADD, IdxVT, Idx, DAG.getConstant(NewNumElts_Lo, IdxVT)); Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, NewVT_Hi, Vec, Idx); } break; } case ISD::SELECT: { SDValue Cond = Node->getOperand(0); SDValue LL, LH, RL, RH; SplitVectorOp(Node->getOperand(1), LL, LH); SplitVectorOp(Node->getOperand(2), RL, RH); if (Cond.getValueType().isVector()) { // Handle a vector merge. SDValue CL, CH; SplitVectorOp(Cond, CL, CH); Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, CL, LL, RL); Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, CH, LH, RH); } else { // Handle a simple select with vector operands. Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, Cond, LL, RL); Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, Cond, LH, RH); } break; } case ISD::SELECT_CC: { SDValue CondLHS = Node->getOperand(0); SDValue CondRHS = Node->getOperand(1); SDValue CondCode = Node->getOperand(4); SDValue LL, LH, RL, RH; SplitVectorOp(Node->getOperand(2), LL, LH); SplitVectorOp(Node->getOperand(3), RL, RH); // Handle a simple select with vector operands. Lo = DAG.getNode(ISD::SELECT_CC, NewVT_Lo, CondLHS, CondRHS, LL, RL, CondCode); Hi = DAG.getNode(ISD::SELECT_CC, NewVT_Hi, CondLHS, CondRHS, LH, RH, CondCode); break; } case ISD::VSETCC: { SDValue LL, LH, RL, RH; SplitVectorOp(Node->getOperand(0), LL, LH); SplitVectorOp(Node->getOperand(1), RL, RH); Lo = DAG.getNode(ISD::VSETCC, NewVT_Lo, LL, RL, Node->getOperand(2)); Hi = DAG.getNode(ISD::VSETCC, NewVT_Hi, LH, RH, Node->getOperand(2)); break; } case ISD::ADD: case ISD::SUB: case ISD::MUL: case ISD::FADD: case ISD::FSUB: case ISD::FMUL: case ISD::SDIV: case ISD::UDIV: case ISD::FDIV: case ISD::FPOW: case ISD::AND: case ISD::OR: case ISD::XOR: case ISD::UREM: case ISD::SREM: case ISD::FREM: case ISD::SHL: case ISD::SRA: case ISD::SRL: { SDValue LL, LH, RL, RH; SplitVectorOp(Node->getOperand(0), LL, LH); SplitVectorOp(Node->getOperand(1), RL, RH); Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, LL, RL); Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, LH, RH); break; } case ISD::FP_ROUND: case ISD::FPOWI: { SDValue L, H; SplitVectorOp(Node->getOperand(0), L, H); Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, L, Node->getOperand(1)); Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, H, Node->getOperand(1)); break; } case ISD::CTTZ: case ISD::CTLZ: case ISD::CTPOP: case ISD::FNEG: case ISD::FABS: case ISD::FSQRT: case ISD::FSIN: case ISD::FCOS: case ISD::FLOG: case ISD::FLOG2: case ISD::FLOG10: case ISD::FEXP: case ISD::FEXP2: case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: case ISD::TRUNCATE: case ISD::ANY_EXTEND: case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: case ISD::FP_EXTEND: { SDValue L, H; SplitVectorOp(Node->getOperand(0), L, H); Lo = DAG.getNode(Node->getOpcode(), NewVT_Lo, L); Hi = DAG.getNode(Node->getOpcode(), NewVT_Hi, H); break; } case ISD::CONVERT_RNDSAT: { ISD::CvtCode CvtCode = cast(Node)->getCvtCode(); SDValue L, H; SplitVectorOp(Node->getOperand(0), L, H); SDValue DTyOpL = DAG.getValueType(NewVT_Lo); SDValue DTyOpH = DAG.getValueType(NewVT_Hi); SDValue STyOpL = DAG.getValueType(L.getValueType()); SDValue STyOpH = DAG.getValueType(H.getValueType()); SDValue RndOp = Node->getOperand(3); SDValue SatOp = Node->getOperand(4); Lo = DAG.getConvertRndSat(NewVT_Lo, L, DTyOpL, STyOpL, RndOp, SatOp, CvtCode); Hi = DAG.getConvertRndSat(NewVT_Hi, H, DTyOpH, STyOpH, RndOp, SatOp, CvtCode); break; } case ISD::LOAD: { LoadSDNode *LD = cast(Node); SDValue Ch = LD->getChain(); SDValue Ptr = LD->getBasePtr(); ISD::LoadExtType ExtType = LD->getExtensionType(); const Value *SV = LD->getSrcValue(); int SVOffset = LD->getSrcValueOffset(); MVT MemoryVT = LD->getMemoryVT(); unsigned Alignment = LD->getAlignment(); bool isVolatile = LD->isVolatile(); assert(LD->isUnindexed() && "Indexed vector loads are not supported yet!"); SDValue Offset = DAG.getNode(ISD::UNDEF, Ptr.getValueType()); MVT MemNewEltVT = MemoryVT.getVectorElementType(); MVT MemNewVT_Lo = MVT::getVectorVT(MemNewEltVT, NewNumElts_Lo); MVT MemNewVT_Hi = MVT::getVectorVT(MemNewEltVT, NewNumElts_Hi); Lo = DAG.getLoad(ISD::UNINDEXED, ExtType, NewVT_Lo, Ch, Ptr, Offset, SV, SVOffset, MemNewVT_Lo, isVolatile, Alignment); unsigned IncrementSize = NewNumElts_Lo * MemNewEltVT.getSizeInBits()/8; Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr, DAG.getIntPtrConstant(IncrementSize)); SVOffset += IncrementSize; Alignment = MinAlign(Alignment, IncrementSize); Hi = DAG.getLoad(ISD::UNINDEXED, ExtType, NewVT_Hi, Ch, Ptr, Offset, SV, SVOffset, MemNewVT_Hi, isVolatile, Alignment); // Build a factor node to remember that this load is independent of the // other one. SDValue TF = DAG.getNode(ISD::TokenFactor, MVT::Other, Lo.getValue(1), Hi.getValue(1)); // Remember that we legalized the chain. AddLegalizedOperand(Op.getValue(1), LegalizeOp(TF)); break; } case ISD::BIT_CONVERT: { // We know the result is a vector. The input may be either a vector or a // scalar value. SDValue InOp = Node->getOperand(0); if (!InOp.getValueType().isVector() || InOp.getValueType().getVectorNumElements() == 1) { // The input is a scalar or single-element vector. // Lower to a store/load so that it can be split. // FIXME: this could be improved probably. unsigned LdAlign = TLI.getTargetData()->getPrefTypeAlignment( Op.getValueType().getTypeForMVT()); SDValue Ptr = DAG.CreateStackTemporary(InOp.getValueType(), LdAlign); int FI = cast(Ptr.getNode())->getIndex(); SDValue St = DAG.getStore(DAG.getEntryNode(), InOp, Ptr, PseudoSourceValue::getFixedStack(FI), 0); InOp = DAG.getLoad(Op.getValueType(), St, Ptr, PseudoSourceValue::getFixedStack(FI), 0); } // Split the vector and convert each of the pieces now. SplitVectorOp(InOp, Lo, Hi); Lo = DAG.getNode(ISD::BIT_CONVERT, NewVT_Lo, Lo); Hi = DAG.getNode(ISD::BIT_CONVERT, NewVT_Hi, Hi); break; } } // Remember in a map if the values will be reused later. bool isNew = SplitNodes.insert(std::make_pair(Op, std::make_pair(Lo, Hi))).second; assert(isNew && "Value already split?!?"); isNew = isNew; } /// ScalarizeVectorOp - Given an operand of single-element vector type /// (e.g. v1f32), convert it into the equivalent operation that returns a /// scalar (e.g. f32) value. SDValue SelectionDAGLegalize::ScalarizeVectorOp(SDValue Op) { assert(Op.getValueType().isVector() && "Bad ScalarizeVectorOp invocation!"); SDNode *Node = Op.getNode(); MVT NewVT = Op.getValueType().getVectorElementType(); assert(Op.getValueType().getVectorNumElements() == 1); // See if we already scalarized it. std::map::iterator I = ScalarizedNodes.find(Op); if (I != ScalarizedNodes.end()) return I->second; SDValue Result; switch (Node->getOpcode()) { default: #ifndef NDEBUG Node->dump(&DAG); cerr << "\n"; #endif assert(0 && "Unknown vector operation in ScalarizeVectorOp!"); case ISD::ADD: case ISD::FADD: case ISD::SUB: case ISD::FSUB: case ISD::MUL: case ISD::FMUL: case ISD::SDIV: case ISD::UDIV: case ISD::FDIV: case ISD::SREM: case ISD::UREM: case ISD::FREM: case ISD::FPOW: case ISD::AND: case ISD::OR: case ISD::XOR: Result = DAG.getNode(Node->getOpcode(), NewVT, ScalarizeVectorOp(Node->getOperand(0)), ScalarizeVectorOp(Node->getOperand(1))); break; case ISD::FNEG: case ISD::FABS: case ISD::FSQRT: case ISD::FSIN: case ISD::FCOS: case ISD::FLOG: case ISD::FLOG2: case ISD::FLOG10: case ISD::FEXP: case ISD::FEXP2: case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: case ISD::ANY_EXTEND: case ISD::TRUNCATE: case ISD::FP_EXTEND: Result = DAG.getNode(Node->getOpcode(), NewVT, ScalarizeVectorOp(Node->getOperand(0))); break; case ISD::CONVERT_RNDSAT: { SDValue Op0 = ScalarizeVectorOp(Node->getOperand(0)); Result = DAG.getConvertRndSat(NewVT, Op0, DAG.getValueType(NewVT), DAG.getValueType(Op0.getValueType()), Node->getOperand(3), Node->getOperand(4), cast(Node)->getCvtCode()); break; } case ISD::FPOWI: case ISD::FP_ROUND: Result = DAG.getNode(Node->getOpcode(), NewVT, ScalarizeVectorOp(Node->getOperand(0)), Node->getOperand(1)); break; case ISD::LOAD: { LoadSDNode *LD = cast(Node); SDValue Ch = LegalizeOp(LD->getChain()); // Legalize the chain. SDValue Ptr = LegalizeOp(LD->getBasePtr()); // Legalize the pointer. ISD::LoadExtType ExtType = LD->getExtensionType(); const Value *SV = LD->getSrcValue(); int SVOffset = LD->getSrcValueOffset(); MVT MemoryVT = LD->getMemoryVT(); unsigned Alignment = LD->getAlignment(); bool isVolatile = LD->isVolatile(); assert(LD->isUnindexed() && "Indexed vector loads are not supported yet!"); SDValue Offset = DAG.getNode(ISD::UNDEF, Ptr.getValueType()); Result = DAG.getLoad(ISD::UNINDEXED, ExtType, NewVT, Ch, Ptr, Offset, SV, SVOffset, MemoryVT.getVectorElementType(), isVolatile, Alignment); // Remember that we legalized the chain. AddLegalizedOperand(Op.getValue(1), LegalizeOp(Result.getValue(1))); break; } case ISD::BUILD_VECTOR: Result = Node->getOperand(0); break; case ISD::INSERT_VECTOR_ELT: // Returning the inserted scalar element. Result = Node->getOperand(1); break; case ISD::CONCAT_VECTORS: assert(Node->getOperand(0).getValueType() == NewVT && "Concat of non-legal vectors not yet supported!"); Result = Node->getOperand(0); break; case ISD::VECTOR_SHUFFLE: { // Figure out if the scalar is the LHS or RHS and return it. SDValue EltNum = Node->getOperand(2).getOperand(0); if (cast(EltNum)->getZExtValue()) Result = ScalarizeVectorOp(Node->getOperand(1)); else Result = ScalarizeVectorOp(Node->getOperand(0)); break; } case ISD::EXTRACT_SUBVECTOR: Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, NewVT, Node->getOperand(0), Node->getOperand(1)); break; case ISD::BIT_CONVERT: { SDValue Op0 = Op.getOperand(0); if (Op0.getValueType().getVectorNumElements() == 1) Op0 = ScalarizeVectorOp(Op0); Result = DAG.getNode(ISD::BIT_CONVERT, NewVT, Op0); break; } case ISD::SELECT: Result = DAG.getNode(ISD::SELECT, NewVT, Op.getOperand(0), ScalarizeVectorOp(Op.getOperand(1)), ScalarizeVectorOp(Op.getOperand(2))); break; case ISD::SELECT_CC: Result = DAG.getNode(ISD::SELECT_CC, NewVT, Node->getOperand(0), Node->getOperand(1), ScalarizeVectorOp(Op.getOperand(2)), ScalarizeVectorOp(Op.getOperand(3)), Node->getOperand(4)); break; case ISD::VSETCC: { SDValue Op0 = ScalarizeVectorOp(Op.getOperand(0)); SDValue Op1 = ScalarizeVectorOp(Op.getOperand(1)); Result = DAG.getNode(ISD::SETCC, TLI.getSetCCResultType(Op0.getValueType()), Op0, Op1, Op.getOperand(2)); Result = DAG.getNode(ISD::SELECT, NewVT, Result, DAG.getConstant(-1ULL, NewVT), DAG.getConstant(0ULL, NewVT)); break; } } if (TLI.isTypeLegal(NewVT)) Result = LegalizeOp(Result); bool isNew = ScalarizedNodes.insert(std::make_pair(Op, Result)).second; assert(isNew && "Value already scalarized?"); isNew = isNew; return Result; } SDValue SelectionDAGLegalize::WidenVectorOp(SDValue Op, MVT WidenVT) { std::map::iterator I = WidenNodes.find(Op); if (I != WidenNodes.end()) return I->second; MVT VT = Op.getValueType(); assert(VT.isVector() && "Cannot widen non-vector type!"); SDValue Result; SDNode *Node = Op.getNode(); MVT EVT = VT.getVectorElementType(); unsigned NumElts = VT.getVectorNumElements(); unsigned NewNumElts = WidenVT.getVectorNumElements(); assert(NewNumElts > NumElts && "Cannot widen to smaller type!"); assert(NewNumElts < 17); // When widen is called, it is assumed that it is more efficient to use a // wide type. The default action is to widen to operation to a wider legal // vector type and then do the operation if it is legal by calling LegalizeOp // again. If there is no vector equivalent, we will unroll the operation, do // it, and rebuild the vector. If most of the operations are vectorizible to // the legal type, the resulting code will be more efficient. If this is not // the case, the resulting code will preform badly as we end up generating // code to pack/unpack the results. It is the function that calls widen // that is responsible for seeing this doesn't happen. switch (Node->getOpcode()) { default: #ifndef NDEBUG Node->dump(&DAG); #endif assert(0 && "Unexpected operation in WidenVectorOp!"); break; case ISD::CopyFromReg: assert(0 && "CopyFromReg doesn't need widening!"); case ISD::Constant: case ISD::ConstantFP: // To build a vector of these elements, clients should call BuildVector // and with each element instead of creating a node with a vector type assert(0 && "Unexpected operation in WidenVectorOp!"); case ISD::VAARG: // Variable Arguments with vector types doesn't make any sense to me assert(0 && "Unexpected operation in WidenVectorOp!"); break; case ISD::UNDEF: Result = DAG.getNode(ISD::UNDEF, WidenVT); break; case ISD::BUILD_VECTOR: { // Build a vector with undefined for the new nodes SDValueVector NewOps(Node->op_begin(), Node->op_end()); for (unsigned i = NumElts; i < NewNumElts; ++i) { NewOps.push_back(DAG.getNode(ISD::UNDEF,EVT)); } Result = DAG.getNode(ISD::BUILD_VECTOR, WidenVT, &NewOps[0], NewOps.size()); break; } case ISD::INSERT_VECTOR_ELT: { SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, WidenVT, Tmp1, Node->getOperand(1), Node->getOperand(2)); break; } case ISD::VECTOR_SHUFFLE: { SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); SDValue Tmp2 = WidenVectorOp(Node->getOperand(1), WidenVT); // VECTOR_SHUFFLE 3rd operand must be a constant build vector that is // used as permutation array. We build the vector here instead of widening // because we don't want to legalize and have it turned to something else. SDValue PermOp = Node->getOperand(2); SDValueVector NewOps; MVT PVT = PermOp.getValueType().getVectorElementType(); for (unsigned i = 0; i < NumElts; ++i) { if (PermOp.getOperand(i).getOpcode() == ISD::UNDEF) { NewOps.push_back(PermOp.getOperand(i)); } else { unsigned Idx = cast(PermOp.getOperand(i))->getZExtValue(); if (Idx < NumElts) { NewOps.push_back(PermOp.getOperand(i)); } else { NewOps.push_back(DAG.getConstant(Idx + NewNumElts - NumElts, PermOp.getOperand(i).getValueType())); } } } for (unsigned i = NumElts; i < NewNumElts; ++i) { NewOps.push_back(DAG.getNode(ISD::UNDEF,PVT)); } SDValue Tmp3 = DAG.getNode(ISD::BUILD_VECTOR, MVT::getVectorVT(PVT, NewOps.size()), &NewOps[0], NewOps.size()); Result = DAG.getNode(ISD::VECTOR_SHUFFLE, WidenVT, Tmp1, Tmp2, Tmp3); break; } case ISD::LOAD: { // If the load widen returns true, we can use a single load for the // vector. Otherwise, it is returning a token factor for multiple // loads. SDValue TFOp; if (LoadWidenVectorOp(Result, TFOp, Op, WidenVT)) AddLegalizedOperand(Op.getValue(1), LegalizeOp(TFOp.getValue(1))); else AddLegalizedOperand(Op.getValue(1), LegalizeOp(TFOp.getValue(0))); break; } case ISD::BIT_CONVERT: { SDValue Tmp1 = Node->getOperand(0); // Converts between two different types so we need to determine // the correct widen type for the input operand. MVT InVT = Tmp1.getValueType(); unsigned WidenSize = WidenVT.getSizeInBits(); if (InVT.isVector()) { MVT InEltVT = InVT.getVectorElementType(); unsigned InEltSize = InEltVT.getSizeInBits(); assert(WidenSize % InEltSize == 0 && "can not widen bit convert that are not multiple of element type"); MVT NewInWidenVT = MVT::getVectorVT(InEltVT, WidenSize / InEltSize); Tmp1 = WidenVectorOp(Tmp1, NewInWidenVT); assert(Tmp1.getValueType().getSizeInBits() == WidenVT.getSizeInBits()); Result = DAG.getNode(ISD::BIT_CONVERT, WidenVT, Tmp1); } else { // If the result size is a multiple of the input size, widen the input // and then convert. unsigned InSize = InVT.getSizeInBits(); assert(WidenSize % InSize == 0 && "can not widen bit convert that are not multiple of element type"); unsigned NewNumElts = WidenSize / InSize; SmallVector Ops(NewNumElts); SDValue UndefVal = DAG.getNode(ISD::UNDEF, InVT); Ops[0] = Tmp1; for (unsigned i = 1; i < NewNumElts; ++i) Ops[i] = UndefVal; MVT NewInVT = MVT::getVectorVT(InVT, NewNumElts); Result = DAG.getNode(ISD::BUILD_VECTOR, NewInVT, &Ops[0], NewNumElts); Result = DAG.getNode(ISD::BIT_CONVERT, WidenVT, Result); } break; } case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: case ISD::FP_ROUND: { SDValue Tmp1 = Node->getOperand(0); // Converts between two different types so we need to determine // the correct widen type for the input operand. MVT TVT = Tmp1.getValueType(); assert(TVT.isVector() && "can not widen non vector type"); MVT TEVT = TVT.getVectorElementType(); MVT TWidenVT = MVT::getVectorVT(TEVT, NewNumElts); Tmp1 = WidenVectorOp(Tmp1, TWidenVT); assert(Tmp1.getValueType().getVectorNumElements() == NewNumElts); Result = DAG.getNode(Node->getOpcode(), WidenVT, Tmp1); break; } case ISD::FP_EXTEND: assert(0 && "Case not implemented. Dynamically dead with 2 FP types!"); case ISD::TRUNCATE: case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: case ISD::ANY_EXTEND: case ISD::SIGN_EXTEND_INREG: case ISD::FABS: case ISD::FNEG: case ISD::FSQRT: case ISD::FSIN: case ISD::FCOS: case ISD::CTPOP: case ISD::CTTZ: case ISD::CTLZ: { // Unary op widening SDValue Tmp1; Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); assert(Tmp1.getValueType() == WidenVT); Result = DAG.getNode(Node->getOpcode(), WidenVT, Tmp1); break; } case ISD::CONVERT_RNDSAT: { SDValue RndOp = Node->getOperand(3); SDValue SatOp = Node->getOperand(4); SDValue SrcOp = Node->getOperand(0); // Converts between two different types so we need to determine // the correct widen type for the input operand. MVT SVT = SrcOp.getValueType(); assert(SVT.isVector() && "can not widen non vector type"); MVT SEVT = SVT.getVectorElementType(); MVT SWidenVT = MVT::getVectorVT(SEVT, NewNumElts); SrcOp = WidenVectorOp(SrcOp, SWidenVT); assert(SrcOp.getValueType() == WidenVT); SDValue DTyOp = DAG.getValueType(WidenVT); SDValue STyOp = DAG.getValueType(SrcOp.getValueType()); ISD::CvtCode CvtCode = cast(Node)->getCvtCode(); Result = DAG.getConvertRndSat(WidenVT, SrcOp, DTyOp, STyOp, RndOp, SatOp, CvtCode); break; } case ISD::FPOW: case ISD::FPOWI: case ISD::ADD: case ISD::SUB: case ISD::MUL: case ISD::MULHS: case ISD::MULHU: case ISD::AND: case ISD::OR: case ISD::XOR: case ISD::FADD: case ISD::FSUB: case ISD::FMUL: case ISD::SDIV: case ISD::SREM: case ISD::FDIV: case ISD::FREM: case ISD::FCOPYSIGN: case ISD::UDIV: case ISD::UREM: case ISD::BSWAP: { // Binary op widening SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); SDValue Tmp2 = WidenVectorOp(Node->getOperand(1), WidenVT); assert(Tmp1.getValueType() == WidenVT && Tmp2.getValueType() == WidenVT); Result = DAG.getNode(Node->getOpcode(), WidenVT, Tmp1, Tmp2); break; } case ISD::SHL: case ISD::SRA: case ISD::SRL: { SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); assert(Tmp1.getValueType() == WidenVT); SDValue ShOp = Node->getOperand(1); MVT ShVT = ShOp.getValueType(); MVT NewShVT = MVT::getVectorVT(ShVT.getVectorElementType(), WidenVT.getVectorNumElements()); ShOp = WidenVectorOp(ShOp, NewShVT); assert(ShOp.getValueType() == NewShVT); Result = DAG.getNode(Node->getOpcode(), WidenVT, Tmp1, ShOp); break; } case ISD::EXTRACT_VECTOR_ELT: { SDValue Tmp1 = WidenVectorOp(Node->getOperand(0), WidenVT); assert(Tmp1.getValueType() == WidenVT); Result = DAG.getNode(Node->getOpcode(), EVT, Tmp1, Node->getOperand(1)); break; } case ISD::CONCAT_VECTORS: { // We concurrently support only widen on a multiple of the incoming vector. // We could widen on a multiple of the incoming operand if necessary. unsigned NumConcat = NewNumElts / NumElts; assert(NewNumElts % NumElts == 0 && "Can widen only a multiple of vector"); SDValue UndefVal = DAG.getNode(ISD::UNDEF, VT); SmallVector MOps; MOps.push_back(Op); for (unsigned i = 1; i != NumConcat; ++i) { MOps.push_back(UndefVal); } Result = LegalizeOp(DAG.getNode(ISD::CONCAT_VECTORS, WidenVT, &MOps[0], MOps.size())); break; } case ISD::EXTRACT_SUBVECTOR: { SDValue Tmp1 = Node->getOperand(0); SDValue Idx = Node->getOperand(1); ConstantSDNode *CIdx = dyn_cast(Idx); if (CIdx && CIdx->getZExtValue() == 0) { // Since we are access the start of the vector, the incoming // vector type might be the proper. MVT Tmp1VT = Tmp1.getValueType(); if (Tmp1VT == WidenVT) return Tmp1; else { unsigned Tmp1VTNumElts = Tmp1VT.getVectorNumElements(); if (Tmp1VTNumElts < NewNumElts) Result = WidenVectorOp(Tmp1, WidenVT); else Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, WidenVT, Tmp1, Idx); } } else if (NewNumElts % NumElts == 0) { // Widen the extracted subvector. unsigned NumConcat = NewNumElts / NumElts; SDValue UndefVal = DAG.getNode(ISD::UNDEF, VT); SmallVector MOps; MOps.push_back(Op); for (unsigned i = 1; i != NumConcat; ++i) { MOps.push_back(UndefVal); } Result = LegalizeOp(DAG.getNode(ISD::CONCAT_VECTORS, WidenVT, &MOps[0], MOps.size())); } else { assert(0 && "can not widen extract subvector"); // This could be implemented using insert and build vector but I would // like to see when this happens. } break; } case ISD::SELECT: { // Determine new condition widen type and widen SDValue Cond1 = Node->getOperand(0); MVT CondVT = Cond1.getValueType(); assert(CondVT.isVector() && "can not widen non vector type"); MVT CondEVT = CondVT.getVectorElementType(); MVT CondWidenVT = MVT::getVectorVT(CondEVT, NewNumElts); Cond1 = WidenVectorOp(Cond1, CondWidenVT); assert(Cond1.getValueType() == CondWidenVT && "Condition not widen"); SDValue Tmp1 = WidenVectorOp(Node->getOperand(1), WidenVT); SDValue Tmp2 = WidenVectorOp(Node->getOperand(2), WidenVT); assert(Tmp1.getValueType() == WidenVT && Tmp2.getValueType() == WidenVT); Result = DAG.getNode(Node->getOpcode(), WidenVT, Cond1, Tmp1, Tmp2); break; } case ISD::SELECT_CC: { // Determine new condition widen type and widen SDValue Cond1 = Node->getOperand(0); SDValue Cond2 = Node->getOperand(1); MVT CondVT = Cond1.getValueType(); assert(CondVT.isVector() && "can not widen non vector type"); assert(CondVT == Cond2.getValueType() && "mismatch lhs/rhs"); MVT CondEVT = CondVT.getVectorElementType(); MVT CondWidenVT = MVT::getVectorVT(CondEVT, NewNumElts); Cond1 = WidenVectorOp(Cond1, CondWidenVT); Cond2 = WidenVectorOp(Cond2, CondWidenVT); assert(Cond1.getValueType() == CondWidenVT && Cond2.getValueType() == CondWidenVT && "condition not widen"); SDValue Tmp1 = WidenVectorOp(Node->getOperand(2), WidenVT); SDValue Tmp2 = WidenVectorOp(Node->getOperand(3), WidenVT); assert(Tmp1.getValueType() == WidenVT && Tmp2.getValueType() == WidenVT && "operands not widen"); Result = DAG.getNode(Node->getOpcode(), WidenVT, Cond1, Cond2, Tmp1, Tmp2, Node->getOperand(4)); break; } case ISD::VSETCC: { // Determine widen for the operand SDValue Tmp1 = Node->getOperand(0); MVT TmpVT = Tmp1.getValueType(); assert(TmpVT.isVector() && "can not widen non vector type"); MVT TmpEVT = TmpVT.getVectorElementType(); MVT TmpWidenVT = MVT::getVectorVT(TmpEVT, NewNumElts); Tmp1 = WidenVectorOp(Tmp1, TmpWidenVT); SDValue Tmp2 = WidenVectorOp(Node->getOperand(1), TmpWidenVT); Result = DAG.getNode(Node->getOpcode(), WidenVT, Tmp1, Tmp2, Node->getOperand(2)); break; } case ISD::ATOMIC_CMP_SWAP: case ISD::ATOMIC_LOAD_ADD: case ISD::ATOMIC_LOAD_SUB: case ISD::ATOMIC_LOAD_AND: case ISD::ATOMIC_LOAD_OR: case ISD::ATOMIC_LOAD_XOR: case ISD::ATOMIC_LOAD_NAND: case ISD::ATOMIC_LOAD_MIN: case ISD::ATOMIC_LOAD_MAX: case ISD::ATOMIC_LOAD_UMIN: case ISD::ATOMIC_LOAD_UMAX: case ISD::ATOMIC_SWAP: { // For now, we assume that using vectors for these operations don't make // much sense so we just split it. We return an empty result SDValue X, Y; SplitVectorOp(Op, X, Y); return Result; break; } } // end switch (Node->getOpcode()) assert(Result.getNode() && "Didn't set a result!"); if (Result != Op) Result = LegalizeOp(Result); AddWidenedOperand(Op, Result); return Result; } // Utility function to find a legal vector type and its associated element // type from a preferred width and whose vector type must be the same size // as the VVT. // TLI: Target lowering used to determine legal types // Width: Preferred width of element type // VVT: Vector value type whose size we must match. // Returns VecEVT and EVT - the vector type and its associated element type static void FindWidenVecType(const TargetLowering &TLI, unsigned Width, MVT VVT, MVT& EVT, MVT& VecEVT) { // We start with the preferred width, make it a power of 2 and see if // we can find a vector type of that width. If not, we reduce it by // another power of 2. If we have widen the type, a vector of bytes should // always be legal. assert(TLI.isTypeLegal(VVT)); unsigned EWidth = Width + 1; do { assert(EWidth > 0); EWidth = (1 << Log2_32(EWidth-1)); EVT = MVT::getIntegerVT(EWidth); unsigned NumEVT = VVT.getSizeInBits()/EWidth; VecEVT = MVT::getVectorVT(EVT, NumEVT); } while (!TLI.isTypeLegal(VecEVT) || VVT.getSizeInBits() != VecEVT.getSizeInBits()); } SDValue SelectionDAGLegalize::genWidenVectorLoads(SDValueVector& LdChain, SDValue Chain, SDValue BasePtr, const Value *SV, int SVOffset, unsigned Alignment, bool isVolatile, unsigned LdWidth, MVT ResType) { // We assume that we have good rules to handle loading power of two loads so // we break down the operations to power of 2 loads. The strategy is to // load the largest power of 2 that we can easily transform to a legal vector // and then insert into that vector, and the cast the result into the legal // vector that we want. This avoids unnecessary stack converts. // TODO: If the Ldwidth is legal, alignment is the same as the LdWidth, and // the load is nonvolatile, we an use a wider load for the value. // Find a vector length we can load a large chunk MVT EVT, VecEVT; unsigned EVTWidth; FindWidenVecType(TLI, LdWidth, ResType, EVT, VecEVT); EVTWidth = EVT.getSizeInBits(); SDValue LdOp = DAG.getLoad(EVT, Chain, BasePtr, SV, SVOffset, isVolatile, Alignment); SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, VecEVT, LdOp); LdChain.push_back(LdOp.getValue(1)); // Check if we can load the element with one instruction if (LdWidth == EVTWidth) { return DAG.getNode(ISD::BIT_CONVERT, ResType, VecOp); } // The vector element order is endianness dependent. unsigned Idx = 1; LdWidth -= EVTWidth; unsigned Offset = 0; while (LdWidth > 0) { unsigned Increment = EVTWidth / 8; Offset += Increment; BasePtr = DAG.getNode(ISD::ADD, BasePtr.getValueType(), BasePtr, DAG.getIntPtrConstant(Increment)); if (LdWidth < EVTWidth) { // Our current type we are using is too large, use a smaller size by // using a smaller power of 2 unsigned oEVTWidth = EVTWidth; FindWidenVecType(TLI, LdWidth, ResType, EVT, VecEVT); EVTWidth = EVT.getSizeInBits(); // Readjust position and vector position based on new load type Idx = Idx * (oEVTWidth/EVTWidth); VecOp = DAG.getNode(ISD::BIT_CONVERT, VecEVT, VecOp); } SDValue LdOp = DAG.getLoad(EVT, Chain, BasePtr, SV, SVOffset+Offset, isVolatile, MinAlign(Alignment, Offset)); LdChain.push_back(LdOp.getValue(1)); VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, VecEVT, VecOp, LdOp, DAG.getIntPtrConstant(Idx++)); LdWidth -= EVTWidth; } return DAG.getNode(ISD::BIT_CONVERT, ResType, VecOp); } bool SelectionDAGLegalize::LoadWidenVectorOp(SDValue& Result, SDValue& TFOp, SDValue Op, MVT NVT) { // TODO: Add support for ConcatVec and the ability to load many vector // types (e.g., v4i8). This will not work when a vector register // to memory mapping is strange (e.g., vector elements are not // stored in some sequential order). // It must be true that the widen vector type is bigger than where // we need to load from. LoadSDNode *LD = cast(Op.getNode()); MVT LdVT = LD->getMemoryVT(); assert(LdVT.isVector() && NVT.isVector()); assert(LdVT.getVectorElementType() == NVT.getVectorElementType()); // Load information SDValue Chain = LD->getChain(); SDValue BasePtr = LD->getBasePtr(); int SVOffset = LD->getSrcValueOffset(); unsigned Alignment = LD->getAlignment(); bool isVolatile = LD->isVolatile(); const Value *SV = LD->getSrcValue(); unsigned int LdWidth = LdVT.getSizeInBits(); // Load value as a large register SDValueVector LdChain; Result = genWidenVectorLoads(LdChain, Chain, BasePtr, SV, SVOffset, Alignment, isVolatile, LdWidth, NVT); if (LdChain.size() == 1) { TFOp = LdChain[0]; return true; } else { TFOp=DAG.getNode(ISD::TokenFactor, MVT::Other, &LdChain[0], LdChain.size()); return false; } } void SelectionDAGLegalize::genWidenVectorStores(SDValueVector& StChain, SDValue Chain, SDValue BasePtr, const Value *SV, int SVOffset, unsigned Alignment, bool isVolatile, SDValue ValOp, unsigned StWidth) { // Breaks the stores into a series of power of 2 width stores. For any // width, we convert the vector to the vector of element size that we // want to store. This avoids requiring a stack convert. // Find a width of the element type we can store with MVT VVT = ValOp.getValueType(); MVT EVT, VecEVT; unsigned EVTWidth; FindWidenVecType(TLI, StWidth, VVT, EVT, VecEVT); EVTWidth = EVT.getSizeInBits(); SDValue VecOp = DAG.getNode(ISD::BIT_CONVERT, VecEVT, ValOp); SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EVT, VecOp, DAG.getIntPtrConstant(0)); SDValue StOp = DAG.getStore(Chain, EOp, BasePtr, SV, SVOffset, isVolatile, Alignment); StChain.push_back(StOp); // Check if we are done if (StWidth == EVTWidth) { return; } unsigned Idx = 1; StWidth -= EVTWidth; unsigned Offset = 0; while (StWidth > 0) { unsigned Increment = EVTWidth / 8; Offset += Increment; BasePtr = DAG.getNode(ISD::ADD, BasePtr.getValueType(), BasePtr, DAG.getIntPtrConstant(Increment)); if (StWidth < EVTWidth) { // Our current type we are using is too large, use a smaller size by // using a smaller power of 2 unsigned oEVTWidth = EVTWidth; FindWidenVecType(TLI, StWidth, VVT, EVT, VecEVT); EVTWidth = EVT.getSizeInBits(); // Readjust position and vector position based on new load type Idx = Idx * (oEVTWidth/EVTWidth); VecOp = DAG.getNode(ISD::BIT_CONVERT, VecEVT, VecOp); } EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EVT, VecOp, DAG.getIntPtrConstant(Idx++)); StChain.push_back(DAG.getStore(Chain, EOp, BasePtr, SV, SVOffset + Offset, isVolatile, MinAlign(Alignment, Offset))); StWidth -= EVTWidth; } } SDValue SelectionDAGLegalize::StoreWidenVectorOp(StoreSDNode *ST, SDValue Chain, SDValue BasePtr) { // TODO: It might be cleaner if we can use SplitVector and have more legal // vector types that can be stored into memory (e.g., v4xi8 can // be stored as a word). This will not work when a vector register // to memory mapping is strange (e.g., vector elements are not // stored in some sequential order). MVT StVT = ST->getMemoryVT(); SDValue ValOp = ST->getValue(); // Check if we have widen this node with another value std::map::iterator I = WidenNodes.find(ValOp); if (I != WidenNodes.end()) ValOp = I->second; MVT VVT = ValOp.getValueType(); // It must be true that we the widen vector type is bigger than where // we need to store. assert(StVT.isVector() && VVT.isVector()); assert(StVT.getSizeInBits() < VVT.getSizeInBits()); assert(StVT.getVectorElementType() == VVT.getVectorElementType()); // Store value SDValueVector StChain; genWidenVectorStores(StChain, Chain, BasePtr, ST->getSrcValue(), ST->getSrcValueOffset(), ST->getAlignment(), ST->isVolatile(), ValOp, StVT.getSizeInBits()); if (StChain.size() == 1) return StChain[0]; else return DAG.getNode(ISD::TokenFactor, MVT::Other,&StChain[0],StChain.size()); } // SelectionDAG::Legalize - This is the entry point for the file. // void SelectionDAG::Legalize(bool TypesNeedLegalizing) { /// run - This is the main entry point to this class. /// SelectionDAGLegalize(*this, TypesNeedLegalizing).LegalizeDAG(); }