//===- DataStructure.cpp - Implement the core data structure analysis -----===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the core data structure functionality. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/DataStructure/DSGraphTraits.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/GlobalVariable.h" #include "llvm/Instructions.h" #include "llvm/DerivedTypes.h" #include "llvm/Target/TargetData.h" #include "llvm/Assembly/Writer.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SCCIterator.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Timer.h" #include using namespace llvm; #define COLLAPSE_ARRAYS_AGGRESSIVELY 0 namespace { Statistic<> NumFolds ("dsa", "Number of nodes completely folded"); Statistic<> NumCallNodesMerged("dsa", "Number of call nodes merged"); Statistic<> NumNodeAllocated ("dsa", "Number of nodes allocated"); Statistic<> NumDNE ("dsa", "Number of nodes removed by reachability"); Statistic<> NumTrivialDNE ("dsa", "Number of nodes trivially removed"); Statistic<> NumTrivialGlobalDNE("dsa", "Number of globals trivially removed"); }; #if 0 #define TIME_REGION(VARNAME, DESC) \ NamedRegionTimer VARNAME(DESC) #else #define TIME_REGION(VARNAME, DESC) #endif using namespace DS; /// isForwarding - Return true if this NodeHandle is forwarding to another /// one. bool DSNodeHandle::isForwarding() const { return N && N->isForwarding(); } DSNode *DSNodeHandle::HandleForwarding() const { assert(N->isForwarding() && "Can only be invoked if forwarding!"); // Handle node forwarding here! DSNode *Next = N->ForwardNH.getNode(); // Cause recursive shrinkage Offset += N->ForwardNH.getOffset(); if (--N->NumReferrers == 0) { // Removing the last referrer to the node, sever the forwarding link N->stopForwarding(); } N = Next; N->NumReferrers++; if (N->Size <= Offset) { assert(N->Size <= 1 && "Forwarded to shrunk but not collapsed node?"); Offset = 0; } return N; } //===----------------------------------------------------------------------===// // DSScalarMap Implementation //===----------------------------------------------------------------------===// DSNodeHandle &DSScalarMap::AddGlobal(GlobalValue *GV) { assert(ValueMap.count(GV) == 0 && "GV already exists!"); // If the node doesn't exist, check to see if it's a global that is // equated to another global in the program. EquivalenceClasses::iterator ECI = GlobalECs.findValue(GV); if (ECI != GlobalECs.end()) { GlobalValue *Leader = *GlobalECs.findLeader(ECI); if (Leader != GV) { GV = Leader; iterator I = ValueMap.find(GV); if (I != ValueMap.end()) return I->second; } } // Okay, this is either not an equivalenced global or it is the leader, it // will be inserted into the scalar map now. GlobalSet.insert(GV); return ValueMap.insert(std::make_pair(GV, DSNodeHandle())).first->second; } //===----------------------------------------------------------------------===// // DSNode Implementation //===----------------------------------------------------------------------===// DSNode::DSNode(const Type *T, DSGraph *G) : NumReferrers(0), Size(0), ParentGraph(G), Ty(Type::VoidTy), NodeType(0) { // Add the type entry if it is specified... if (T) mergeTypeInfo(T, 0); if (G) G->addNode(this); ++NumNodeAllocated; } // DSNode copy constructor... do not copy over the referrers list! DSNode::DSNode(const DSNode &N, DSGraph *G, bool NullLinks) : NumReferrers(0), Size(N.Size), ParentGraph(G), Ty(N.Ty), NodeType(N.NodeType) { if (!NullLinks) { Links = N.Links; Globals = N.Globals; } else Links.resize(N.Links.size()); // Create the appropriate number of null links G->addNode(this); ++NumNodeAllocated; } /// getTargetData - Get the target data object used to construct this node. /// const TargetData &DSNode::getTargetData() const { return ParentGraph->getTargetData(); } void DSNode::assertOK() const { assert((Ty != Type::VoidTy || Ty == Type::VoidTy && (Size == 0 || (NodeType & DSNode::Array))) && "Node not OK!"); assert(ParentGraph && "Node has no parent?"); const DSScalarMap &SM = ParentGraph->getScalarMap(); for (unsigned i = 0, e = Globals.size(); i != e; ++i) { assert(SM.global_count(Globals[i])); assert(SM.find(Globals[i])->second.getNode() == this); } } /// forwardNode - Mark this node as being obsolete, and all references to it /// should be forwarded to the specified node and offset. /// void DSNode::forwardNode(DSNode *To, unsigned Offset) { assert(this != To && "Cannot forward a node to itself!"); assert(ForwardNH.isNull() && "Already forwarding from this node!"); if (To->Size <= 1) Offset = 0; assert((Offset < To->Size || (Offset == To->Size && Offset == 0)) && "Forwarded offset is wrong!"); ForwardNH.setTo(To, Offset); NodeType = DEAD; Size = 0; Ty = Type::VoidTy; // Remove this node from the parent graph's Nodes list. ParentGraph->unlinkNode(this); ParentGraph = 0; } // addGlobal - Add an entry for a global value to the Globals list. This also // marks the node with the 'G' flag if it does not already have it. // void DSNode::addGlobal(GlobalValue *GV) { // First, check to make sure this is the leader if the global is in an // equivalence class. GV = getParentGraph()->getScalarMap().getLeaderForGlobal(GV); // Keep the list sorted. std::vector::iterator I = std::lower_bound(Globals.begin(), Globals.end(), GV); if (I == Globals.end() || *I != GV) { Globals.insert(I, GV); NodeType |= GlobalNode; } } // removeGlobal - Remove the specified global that is explicitly in the globals // list. void DSNode::removeGlobal(GlobalValue *GV) { std::vector::iterator I = std::lower_bound(Globals.begin(), Globals.end(), GV); assert(I != Globals.end() && *I == GV && "Global not in node!"); Globals.erase(I); } /// foldNodeCompletely - If we determine that this node has some funny /// behavior happening to it that we cannot represent, we fold it down to a /// single, completely pessimistic, node. This node is represented as a /// single byte with a single TypeEntry of "void". /// void DSNode::foldNodeCompletely() { if (isNodeCompletelyFolded()) return; // If this node is already folded... ++NumFolds; // If this node has a size that is <= 1, we don't need to create a forwarding // node. if (getSize() <= 1) { NodeType |= DSNode::Array; Ty = Type::VoidTy; Size = 1; assert(Links.size() <= 1 && "Size is 1, but has more links?"); Links.resize(1); } else { // Create the node we are going to forward to. This is required because // some referrers may have an offset that is > 0. By forcing them to // forward, the forwarder has the opportunity to correct the offset. DSNode *DestNode = new DSNode(0, ParentGraph); DestNode->NodeType = NodeType|DSNode::Array; DestNode->Ty = Type::VoidTy; DestNode->Size = 1; DestNode->Globals.swap(Globals); // Start forwarding to the destination node... forwardNode(DestNode, 0); if (!Links.empty()) { DestNode->Links.reserve(1); DSNodeHandle NH(DestNode); DestNode->Links.push_back(Links[0]); // If we have links, merge all of our outgoing links together... for (unsigned i = Links.size()-1; i != 0; --i) NH.getNode()->Links[0].mergeWith(Links[i]); Links.clear(); } else { DestNode->Links.resize(1); } } } /// isNodeCompletelyFolded - Return true if this node has been completely /// folded down to something that can never be expanded, effectively losing /// all of the field sensitivity that may be present in the node. /// bool DSNode::isNodeCompletelyFolded() const { return getSize() == 1 && Ty == Type::VoidTy && isArray(); } /// addFullGlobalsList - Compute the full set of global values that are /// represented by this node. Unlike getGlobalsList(), this requires fair /// amount of work to compute, so don't treat this method call as free. void DSNode::addFullGlobalsList(std::vector &List) const { if (globals_begin() == globals_end()) return; EquivalenceClasses &EC = getParentGraph()->getGlobalECs(); for (globals_iterator I = globals_begin(), E = globals_end(); I != E; ++I) { EquivalenceClasses::iterator ECI = EC.findValue(*I); if (ECI == EC.end()) List.push_back(*I); else List.insert(List.end(), EC.member_begin(ECI), EC.member_end()); } } /// addFullFunctionList - Identical to addFullGlobalsList, but only return the /// functions in the full list. void DSNode::addFullFunctionList(std::vector &List) const { if (globals_begin() == globals_end()) return; EquivalenceClasses &EC = getParentGraph()->getGlobalECs(); for (globals_iterator I = globals_begin(), E = globals_end(); I != E; ++I) { EquivalenceClasses::iterator ECI = EC.findValue(*I); if (ECI == EC.end()) { if (Function *F = dyn_cast(*I)) List.push_back(F); } else { for (EquivalenceClasses::member_iterator MI = EC.member_begin(ECI), E = EC.member_end(); MI != E; ++MI) if (Function *F = dyn_cast(*MI)) List.push_back(F); } } } namespace { /// TypeElementWalker Class - Used for implementation of physical subtyping... /// class TypeElementWalker { struct StackState { const Type *Ty; unsigned Offset; unsigned Idx; StackState(const Type *T, unsigned Off = 0) : Ty(T), Offset(Off), Idx(0) {} }; std::vector Stack; const TargetData &TD; public: TypeElementWalker(const Type *T, const TargetData &td) : TD(td) { Stack.push_back(T); StepToLeaf(); } bool isDone() const { return Stack.empty(); } const Type *getCurrentType() const { return Stack.back().Ty; } unsigned getCurrentOffset() const { return Stack.back().Offset; } void StepToNextType() { PopStackAndAdvance(); StepToLeaf(); } private: /// PopStackAndAdvance - Pop the current element off of the stack and /// advance the underlying element to the next contained member. void PopStackAndAdvance() { assert(!Stack.empty() && "Cannot pop an empty stack!"); Stack.pop_back(); while (!Stack.empty()) { StackState &SS = Stack.back(); if (const StructType *ST = dyn_cast(SS.Ty)) { ++SS.Idx; if (SS.Idx != ST->getNumElements()) { const StructLayout *SL = TD.getStructLayout(ST); SS.Offset += unsigned(SL->MemberOffsets[SS.Idx]-SL->MemberOffsets[SS.Idx-1]); return; } Stack.pop_back(); // At the end of the structure } else { const ArrayType *AT = cast(SS.Ty); ++SS.Idx; if (SS.Idx != AT->getNumElements()) { SS.Offset += unsigned(TD.getTypeSize(AT->getElementType())); return; } Stack.pop_back(); // At the end of the array } } } /// StepToLeaf - Used by physical subtyping to move to the first leaf node /// on the type stack. void StepToLeaf() { if (Stack.empty()) return; while (!Stack.empty() && !Stack.back().Ty->isFirstClassType()) { StackState &SS = Stack.back(); if (const StructType *ST = dyn_cast(SS.Ty)) { if (ST->getNumElements() == 0) { assert(SS.Idx == 0); PopStackAndAdvance(); } else { // Step into the structure... assert(SS.Idx < ST->getNumElements()); const StructLayout *SL = TD.getStructLayout(ST); Stack.push_back(StackState(ST->getElementType(SS.Idx), SS.Offset+unsigned(SL->MemberOffsets[SS.Idx]))); } } else { const ArrayType *AT = cast(SS.Ty); if (AT->getNumElements() == 0) { assert(SS.Idx == 0); PopStackAndAdvance(); } else { // Step into the array... assert(SS.Idx < AT->getNumElements()); Stack.push_back(StackState(AT->getElementType(), SS.Offset+SS.Idx* unsigned(TD.getTypeSize(AT->getElementType())))); } } } } }; } // end anonymous namespace /// ElementTypesAreCompatible - Check to see if the specified types are /// "physically" compatible. If so, return true, else return false. We only /// have to check the fields in T1: T2 may be larger than T1. If AllowLargerT1 /// is true, then we also allow a larger T1. /// static bool ElementTypesAreCompatible(const Type *T1, const Type *T2, bool AllowLargerT1, const TargetData &TD){ TypeElementWalker T1W(T1, TD), T2W(T2, TD); while (!T1W.isDone() && !T2W.isDone()) { if (T1W.getCurrentOffset() != T2W.getCurrentOffset()) return false; const Type *T1 = T1W.getCurrentType(); const Type *T2 = T2W.getCurrentType(); if (T1 != T2 && !T1->isLosslesslyConvertibleTo(T2)) return false; T1W.StepToNextType(); T2W.StepToNextType(); } return AllowLargerT1 || T1W.isDone(); } /// mergeTypeInfo - This method merges the specified type into the current node /// at the specified offset. This may update the current node's type record if /// this gives more information to the node, it may do nothing to the node if /// this information is already known, or it may merge the node completely (and /// return true) if the information is incompatible with what is already known. /// /// This method returns true if the node is completely folded, otherwise false. /// bool DSNode::mergeTypeInfo(const Type *NewTy, unsigned Offset, bool FoldIfIncompatible) { const TargetData &TD = getTargetData(); // Check to make sure the Size member is up-to-date. Size can be one of the // following: // Size = 0, Ty = Void: Nothing is known about this node. // Size = 0, Ty = FnTy: FunctionPtr doesn't have a size, so we use zero // Size = 1, Ty = Void, Array = 1: The node is collapsed // Otherwise, sizeof(Ty) = Size // assert(((Size == 0 && Ty == Type::VoidTy && !isArray()) || (Size == 0 && !Ty->isSized() && !isArray()) || (Size == 1 && Ty == Type::VoidTy && isArray()) || (Size == 0 && !Ty->isSized() && !isArray()) || (TD.getTypeSize(Ty) == Size)) && "Size member of DSNode doesn't match the type structure!"); assert(NewTy != Type::VoidTy && "Cannot merge void type into DSNode!"); if (Offset == 0 && NewTy == Ty) return false; // This should be a common case, handle it efficiently // Return true immediately if the node is completely folded. if (isNodeCompletelyFolded()) return true; // If this is an array type, eliminate the outside arrays because they won't // be used anyway. This greatly reduces the size of large static arrays used // as global variables, for example. // bool WillBeArray = false; while (const ArrayType *AT = dyn_cast(NewTy)) { // FIXME: we might want to keep small arrays, but must be careful about // things like: [2 x [10000 x int*]] NewTy = AT->getElementType(); WillBeArray = true; } // Figure out how big the new type we're merging in is... unsigned NewTySize = NewTy->isSized() ? (unsigned)TD.getTypeSize(NewTy) : 0; // Otherwise check to see if we can fold this type into the current node. If // we can't, we fold the node completely, if we can, we potentially update our // internal state. // if (Ty == Type::VoidTy) { // If this is the first type that this node has seen, just accept it without // question.... assert(Offset == 0 && !isArray() && "Cannot have an offset into a void node!"); // If this node would have to have an unreasonable number of fields, just // collapse it. This can occur for fortran common blocks, which have stupid // things like { [100000000 x double], [1000000 x double] }. unsigned NumFields = (NewTySize+DS::PointerSize-1) >> DS::PointerShift; if (NumFields > 256) { foldNodeCompletely(); return true; } Ty = NewTy; NodeType &= ~Array; if (WillBeArray) NodeType |= Array; Size = NewTySize; // Calculate the number of outgoing links from this node. Links.resize(NumFields); return false; } // Handle node expansion case here... if (Offset+NewTySize > Size) { // It is illegal to grow this node if we have treated it as an array of // objects... if (isArray()) { if (FoldIfIncompatible) foldNodeCompletely(); return true; } if (Offset) { // We could handle this case, but we don't for now... std::cerr << "UNIMP: Trying to merge a growth type into " << "offset != 0: Collapsing!\n"; if (FoldIfIncompatible) foldNodeCompletely(); return true; } // Okay, the situation is nice and simple, we are trying to merge a type in // at offset 0 that is bigger than our current type. Implement this by // switching to the new type and then merge in the smaller one, which should // hit the other code path here. If the other code path decides it's not // ok, it will collapse the node as appropriate. // // If this node would have to have an unreasonable number of fields, just // collapse it. This can occur for fortran common blocks, which have stupid // things like { [100000000 x double], [1000000 x double] }. unsigned NumFields = (NewTySize+DS::PointerSize-1) >> DS::PointerShift; if (NumFields > 256) { foldNodeCompletely(); return true; } const Type *OldTy = Ty; Ty = NewTy; NodeType &= ~Array; if (WillBeArray) NodeType |= Array; Size = NewTySize; // Must grow links to be the appropriate size... Links.resize(NumFields); // Merge in the old type now... which is guaranteed to be smaller than the // "current" type. return mergeTypeInfo(OldTy, 0); } assert(Offset <= Size && "Cannot merge something into a part of our type that doesn't exist!"); // Find the section of Ty that NewTy overlaps with... first we find the // type that starts at offset Offset. // unsigned O = 0; const Type *SubType = Ty; while (O < Offset) { assert(Offset-O < TD.getTypeSize(SubType) && "Offset out of range!"); switch (SubType->getTypeID()) { case Type::StructTyID: { const StructType *STy = cast(SubType); const StructLayout &SL = *TD.getStructLayout(STy); unsigned i = SL.getElementContainingOffset(Offset-O); // The offset we are looking for must be in the i'th element... SubType = STy->getElementType(i); O += (unsigned)SL.MemberOffsets[i]; break; } case Type::ArrayTyID: { SubType = cast(SubType)->getElementType(); unsigned ElSize = (unsigned)TD.getTypeSize(SubType); unsigned Remainder = (Offset-O) % ElSize; O = Offset-Remainder; break; } default: if (FoldIfIncompatible) foldNodeCompletely(); return true; } } assert(O == Offset && "Could not achieve the correct offset!"); // If we found our type exactly, early exit if (SubType == NewTy) return false; // Differing function types don't require us to merge. They are not values // anyway. if (isa(SubType) && isa(NewTy)) return false; unsigned SubTypeSize = SubType->isSized() ? (unsigned)TD.getTypeSize(SubType) : 0; // Ok, we are getting desperate now. Check for physical subtyping, where we // just require each element in the node to be compatible. if (NewTySize <= SubTypeSize && NewTySize && NewTySize < 256 && SubTypeSize && SubTypeSize < 256 && ElementTypesAreCompatible(NewTy, SubType, !isArray(), TD)) return false; // Okay, so we found the leader type at the offset requested. Search the list // of types that starts at this offset. If SubType is currently an array or // structure, the type desired may actually be the first element of the // composite type... // unsigned PadSize = SubTypeSize; // Size, including pad memory which is ignored while (SubType != NewTy) { const Type *NextSubType = 0; unsigned NextSubTypeSize = 0; unsigned NextPadSize = 0; switch (SubType->getTypeID()) { case Type::StructTyID: { const StructType *STy = cast(SubType); const StructLayout &SL = *TD.getStructLayout(STy); if (SL.MemberOffsets.size() > 1) NextPadSize = (unsigned)SL.MemberOffsets[1]; else NextPadSize = SubTypeSize; NextSubType = STy->getElementType(0); NextSubTypeSize = (unsigned)TD.getTypeSize(NextSubType); break; } case Type::ArrayTyID: NextSubType = cast(SubType)->getElementType(); NextSubTypeSize = (unsigned)TD.getTypeSize(NextSubType); NextPadSize = NextSubTypeSize; break; default: ; // fall out } if (NextSubType == 0) break; // In the default case, break out of the loop if (NextPadSize < NewTySize) break; // Don't allow shrinking to a smaller type than NewTySize SubType = NextSubType; SubTypeSize = NextSubTypeSize; PadSize = NextPadSize; } // If we found the type exactly, return it... if (SubType == NewTy) return false; // Check to see if we have a compatible, but different type... if (NewTySize == SubTypeSize) { // Check to see if this type is obviously convertible... int -> uint f.e. if (NewTy->isLosslesslyConvertibleTo(SubType)) return false; // Check to see if we have a pointer & integer mismatch going on here, // loading a pointer as a long, for example. // if (SubType->isInteger() && isa(NewTy) || NewTy->isInteger() && isa(SubType)) return false; } else if (NewTySize > SubTypeSize && NewTySize <= PadSize) { // We are accessing the field, plus some structure padding. Ignore the // structure padding. return false; } Module *M = 0; if (getParentGraph()->retnodes_begin() != getParentGraph()->retnodes_end()) M = getParentGraph()->retnodes_begin()->first->getParent(); DEBUG(std::cerr << "MergeTypeInfo Folding OrigTy: "; WriteTypeSymbolic(std::cerr, Ty, M) << "\n due to:"; WriteTypeSymbolic(std::cerr, NewTy, M) << " @ " << Offset << "!\n" << "SubType: "; WriteTypeSymbolic(std::cerr, SubType, M) << "\n\n"); if (FoldIfIncompatible) foldNodeCompletely(); return true; } /// addEdgeTo - Add an edge from the current node to the specified node. This /// can cause merging of nodes in the graph. /// void DSNode::addEdgeTo(unsigned Offset, const DSNodeHandle &NH) { if (NH.isNull()) return; // Nothing to do DSNodeHandle &ExistingEdge = getLink(Offset); if (!ExistingEdge.isNull()) { // Merge the two nodes... ExistingEdge.mergeWith(NH); } else { // No merging to perform... setLink(Offset, NH); // Just force a link in there... } } /// MergeSortedVectors - Efficiently merge a vector into another vector where /// duplicates are not allowed and both are sorted. This assumes that 'T's are /// efficiently copyable and have sane comparison semantics. /// static void MergeSortedVectors(std::vector &Dest, const std::vector &Src) { // By far, the most common cases will be the simple ones. In these cases, // avoid having to allocate a temporary vector... // if (Src.empty()) { // Nothing to merge in... return; } else if (Dest.empty()) { // Just copy the result in... Dest = Src; } else if (Src.size() == 1) { // Insert a single element... const GlobalValue *V = Src[0]; std::vector::iterator I = std::lower_bound(Dest.begin(), Dest.end(), V); if (I == Dest.end() || *I != Src[0]) // If not already contained... Dest.insert(I, Src[0]); } else if (Dest.size() == 1) { GlobalValue *Tmp = Dest[0]; // Save value in temporary... Dest = Src; // Copy over list... std::vector::iterator I = std::lower_bound(Dest.begin(), Dest.end(), Tmp); if (I == Dest.end() || *I != Tmp) // If not already contained... Dest.insert(I, Tmp); } else { // Make a copy to the side of Dest... std::vector Old(Dest); // Make space for all of the type entries now... Dest.resize(Dest.size()+Src.size()); // Merge the two sorted ranges together... into Dest. std::merge(Old.begin(), Old.end(), Src.begin(), Src.end(), Dest.begin()); // Now erase any duplicate entries that may have accumulated into the // vectors (because they were in both of the input sets) Dest.erase(std::unique(Dest.begin(), Dest.end()), Dest.end()); } } void DSNode::mergeGlobals(const std::vector &RHS) { MergeSortedVectors(Globals, RHS); } // MergeNodes - Helper function for DSNode::mergeWith(). // This function does the hard work of merging two nodes, CurNodeH // and NH after filtering out trivial cases and making sure that // CurNodeH.offset >= NH.offset. // // ***WARNING*** // Since merging may cause either node to go away, we must always // use the node-handles to refer to the nodes. These node handles are // automatically updated during merging, so will always provide access // to the correct node after a merge. // void DSNode::MergeNodes(DSNodeHandle& CurNodeH, DSNodeHandle& NH) { assert(CurNodeH.getOffset() >= NH.getOffset() && "This should have been enforced in the caller."); assert(CurNodeH.getNode()->getParentGraph()==NH.getNode()->getParentGraph() && "Cannot merge two nodes that are not in the same graph!"); // Now we know that Offset >= NH.Offset, so convert it so our "Offset" (with // respect to NH.Offset) is now zero. NOffset is the distance from the base // of our object that N starts from. // unsigned NOffset = CurNodeH.getOffset()-NH.getOffset(); unsigned NSize = NH.getNode()->getSize(); // If the two nodes are of different size, and the smaller node has the array // bit set, collapse! if (NSize != CurNodeH.getNode()->getSize()) { #if COLLAPSE_ARRAYS_AGGRESSIVELY if (NSize < CurNodeH.getNode()->getSize()) { if (NH.getNode()->isArray()) NH.getNode()->foldNodeCompletely(); } else if (CurNodeH.getNode()->isArray()) { NH.getNode()->foldNodeCompletely(); } #endif } // Merge the type entries of the two nodes together... if (NH.getNode()->Ty != Type::VoidTy) CurNodeH.getNode()->mergeTypeInfo(NH.getNode()->Ty, NOffset); assert(!CurNodeH.getNode()->isDeadNode()); // If we are merging a node with a completely folded node, then both nodes are // now completely folded. // if (CurNodeH.getNode()->isNodeCompletelyFolded()) { if (!NH.getNode()->isNodeCompletelyFolded()) { NH.getNode()->foldNodeCompletely(); assert(NH.getNode() && NH.getOffset() == 0 && "folding did not make offset 0?"); NOffset = NH.getOffset(); NSize = NH.getNode()->getSize(); assert(NOffset == 0 && NSize == 1); } } else if (NH.getNode()->isNodeCompletelyFolded()) { CurNodeH.getNode()->foldNodeCompletely(); assert(CurNodeH.getNode() && CurNodeH.getOffset() == 0 && "folding did not make offset 0?"); NSize = NH.getNode()->getSize(); NOffset = NH.getOffset(); assert(NOffset == 0 && NSize == 1); } DSNode *N = NH.getNode(); if (CurNodeH.getNode() == N || N == 0) return; assert(!CurNodeH.getNode()->isDeadNode()); // Merge the NodeType information. CurNodeH.getNode()->NodeType |= N->NodeType; // Start forwarding to the new node! N->forwardNode(CurNodeH.getNode(), NOffset); assert(!CurNodeH.getNode()->isDeadNode()); // Make all of the outgoing links of N now be outgoing links of CurNodeH. // for (unsigned i = 0; i < N->getNumLinks(); ++i) { DSNodeHandle &Link = N->getLink(i << DS::PointerShift); if (Link.getNode()) { // Compute the offset into the current node at which to // merge this link. In the common case, this is a linear // relation to the offset in the original node (with // wrapping), but if the current node gets collapsed due to // recursive merging, we must make sure to merge in all remaining // links at offset zero. unsigned MergeOffset = 0; DSNode *CN = CurNodeH.getNode(); if (CN->Size != 1) MergeOffset = ((i << DS::PointerShift)+NOffset) % CN->getSize(); CN->addEdgeTo(MergeOffset, Link); } } // Now that there are no outgoing edges, all of the Links are dead. N->Links.clear(); // Merge the globals list... if (!N->Globals.empty()) { CurNodeH.getNode()->mergeGlobals(N->Globals); // Delete the globals from the old node... std::vector().swap(N->Globals); } } /// mergeWith - Merge this node and the specified node, moving all links to and /// from the argument node into the current node, deleting the node argument. /// Offset indicates what offset the specified node is to be merged into the /// current node. /// /// The specified node may be a null pointer (in which case, we update it to /// point to this node). /// void DSNode::mergeWith(const DSNodeHandle &NH, unsigned Offset) { DSNode *N = NH.getNode(); if (N == this && NH.getOffset() == Offset) return; // Noop // If the RHS is a null node, make it point to this node! if (N == 0) { NH.mergeWith(DSNodeHandle(this, Offset)); return; } assert(!N->isDeadNode() && !isDeadNode()); assert(!hasNoReferrers() && "Should not try to fold a useless node!"); if (N == this) { // We cannot merge two pieces of the same node together, collapse the node // completely. DEBUG(std::cerr << "Attempting to merge two chunks of" << " the same node together!\n"); foldNodeCompletely(); return; } // If both nodes are not at offset 0, make sure that we are merging the node // at an later offset into the node with the zero offset. // if (Offset < NH.getOffset()) { N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset()); return; } else if (Offset == NH.getOffset() && getSize() < N->getSize()) { // If the offsets are the same, merge the smaller node into the bigger node N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset()); return; } // Ok, now we can merge the two nodes. Use a static helper that works with // two node handles, since "this" may get merged away at intermediate steps. DSNodeHandle CurNodeH(this, Offset); DSNodeHandle NHCopy(NH); DSNode::MergeNodes(CurNodeH, NHCopy); } //===----------------------------------------------------------------------===// // ReachabilityCloner Implementation //===----------------------------------------------------------------------===// DSNodeHandle ReachabilityCloner::getClonedNH(const DSNodeHandle &SrcNH) { if (SrcNH.isNull()) return DSNodeHandle(); const DSNode *SN = SrcNH.getNode(); DSNodeHandle &NH = NodeMap[SN]; if (!NH.isNull()) { // Node already mapped? DSNode *NHN = NH.getNode(); return DSNodeHandle(NHN, NH.getOffset()+SrcNH.getOffset()); } // If SrcNH has globals and the destination graph has one of the same globals, // merge this node with the destination node, which is much more efficient. if (SN->globals_begin() != SN->globals_end()) { DSScalarMap &DestSM = Dest.getScalarMap(); for (DSNode::globals_iterator I = SN->globals_begin(),E = SN->globals_end(); I != E; ++I) { GlobalValue *GV = *I; DSScalarMap::iterator GI = DestSM.find(GV); if (GI != DestSM.end() && !GI->second.isNull()) { // We found one, use merge instead! merge(GI->second, Src.getNodeForValue(GV)); assert(!NH.isNull() && "Didn't merge node!"); DSNode *NHN = NH.getNode(); return DSNodeHandle(NHN, NH.getOffset()+SrcNH.getOffset()); } } } DSNode *DN = new DSNode(*SN, &Dest, true /* Null out all links */); DN->maskNodeTypes(BitsToKeep); NH = DN; // Next, recursively clone all outgoing links as necessary. Note that // adding these links can cause the node to collapse itself at any time, and // the current node may be merged with arbitrary other nodes. For this // reason, we must always go through NH. DN = 0; for (unsigned i = 0, e = SN->getNumLinks(); i != e; ++i) { const DSNodeHandle &SrcEdge = SN->getLink(i << DS::PointerShift); if (!SrcEdge.isNull()) { const DSNodeHandle &DestEdge = getClonedNH(SrcEdge); // Compute the offset into the current node at which to // merge this link. In the common case, this is a linear // relation to the offset in the original node (with // wrapping), but if the current node gets collapsed due to // recursive merging, we must make sure to merge in all remaining // links at offset zero. unsigned MergeOffset = 0; DSNode *CN = NH.getNode(); if (CN->getSize() != 1) MergeOffset = ((i << DS::PointerShift)+NH.getOffset()) % CN->getSize(); CN->addEdgeTo(MergeOffset, DestEdge); } } // If this node contains any globals, make sure they end up in the scalar // map with the correct offset. for (DSNode::globals_iterator I = SN->globals_begin(), E = SN->globals_end(); I != E; ++I) { GlobalValue *GV = *I; const DSNodeHandle &SrcGNH = Src.getNodeForValue(GV); DSNodeHandle &DestGNH = NodeMap[SrcGNH.getNode()]; assert(DestGNH.getNode() == NH.getNode() &&"Global mapping inconsistent"); Dest.getNodeForValue(GV).mergeWith(DSNodeHandle(DestGNH.getNode(), DestGNH.getOffset()+SrcGNH.getOffset())); } NH.getNode()->mergeGlobals(SN->getGlobalsList()); return DSNodeHandle(NH.getNode(), NH.getOffset()+SrcNH.getOffset()); } void ReachabilityCloner::merge(const DSNodeHandle &NH, const DSNodeHandle &SrcNH) { if (SrcNH.isNull()) return; // Noop if (NH.isNull()) { // If there is no destination node, just clone the source and assign the // destination node to be it. NH.mergeWith(getClonedNH(SrcNH)); return; } // Okay, at this point, we know that we have both a destination and a source // node that need to be merged. Check to see if the source node has already // been cloned. const DSNode *SN = SrcNH.getNode(); DSNodeHandle &SCNH = NodeMap[SN]; // SourceClonedNodeHandle if (!SCNH.isNull()) { // Node already cloned? DSNode *SCNHN = SCNH.getNode(); NH.mergeWith(DSNodeHandle(SCNHN, SCNH.getOffset()+SrcNH.getOffset())); return; // Nothing to do! } // Okay, so the source node has not already been cloned. Instead of creating // a new DSNode, only to merge it into the one we already have, try to perform // the merge in-place. The only case we cannot handle here is when the offset // into the existing node is less than the offset into the virtual node we are // merging in. In this case, we have to extend the existing node, which // requires an allocation anyway. DSNode *DN = NH.getNode(); // Make sure the Offset is up-to-date if (NH.getOffset() >= SrcNH.getOffset()) { if (!DN->isNodeCompletelyFolded()) { // Make sure the destination node is folded if the source node is folded. if (SN->isNodeCompletelyFolded()) { DN->foldNodeCompletely(); DN = NH.getNode(); } else if (SN->getSize() != DN->getSize()) { // If the two nodes are of different size, and the smaller node has the // array bit set, collapse! #if COLLAPSE_ARRAYS_AGGRESSIVELY if (SN->getSize() < DN->getSize()) { if (SN->isArray()) { DN->foldNodeCompletely(); DN = NH.getNode(); } } else if (DN->isArray()) { DN->foldNodeCompletely(); DN = NH.getNode(); } #endif } // Merge the type entries of the two nodes together... if (SN->getType() != Type::VoidTy && !DN->isNodeCompletelyFolded()) { DN->mergeTypeInfo(SN->getType(), NH.getOffset()-SrcNH.getOffset()); DN = NH.getNode(); } } assert(!DN->isDeadNode()); // Merge the NodeType information. DN->mergeNodeFlags(SN->getNodeFlags() & BitsToKeep); // Before we start merging outgoing links and updating the scalar map, make // sure it is known that this is the representative node for the src node. SCNH = DSNodeHandle(DN, NH.getOffset()-SrcNH.getOffset()); // If the source node contains any globals, make sure they end up in the // scalar map with the correct offset. if (SN->globals_begin() != SN->globals_end()) { // Update the globals in the destination node itself. DN->mergeGlobals(SN->getGlobalsList()); // Update the scalar map for the graph we are merging the source node // into. for (DSNode::globals_iterator I = SN->globals_begin(), E = SN->globals_end(); I != E; ++I) { GlobalValue *GV = *I; const DSNodeHandle &SrcGNH = Src.getNodeForValue(GV); DSNodeHandle &DestGNH = NodeMap[SrcGNH.getNode()]; assert(DestGNH.getNode()==NH.getNode() &&"Global mapping inconsistent"); Dest.getNodeForValue(GV).mergeWith(DSNodeHandle(DestGNH.getNode(), DestGNH.getOffset()+SrcGNH.getOffset())); } NH.getNode()->mergeGlobals(SN->getGlobalsList()); } } else { // We cannot handle this case without allocating a temporary node. Fall // back on being simple. DSNode *NewDN = new DSNode(*SN, &Dest, true /* Null out all links */); NewDN->maskNodeTypes(BitsToKeep); unsigned NHOffset = NH.getOffset(); NH.mergeWith(DSNodeHandle(NewDN, SrcNH.getOffset())); assert(NH.getNode() && (NH.getOffset() > NHOffset || (NH.getOffset() == 0 && NH.getNode()->isNodeCompletelyFolded())) && "Merging did not adjust the offset!"); // Before we start merging outgoing links and updating the scalar map, make // sure it is known that this is the representative node for the src node. SCNH = DSNodeHandle(NH.getNode(), NH.getOffset()-SrcNH.getOffset()); // If the source node contained any globals, make sure to create entries // in the scalar map for them! for (DSNode::globals_iterator I = SN->globals_begin(), E = SN->globals_end(); I != E; ++I) { GlobalValue *GV = *I; const DSNodeHandle &SrcGNH = Src.getNodeForValue(GV); DSNodeHandle &DestGNH = NodeMap[SrcGNH.getNode()]; assert(DestGNH.getNode()==NH.getNode() &&"Global mapping inconsistent"); assert(SrcGNH.getNode() == SN && "Global mapping inconsistent"); Dest.getNodeForValue(GV).mergeWith(DSNodeHandle(DestGNH.getNode(), DestGNH.getOffset()+SrcGNH.getOffset())); } } // Next, recursively merge all outgoing links as necessary. Note that // adding these links can cause the destination node to collapse itself at // any time, and the current node may be merged with arbitrary other nodes. // For this reason, we must always go through NH. DN = 0; for (unsigned i = 0, e = SN->getNumLinks(); i != e; ++i) { const DSNodeHandle &SrcEdge = SN->getLink(i << DS::PointerShift); if (!SrcEdge.isNull()) { // Compute the offset into the current node at which to // merge this link. In the common case, this is a linear // relation to the offset in the original node (with // wrapping), but if the current node gets collapsed due to // recursive merging, we must make sure to merge in all remaining // links at offset zero. DSNode *CN = SCNH.getNode(); unsigned MergeOffset = ((i << DS::PointerShift)+SCNH.getOffset()) % CN->getSize(); DSNodeHandle Tmp = CN->getLink(MergeOffset); if (!Tmp.isNull()) { // Perform the recursive merging. Make sure to create a temporary NH, // because the Link can disappear in the process of recursive merging. merge(Tmp, SrcEdge); } else { Tmp.mergeWith(getClonedNH(SrcEdge)); // Merging this could cause all kinds of recursive things to happen, // culminating in the current node being eliminated. Since this is // possible, make sure to reaquire the link from 'CN'. unsigned MergeOffset = 0; CN = SCNH.getNode(); MergeOffset = ((i << DS::PointerShift)+SCNH.getOffset()) %CN->getSize(); CN->getLink(MergeOffset).mergeWith(Tmp); } } } } /// mergeCallSite - Merge the nodes reachable from the specified src call /// site into the nodes reachable from DestCS. void ReachabilityCloner::mergeCallSite(DSCallSite &DestCS, const DSCallSite &SrcCS) { merge(DestCS.getRetVal(), SrcCS.getRetVal()); unsigned MinArgs = DestCS.getNumPtrArgs(); if (SrcCS.getNumPtrArgs() < MinArgs) MinArgs = SrcCS.getNumPtrArgs(); for (unsigned a = 0; a != MinArgs; ++a) merge(DestCS.getPtrArg(a), SrcCS.getPtrArg(a)); for (unsigned a = MinArgs, e = SrcCS.getNumPtrArgs(); a != e; ++a) DestCS.addPtrArg(getClonedNH(SrcCS.getPtrArg(a))); } //===----------------------------------------------------------------------===// // DSCallSite Implementation //===----------------------------------------------------------------------===// // Define here to avoid including iOther.h and BasicBlock.h in DSGraph.h Function &DSCallSite::getCaller() const { return *Site.getInstruction()->getParent()->getParent(); } void DSCallSite::InitNH(DSNodeHandle &NH, const DSNodeHandle &Src, ReachabilityCloner &RC) { NH = RC.getClonedNH(Src); } //===----------------------------------------------------------------------===// // DSGraph Implementation //===----------------------------------------------------------------------===// /// getFunctionNames - Return a space separated list of the name of the /// functions in this graph (if any) std::string DSGraph::getFunctionNames() const { switch (getReturnNodes().size()) { case 0: return "Globals graph"; case 1: return retnodes_begin()->first->getName(); default: std::string Return; for (DSGraph::retnodes_iterator I = retnodes_begin(); I != retnodes_end(); ++I) Return += I->first->getName() + " "; Return.erase(Return.end()-1, Return.end()); // Remove last space character return Return; } } DSGraph::DSGraph(const DSGraph &G, EquivalenceClasses &ECs, unsigned CloneFlags) : GlobalsGraph(0), ScalarMap(ECs), TD(G.TD) { PrintAuxCalls = false; cloneInto(G, CloneFlags); } DSGraph::~DSGraph() { FunctionCalls.clear(); AuxFunctionCalls.clear(); ScalarMap.clear(); ReturnNodes.clear(); // Drop all intra-node references, so that assertions don't fail... for (node_iterator NI = node_begin(), E = node_end(); NI != E; ++NI) NI->dropAllReferences(); // Free all of the nodes. Nodes.clear(); } // dump - Allow inspection of graph in a debugger. void DSGraph::dump() const { print(std::cerr); } /// remapLinks - Change all of the Links in the current node according to the /// specified mapping. /// void DSNode::remapLinks(DSGraph::NodeMapTy &OldNodeMap) { for (unsigned i = 0, e = Links.size(); i != e; ++i) if (DSNode *N = Links[i].getNode()) { DSGraph::NodeMapTy::const_iterator ONMI = OldNodeMap.find(N); if (ONMI != OldNodeMap.end()) { DSNode *ONMIN = ONMI->second.getNode(); Links[i].setTo(ONMIN, Links[i].getOffset()+ONMI->second.getOffset()); } } } /// addObjectToGraph - This method can be used to add global, stack, and heap /// objects to the graph. This can be used when updating DSGraphs due to the /// introduction of new temporary objects. The new object is not pointed to /// and does not point to any other objects in the graph. DSNode *DSGraph::addObjectToGraph(Value *Ptr, bool UseDeclaredType) { assert(isa(Ptr->getType()) && "Ptr is not a pointer!"); const Type *Ty = cast(Ptr->getType())->getElementType(); DSNode *N = new DSNode(UseDeclaredType ? Ty : 0, this); assert(ScalarMap[Ptr].isNull() && "Object already in this graph!"); ScalarMap[Ptr] = N; if (GlobalValue *GV = dyn_cast(Ptr)) { N->addGlobal(GV); } else if (MallocInst *MI = dyn_cast(Ptr)) { N->setHeapNodeMarker(); } else if (AllocaInst *AI = dyn_cast(Ptr)) { N->setAllocaNodeMarker(); } else { assert(0 && "Illegal memory object input!"); } return N; } /// cloneInto - Clone the specified DSGraph into the current graph. The /// translated ScalarMap for the old function is filled into the ScalarMap /// for the graph, and the translated ReturnNodes map is returned into /// ReturnNodes. /// /// The CloneFlags member controls various aspects of the cloning process. /// void DSGraph::cloneInto(const DSGraph &G, unsigned CloneFlags) { TIME_REGION(X, "cloneInto"); assert(&G != this && "Cannot clone graph into itself!"); NodeMapTy OldNodeMap; // Remove alloca or mod/ref bits as specified... unsigned BitsToClear = ((CloneFlags & StripAllocaBit)? DSNode::AllocaNode : 0) | ((CloneFlags & StripModRefBits)? (DSNode::Modified | DSNode::Read) : 0) | ((CloneFlags & StripIncompleteBit)? DSNode::Incomplete : 0); BitsToClear |= DSNode::DEAD; // Clear dead flag... for (node_const_iterator I = G.node_begin(), E = G.node_end(); I != E; ++I) { assert(!I->isForwarding() && "Forward nodes shouldn't be in node list!"); DSNode *New = new DSNode(*I, this); New->maskNodeTypes(~BitsToClear); OldNodeMap[I] = New; } #ifndef NDEBUG Timer::addPeakMemoryMeasurement(); #endif // Rewrite the links in the new nodes to point into the current graph now. // Note that we don't loop over the node's list to do this. The problem is // that remaping links can cause recursive merging to happen, which means // that node_iterator's can get easily invalidated! Because of this, we // loop over the OldNodeMap, which contains all of the new nodes as the // .second element of the map elements. Also note that if we remap a node // more than once, we won't break anything. for (NodeMapTy::iterator I = OldNodeMap.begin(), E = OldNodeMap.end(); I != E; ++I) I->second.getNode()->remapLinks(OldNodeMap); // Copy the scalar map... merging all of the global nodes... for (DSScalarMap::const_iterator I = G.ScalarMap.begin(), E = G.ScalarMap.end(); I != E; ++I) { DSNodeHandle &MappedNode = OldNodeMap[I->second.getNode()]; DSNodeHandle &H = ScalarMap.getRawEntryRef(I->first); DSNode *MappedNodeN = MappedNode.getNode(); H.mergeWith(DSNodeHandle(MappedNodeN, I->second.getOffset()+MappedNode.getOffset())); } if (!(CloneFlags & DontCloneCallNodes)) { // Copy the function calls list. for (fc_iterator I = G.fc_begin(), E = G.fc_end(); I != E; ++I) FunctionCalls.push_back(DSCallSite(*I, OldNodeMap)); } if (!(CloneFlags & DontCloneAuxCallNodes)) { // Copy the auxiliary function calls list. for (afc_iterator I = G.afc_begin(), E = G.afc_end(); I != E; ++I) AuxFunctionCalls.push_back(DSCallSite(*I, OldNodeMap)); } // Map the return node pointers over... for (retnodes_iterator I = G.retnodes_begin(), E = G.retnodes_end(); I != E; ++I) { const DSNodeHandle &Ret = I->second; DSNodeHandle &MappedRet = OldNodeMap[Ret.getNode()]; DSNode *MappedRetN = MappedRet.getNode(); ReturnNodes.insert(std::make_pair(I->first, DSNodeHandle(MappedRetN, MappedRet.getOffset()+Ret.getOffset()))); } } /// spliceFrom - Logically perform the operation of cloning the RHS graph into /// this graph, then clearing the RHS graph. Instead of performing this as /// two seperate operations, do it as a single, much faster, one. /// void DSGraph::spliceFrom(DSGraph &RHS) { // Change all of the nodes in RHS to think we are their parent. for (NodeListTy::iterator I = RHS.Nodes.begin(), E = RHS.Nodes.end(); I != E; ++I) I->setParentGraph(this); // Take all of the nodes. Nodes.splice(Nodes.end(), RHS.Nodes); // Take all of the calls. FunctionCalls.splice(FunctionCalls.end(), RHS.FunctionCalls); AuxFunctionCalls.splice(AuxFunctionCalls.end(), RHS.AuxFunctionCalls); // Take all of the return nodes. if (ReturnNodes.empty()) { ReturnNodes.swap(RHS.ReturnNodes); } else { ReturnNodes.insert(RHS.ReturnNodes.begin(), RHS.ReturnNodes.end()); RHS.ReturnNodes.clear(); } // Merge the scalar map in. ScalarMap.spliceFrom(RHS.ScalarMap); } /// spliceFrom - Copy all entries from RHS, then clear RHS. /// void DSScalarMap::spliceFrom(DSScalarMap &RHS) { // Special case if this is empty. if (ValueMap.empty()) { ValueMap.swap(RHS.ValueMap); GlobalSet.swap(RHS.GlobalSet); } else { GlobalSet.insert(RHS.GlobalSet.begin(), RHS.GlobalSet.end()); for (ValueMapTy::iterator I = RHS.ValueMap.begin(), E = RHS.ValueMap.end(); I != E; ++I) ValueMap[I->first].mergeWith(I->second); RHS.ValueMap.clear(); } } /// getFunctionArgumentsForCall - Given a function that is currently in this /// graph, return the DSNodeHandles that correspond to the pointer-compatible /// function arguments. The vector is filled in with the return value (or /// null if it is not pointer compatible), followed by all of the /// pointer-compatible arguments. void DSGraph::getFunctionArgumentsForCall(Function *F, std::vector &Args) const { Args.push_back(getReturnNodeFor(*F)); for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; ++AI) if (isPointerType(AI->getType())) { Args.push_back(getNodeForValue(AI)); assert(!Args.back().isNull() && "Pointer argument w/o scalarmap entry!?"); } } namespace { // HackedGraphSCCFinder - This is used to find nodes that have a path from the // node to a node cloned by the ReachabilityCloner object contained. To be // extra obnoxious it ignores edges from nodes that are globals, and truncates // search at RC marked nodes. This is designed as an object so that // intermediate results can be memoized across invocations of // PathExistsToClonedNode. struct HackedGraphSCCFinder { ReachabilityCloner &RC; unsigned CurNodeId; std::vector SCCStack; std::map > NodeInfo; HackedGraphSCCFinder(ReachabilityCloner &rc) : RC(rc), CurNodeId(1) { // Remove null pointer as a special case. NodeInfo[0] = std::make_pair(0, false); } std::pair &VisitForSCCs(const DSNode *N); bool PathExistsToClonedNode(const DSNode *N) { return VisitForSCCs(N).second; } bool PathExistsToClonedNode(const DSCallSite &CS) { if (PathExistsToClonedNode(CS.getRetVal().getNode())) return true; for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i) if (PathExistsToClonedNode(CS.getPtrArg(i).getNode())) return true; return false; } }; } std::pair &HackedGraphSCCFinder:: VisitForSCCs(const DSNode *N) { std::map >::iterator NodeInfoIt = NodeInfo.lower_bound(N); if (NodeInfoIt != NodeInfo.end() && NodeInfoIt->first == N) return NodeInfoIt->second; unsigned Min = CurNodeId++; unsigned MyId = Min; std::pair &ThisNodeInfo = NodeInfo.insert(NodeInfoIt, std::make_pair(N, std::make_pair(MyId, false)))->second; // Base case: if we find a global, this doesn't reach the cloned graph // portion. if (N->isGlobalNode()) { ThisNodeInfo.second = false; return ThisNodeInfo; } // Base case: if this does reach the cloned graph portion... it does. :) if (RC.hasClonedNode(N)) { ThisNodeInfo.second = true; return ThisNodeInfo; } SCCStack.push_back(N); // Otherwise, check all successors. bool AnyDirectSuccessorsReachClonedNodes = false; for (DSNode::const_edge_iterator EI = N->edge_begin(), EE = N->edge_end(); EI != EE; ++EI) { std::pair &SuccInfo = VisitForSCCs(EI->getNode()); if (SuccInfo.first < Min) Min = SuccInfo.first; AnyDirectSuccessorsReachClonedNodes |= SuccInfo.second; } if (Min != MyId) return ThisNodeInfo; // Part of a large SCC. Leave self on stack. if (SCCStack.back() == N) { // Special case single node SCC. SCCStack.pop_back(); ThisNodeInfo.second = AnyDirectSuccessorsReachClonedNodes; return ThisNodeInfo; } // Find out if any direct successors of any node reach cloned nodes. if (!AnyDirectSuccessorsReachClonedNodes) for (unsigned i = SCCStack.size()-1; SCCStack[i] != N; --i) for (DSNode::const_edge_iterator EI = N->edge_begin(), EE = N->edge_end(); EI != EE; ++EI) if (DSNode *N = EI->getNode()) if (NodeInfo[N].second) { AnyDirectSuccessorsReachClonedNodes = true; goto OutOfLoop; } OutOfLoop: // If any successor reaches a cloned node, mark all nodes in this SCC as // reaching the cloned node. if (AnyDirectSuccessorsReachClonedNodes) while (SCCStack.back() != N) { NodeInfo[SCCStack.back()].second = true; SCCStack.pop_back(); } SCCStack.pop_back(); ThisNodeInfo.second = true; return ThisNodeInfo; } /// mergeInCallFromOtherGraph - This graph merges in the minimal number of /// nodes from G2 into 'this' graph, merging the bindings specified by the /// call site (in this graph) with the bindings specified by the vector in G2. /// The two DSGraphs must be different. /// void DSGraph::mergeInGraph(const DSCallSite &CS, std::vector &Args, const DSGraph &Graph, unsigned CloneFlags) { TIME_REGION(X, "mergeInGraph"); assert((CloneFlags & DontCloneCallNodes) && "Doesn't support copying of call nodes!"); // If this is not a recursive call, clone the graph into this graph... if (&Graph == this) { // Merge the return value with the return value of the context. Args[0].mergeWith(CS.getRetVal()); // Resolve all of the function arguments. for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i) { if (i == Args.size()-1) break; // Add the link from the argument scalar to the provided value. Args[i+1].mergeWith(CS.getPtrArg(i)); } return; } // Clone the callee's graph into the current graph, keeping track of where // scalars in the old graph _used_ to point, and of the new nodes matching // nodes of the old graph. ReachabilityCloner RC(*this, Graph, CloneFlags); // Map the return node pointer over. if (!CS.getRetVal().isNull()) RC.merge(CS.getRetVal(), Args[0]); // Map over all of the arguments. for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i) { if (i == Args.size()-1) break; // Add the link from the argument scalar to the provided value. RC.merge(CS.getPtrArg(i), Args[i+1]); } // We generally don't want to copy global nodes or aux calls from the callee // graph to the caller graph. However, we have to copy them if there is a // path from the node to a node we have already copied which does not go // through another global. Compute the set of node that can reach globals and // aux call nodes to copy over, then do it. std::vector AuxCallToCopy; std::vector GlobalsToCopy; // NodesReachCopiedNodes - Memoize results for efficiency. Contains a // true/false value for every visited node that reaches a copied node without // going through a global. HackedGraphSCCFinder SCCFinder(RC); if (!(CloneFlags & DontCloneAuxCallNodes)) for (afc_iterator I = Graph.afc_begin(), E = Graph.afc_end(); I!=E; ++I) if (SCCFinder.PathExistsToClonedNode(*I)) AuxCallToCopy.push_back(&*I); const DSScalarMap &GSM = Graph.getScalarMap(); for (DSScalarMap::global_iterator GI = GSM.global_begin(), E = GSM.global_end(); GI != E; ++GI) { DSNode *GlobalNode = Graph.getNodeForValue(*GI).getNode(); for (DSNode::edge_iterator EI = GlobalNode->edge_begin(), EE = GlobalNode->edge_end(); EI != EE; ++EI) if (SCCFinder.PathExistsToClonedNode(EI->getNode())) { GlobalsToCopy.push_back(*GI); break; } } // Copy aux calls that are needed. for (unsigned i = 0, e = AuxCallToCopy.size(); i != e; ++i) AuxFunctionCalls.push_back(DSCallSite(*AuxCallToCopy[i], RC)); // Copy globals that are needed. for (unsigned i = 0, e = GlobalsToCopy.size(); i != e; ++i) RC.getClonedNH(Graph.getNodeForValue(GlobalsToCopy[i])); } /// mergeInGraph - The method is used for merging graphs together. If the /// argument graph is not *this, it makes a clone of the specified graph, then /// merges the nodes specified in the call site with the formal arguments in the /// graph. /// void DSGraph::mergeInGraph(const DSCallSite &CS, Function &F, const DSGraph &Graph, unsigned CloneFlags) { // Set up argument bindings. std::vector Args; Graph.getFunctionArgumentsForCall(&F, Args); mergeInGraph(CS, Args, Graph, CloneFlags); } /// getCallSiteForArguments - Get the arguments and return value bindings for /// the specified function in the current graph. /// DSCallSite DSGraph::getCallSiteForArguments(Function &F) const { std::vector Args; for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) if (isPointerType(I->getType())) Args.push_back(getNodeForValue(I)); return DSCallSite(CallSite(), getReturnNodeFor(F), &F, Args); } /// getDSCallSiteForCallSite - Given an LLVM CallSite object that is live in /// the context of this graph, return the DSCallSite for it. DSCallSite DSGraph::getDSCallSiteForCallSite(CallSite CS) const { DSNodeHandle RetVal; Instruction *I = CS.getInstruction(); if (isPointerType(I->getType())) RetVal = getNodeForValue(I); std::vector Args; Args.reserve(CS.arg_end()-CS.arg_begin()); // Calculate the arguments vector... for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E; ++I) if (isPointerType((*I)->getType())) if (isa(*I)) Args.push_back(DSNodeHandle()); else Args.push_back(getNodeForValue(*I)); // Add a new function call entry... if (Function *F = CS.getCalledFunction()) return DSCallSite(CS, RetVal, F, Args); else return DSCallSite(CS, RetVal, getNodeForValue(CS.getCalledValue()).getNode(), Args); } // markIncompleteNodes - Mark the specified node as having contents that are not // known with the current analysis we have performed. Because a node makes all // of the nodes it can reach incomplete if the node itself is incomplete, we // must recursively traverse the data structure graph, marking all reachable // nodes as incomplete. // static void markIncompleteNode(DSNode *N) { // Stop recursion if no node, or if node already marked... if (N == 0 || N->isIncomplete()) return; // Actually mark the node N->setIncompleteMarker(); // Recursively process children... for (DSNode::edge_iterator I = N->edge_begin(),E = N->edge_end(); I != E; ++I) if (DSNode *DSN = I->getNode()) markIncompleteNode(DSN); } static void markIncomplete(DSCallSite &Call) { // Then the return value is certainly incomplete! markIncompleteNode(Call.getRetVal().getNode()); // All objects pointed to by function arguments are incomplete! for (unsigned i = 0, e = Call.getNumPtrArgs(); i != e; ++i) markIncompleteNode(Call.getPtrArg(i).getNode()); } // markIncompleteNodes - Traverse the graph, identifying nodes that may be // modified by other functions that have not been resolved yet. This marks // nodes that are reachable through three sources of "unknownness": // // Global Variables, Function Calls, and Incoming Arguments // // For any node that may have unknown components (because something outside the // scope of current analysis may have modified it), the 'Incomplete' flag is // added to the NodeType. // void DSGraph::markIncompleteNodes(unsigned Flags) { // Mark any incoming arguments as incomplete. if (Flags & DSGraph::MarkFormalArgs) for (ReturnNodesTy::iterator FI = ReturnNodes.begin(), E =ReturnNodes.end(); FI != E; ++FI) { Function &F = *FI->first; for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) if (isPointerType(I->getType())) markIncompleteNode(getNodeForValue(I).getNode()); markIncompleteNode(FI->second.getNode()); } // Mark stuff passed into functions calls as being incomplete. if (!shouldPrintAuxCalls()) for (std::list::iterator I = FunctionCalls.begin(), E = FunctionCalls.end(); I != E; ++I) markIncomplete(*I); else for (std::list::iterator I = AuxFunctionCalls.begin(), E = AuxFunctionCalls.end(); I != E; ++I) markIncomplete(*I); // Mark all global nodes as incomplete. for (DSScalarMap::global_iterator I = ScalarMap.global_begin(), E = ScalarMap.global_end(); I != E; ++I) if (GlobalVariable *GV = dyn_cast(*I)) if (!GV->hasInitializer() || // Always mark external globals incomp. (!GV->isConstant() && (Flags & DSGraph::IgnoreGlobals) == 0)) markIncompleteNode(ScalarMap[GV].getNode()); } static inline void killIfUselessEdge(DSNodeHandle &Edge) { if (DSNode *N = Edge.getNode()) // Is there an edge? if (N->getNumReferrers() == 1) // Does it point to a lonely node? // No interesting info? if ((N->getNodeFlags() & ~DSNode::Incomplete) == 0 && N->getType() == Type::VoidTy && !N->isNodeCompletelyFolded()) Edge.setTo(0, 0); // Kill the edge! } static inline bool nodeContainsExternalFunction(const DSNode *N) { std::vector Funcs; N->addFullFunctionList(Funcs); for (unsigned i = 0, e = Funcs.size(); i != e; ++i) if (Funcs[i]->isExternal()) return true; return false; } static void removeIdenticalCalls(std::list &Calls) { // Remove trivially identical function calls Calls.sort(); // Sort by callee as primary key! // Scan the call list cleaning it up as necessary... DSNodeHandle LastCalleeNode; Function *LastCalleeFunc = 0; unsigned NumDuplicateCalls = 0; bool LastCalleeContainsExternalFunction = false; unsigned NumDeleted = 0; for (std::list::iterator I = Calls.begin(), E = Calls.end(); I != E;) { DSCallSite &CS = *I; std::list::iterator OldIt = I++; if (!CS.isIndirectCall()) { LastCalleeNode = 0; } else { DSNode *Callee = CS.getCalleeNode(); // If the Callee is a useless edge, this must be an unreachable call site, // eliminate it. if (Callee->getNumReferrers() == 1 && Callee->isComplete() && Callee->getGlobalsList().empty()) { // No useful info? #ifndef NDEBUG std::cerr << "WARNING: Useless call site found.\n"; #endif Calls.erase(OldIt); ++NumDeleted; continue; } // If the last call site in the list has the same callee as this one, and // if the callee contains an external function, it will never be // resolvable, just merge the call sites. if (!LastCalleeNode.isNull() && LastCalleeNode.getNode() == Callee) { LastCalleeContainsExternalFunction = nodeContainsExternalFunction(Callee); std::list::iterator PrevIt = OldIt; --PrevIt; PrevIt->mergeWith(CS); // No need to keep this call anymore. Calls.erase(OldIt); ++NumDeleted; continue; } else { LastCalleeNode = Callee; } } // If the return value or any arguments point to a void node with no // information at all in it, and the call node is the only node to point // to it, remove the edge to the node (killing the node). // killIfUselessEdge(CS.getRetVal()); for (unsigned a = 0, e = CS.getNumPtrArgs(); a != e; ++a) killIfUselessEdge(CS.getPtrArg(a)); #if 0 // If this call site calls the same function as the last call site, and if // the function pointer contains an external function, this node will // never be resolved. Merge the arguments of the call node because no // information will be lost. // if ((CS.isDirectCall() && CS.getCalleeFunc() == LastCalleeFunc) || (CS.isIndirectCall() && CS.getCalleeNode() == LastCalleeNode)) { ++NumDuplicateCalls; if (NumDuplicateCalls == 1) { if (LastCalleeNode) LastCalleeContainsExternalFunction = nodeContainsExternalFunction(LastCalleeNode); else LastCalleeContainsExternalFunction = LastCalleeFunc->isExternal(); } // It is not clear why, but enabling this code makes DSA really // sensitive to node forwarding. Basically, with this enabled, DSA // performs different number of inlinings based on which nodes are // forwarding or not. This is clearly a problem, so this code is // disabled until this can be resolved. #if 1 if (LastCalleeContainsExternalFunction #if 0 || // This should be more than enough context sensitivity! // FIXME: Evaluate how many times this is tripped! NumDuplicateCalls > 20 #endif ) { std::list::iterator PrevIt = OldIt; --PrevIt; PrevIt->mergeWith(CS); // No need to keep this call anymore. Calls.erase(OldIt); ++NumDeleted; continue; } #endif } else { if (CS.isDirectCall()) { LastCalleeFunc = CS.getCalleeFunc(); LastCalleeNode = 0; } else { LastCalleeNode = CS.getCalleeNode(); LastCalleeFunc = 0; } NumDuplicateCalls = 0; } #endif if (I != Calls.end() && CS == *I) { LastCalleeNode = 0; Calls.erase(OldIt); ++NumDeleted; continue; } } // Resort now that we simplified things. Calls.sort(); // Now that we are in sorted order, eliminate duplicates. std::list::iterator CI = Calls.begin(), CE = Calls.end(); if (CI != CE) while (1) { std::list::iterator OldIt = CI++; if (CI == CE) break; // If this call site is now the same as the previous one, we can delete it // as a duplicate. if (*OldIt == *CI) { Calls.erase(CI); CI = OldIt; ++NumDeleted; } } //Calls.erase(std::unique(Calls.begin(), Calls.end()), Calls.end()); // Track the number of call nodes merged away... NumCallNodesMerged += NumDeleted; DEBUG(if (NumDeleted) std::cerr << "Merged " << NumDeleted << " call nodes.\n";); } // removeTriviallyDeadNodes - After the graph has been constructed, this method // removes all unreachable nodes that are created because they got merged with // other nodes in the graph. These nodes will all be trivially unreachable, so // we don't have to perform any non-trivial analysis here. // void DSGraph::removeTriviallyDeadNodes() { TIME_REGION(X, "removeTriviallyDeadNodes"); #if 0 /// NOTE: This code is disabled. This slows down DSA on 177.mesa /// substantially! // Loop over all of the nodes in the graph, calling getNode on each field. // This will cause all nodes to update their forwarding edges, causing // forwarded nodes to be delete-able. { TIME_REGION(X, "removeTriviallyDeadNodes:node_iterate"); for (node_iterator NI = node_begin(), E = node_end(); NI != E; ++NI) { DSNode &N = *NI; for (unsigned l = 0, e = N.getNumLinks(); l != e; ++l) N.getLink(l*N.getPointerSize()).getNode(); } } // NOTE: This code is disabled. Though it should, in theory, allow us to // remove more nodes down below, the scan of the scalar map is incredibly // expensive for certain programs (with large SCCs). In the future, if we can // make the scalar map scan more efficient, then we can reenable this. { TIME_REGION(X, "removeTriviallyDeadNodes:scalarmap"); // Likewise, forward any edges from the scalar nodes. While we are at it, // clean house a bit. for (DSScalarMap::iterator I = ScalarMap.begin(),E = ScalarMap.end();I != E;){ I->second.getNode(); ++I; } } #endif bool isGlobalsGraph = !GlobalsGraph; for (NodeListTy::iterator NI = Nodes.begin(), E = Nodes.end(); NI != E; ) { DSNode &Node = *NI; // Do not remove *any* global nodes in the globals graph. // This is a special case because such nodes may not have I, M, R flags set. if (Node.isGlobalNode() && isGlobalsGraph) { ++NI; continue; } if (Node.isComplete() && !Node.isModified() && !Node.isRead()) { // This is a useless node if it has no mod/ref info (checked above), // outgoing edges (which it cannot, as it is not modified in this // context), and it has no incoming edges. If it is a global node it may // have all of these properties and still have incoming edges, due to the // scalar map, so we check those now. // if (Node.getNumReferrers() == Node.getGlobalsList().size()) { const std::vector &Globals = Node.getGlobalsList(); // Loop through and make sure all of the globals are referring directly // to the node... for (unsigned j = 0, e = Globals.size(); j != e; ++j) { DSNode *N = getNodeForValue(Globals[j]).getNode(); assert(N == &Node && "ScalarMap doesn't match globals list!"); } // Make sure NumReferrers still agrees, if so, the node is truly dead. if (Node.getNumReferrers() == Globals.size()) { for (unsigned j = 0, e = Globals.size(); j != e; ++j) ScalarMap.erase(Globals[j]); Node.makeNodeDead(); ++NumTrivialGlobalDNE; } } } if (Node.getNodeFlags() == 0 && Node.hasNoReferrers()) { // This node is dead! NI = Nodes.erase(NI); // Erase & remove from node list. ++NumTrivialDNE; } else { ++NI; } } removeIdenticalCalls(FunctionCalls); removeIdenticalCalls(AuxFunctionCalls); } /// markReachableNodes - This method recursively traverses the specified /// DSNodes, marking any nodes which are reachable. All reachable nodes it adds /// to the set, which allows it to only traverse visited nodes once. /// void DSNode::markReachableNodes(hash_set &ReachableNodes) const { if (this == 0) return; assert(getForwardNode() == 0 && "Cannot mark a forwarded node!"); if (ReachableNodes.insert(this).second) // Is newly reachable? for (DSNode::const_edge_iterator I = edge_begin(), E = edge_end(); I != E; ++I) I->getNode()->markReachableNodes(ReachableNodes); } void DSCallSite::markReachableNodes(hash_set &Nodes) const { getRetVal().getNode()->markReachableNodes(Nodes); if (isIndirectCall()) getCalleeNode()->markReachableNodes(Nodes); for (unsigned i = 0, e = getNumPtrArgs(); i != e; ++i) getPtrArg(i).getNode()->markReachableNodes(Nodes); } // CanReachAliveNodes - Simple graph walker that recursively traverses the graph // looking for a node that is marked alive. If an alive node is found, return // true, otherwise return false. If an alive node is reachable, this node is // marked as alive... // static bool CanReachAliveNodes(DSNode *N, hash_set &Alive, hash_set &Visited, bool IgnoreGlobals) { if (N == 0) return false; assert(N->getForwardNode() == 0 && "Cannot mark a forwarded node!"); // If this is a global node, it will end up in the globals graph anyway, so we // don't need to worry about it. if (IgnoreGlobals && N->isGlobalNode()) return false; // If we know that this node is alive, return so! if (Alive.count(N)) return true; // Otherwise, we don't think the node is alive yet, check for infinite // recursion. if (Visited.count(N)) return false; // Found a cycle Visited.insert(N); // No recursion, insert into Visited... for (DSNode::edge_iterator I = N->edge_begin(),E = N->edge_end(); I != E; ++I) if (CanReachAliveNodes(I->getNode(), Alive, Visited, IgnoreGlobals)) { N->markReachableNodes(Alive); return true; } return false; } // CallSiteUsesAliveArgs - Return true if the specified call site can reach any // alive nodes. // static bool CallSiteUsesAliveArgs(const DSCallSite &CS, hash_set &Alive, hash_set &Visited, bool IgnoreGlobals) { if (CanReachAliveNodes(CS.getRetVal().getNode(), Alive, Visited, IgnoreGlobals)) return true; if (CS.isIndirectCall() && CanReachAliveNodes(CS.getCalleeNode(), Alive, Visited, IgnoreGlobals)) return true; for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i) if (CanReachAliveNodes(CS.getPtrArg(i).getNode(), Alive, Visited, IgnoreGlobals)) return true; return false; } // removeDeadNodes - Use a more powerful reachability analysis to eliminate // subgraphs that are unreachable. This often occurs because the data // structure doesn't "escape" into it's caller, and thus should be eliminated // from the caller's graph entirely. This is only appropriate to use when // inlining graphs. // void DSGraph::removeDeadNodes(unsigned Flags) { DEBUG(AssertGraphOK(); if (GlobalsGraph) GlobalsGraph->AssertGraphOK()); // Reduce the amount of work we have to do... remove dummy nodes left over by // merging... removeTriviallyDeadNodes(); TIME_REGION(X, "removeDeadNodes"); // FIXME: Merge non-trivially identical call nodes... // Alive - a set that holds all nodes found to be reachable/alive. hash_set Alive; std::vector > GlobalNodes; // Copy and merge all information about globals to the GlobalsGraph if this is // not a final pass (where unreachable globals are removed). // // Strip all alloca bits since the current function is only for the BU pass. // Strip all incomplete bits since they are short-lived properties and they // will be correctly computed when rematerializing nodes into the functions. // ReachabilityCloner GGCloner(*GlobalsGraph, *this, DSGraph::StripAllocaBit | DSGraph::StripIncompleteBit); // Mark all nodes reachable by (non-global) scalar nodes as alive... { TIME_REGION(Y, "removeDeadNodes:scalarscan"); for (DSScalarMap::iterator I = ScalarMap.begin(), E = ScalarMap.end(); I != E; ++I) if (isa(I->first)) { // Keep track of global nodes assert(!I->second.isNull() && "Null global node?"); assert(I->second.getNode()->isGlobalNode() && "Should be a global node!"); GlobalNodes.push_back(std::make_pair(I->first, I->second.getNode())); // Make sure that all globals are cloned over as roots. if (!(Flags & DSGraph::RemoveUnreachableGlobals)) { DSGraph::ScalarMapTy::iterator SMI = GlobalsGraph->getScalarMap().find(I->first); if (SMI != GlobalsGraph->getScalarMap().end()) GGCloner.merge(SMI->second, I->second); else GGCloner.getClonedNH(I->second); } } else { I->second.getNode()->markReachableNodes(Alive); } } // The return values are alive as well. for (ReturnNodesTy::iterator I = ReturnNodes.begin(), E = ReturnNodes.end(); I != E; ++I) I->second.getNode()->markReachableNodes(Alive); // Mark any nodes reachable by primary calls as alive... for (fc_iterator I = fc_begin(), E = fc_end(); I != E; ++I) I->markReachableNodes(Alive); // Now find globals and aux call nodes that are already live or reach a live // value (which makes them live in turn), and continue till no more are found. // bool Iterate; hash_set Visited; hash_set AuxFCallsAlive; do { Visited.clear(); // If any global node points to a non-global that is "alive", the global is // "alive" as well... Remove it from the GlobalNodes list so we only have // unreachable globals in the list. // Iterate = false; if (!(Flags & DSGraph::RemoveUnreachableGlobals)) for (unsigned i = 0; i != GlobalNodes.size(); ++i) if (CanReachAliveNodes(GlobalNodes[i].second, Alive, Visited, Flags & DSGraph::RemoveUnreachableGlobals)) { std::swap(GlobalNodes[i--], GlobalNodes.back()); // Move to end to... GlobalNodes.pop_back(); // erase efficiently Iterate = true; } // Mark only unresolvable call nodes for moving to the GlobalsGraph since // call nodes that get resolved will be difficult to remove from that graph. // The final unresolved call nodes must be handled specially at the end of // the BU pass (i.e., in main or other roots of the call graph). for (afc_iterator CI = afc_begin(), E = afc_end(); CI != E; ++CI) if (!AuxFCallsAlive.count(&*CI) && (CI->isIndirectCall() || CallSiteUsesAliveArgs(*CI, Alive, Visited, Flags & DSGraph::RemoveUnreachableGlobals))) { CI->markReachableNodes(Alive); AuxFCallsAlive.insert(&*CI); Iterate = true; } } while (Iterate); // Move dead aux function calls to the end of the list unsigned CurIdx = 0; for (std::list::iterator CI = AuxFunctionCalls.begin(), E = AuxFunctionCalls.end(); CI != E; ) if (AuxFCallsAlive.count(&*CI)) ++CI; else { // Copy and merge global nodes and dead aux call nodes into the // GlobalsGraph, and all nodes reachable from those nodes. Update their // target pointers using the GGCloner. // if (!(Flags & DSGraph::RemoveUnreachableGlobals)) GlobalsGraph->AuxFunctionCalls.push_back(DSCallSite(*CI, GGCloner)); AuxFunctionCalls.erase(CI++); } // We are finally done with the GGCloner so we can destroy it. GGCloner.destroy(); // At this point, any nodes which are visited, but not alive, are nodes // which can be removed. Loop over all nodes, eliminating completely // unreachable nodes. // std::vector DeadNodes; DeadNodes.reserve(Nodes.size()); for (NodeListTy::iterator NI = Nodes.begin(), E = Nodes.end(); NI != E;) { DSNode *N = NI++; assert(!N->isForwarding() && "Forwarded node in nodes list?"); if (!Alive.count(N)) { Nodes.remove(N); assert(!N->isForwarding() && "Cannot remove a forwarding node!"); DeadNodes.push_back(N); N->dropAllReferences(); ++NumDNE; } } // Remove all unreachable globals from the ScalarMap. // If flag RemoveUnreachableGlobals is set, GlobalNodes has only dead nodes. // In either case, the dead nodes will not be in the set Alive. for (unsigned i = 0, e = GlobalNodes.size(); i != e; ++i) if (!Alive.count(GlobalNodes[i].second)) ScalarMap.erase(GlobalNodes[i].first); else assert((Flags & DSGraph::RemoveUnreachableGlobals) && "non-dead global"); // Delete all dead nodes now since their referrer counts are zero. for (unsigned i = 0, e = DeadNodes.size(); i != e; ++i) delete DeadNodes[i]; DEBUG(AssertGraphOK(); GlobalsGraph->AssertGraphOK()); } void DSGraph::AssertNodeContainsGlobal(const DSNode *N, GlobalValue *GV) const { assert(std::find(N->globals_begin(),N->globals_end(), GV) != N->globals_end() && "Global value not in node!"); } void DSGraph::AssertCallSiteInGraph(const DSCallSite &CS) const { if (CS.isIndirectCall()) { AssertNodeInGraph(CS.getCalleeNode()); #if 0 if (CS.getNumPtrArgs() && CS.getCalleeNode() == CS.getPtrArg(0).getNode() && CS.getCalleeNode() && CS.getCalleeNode()->getGlobals().empty()) std::cerr << "WARNING: WEIRD CALL SITE FOUND!\n"; #endif } AssertNodeInGraph(CS.getRetVal().getNode()); for (unsigned j = 0, e = CS.getNumPtrArgs(); j != e; ++j) AssertNodeInGraph(CS.getPtrArg(j).getNode()); } void DSGraph::AssertCallNodesInGraph() const { for (fc_iterator I = fc_begin(), E = fc_end(); I != E; ++I) AssertCallSiteInGraph(*I); } void DSGraph::AssertAuxCallNodesInGraph() const { for (afc_iterator I = afc_begin(), E = afc_end(); I != E; ++I) AssertCallSiteInGraph(*I); } void DSGraph::AssertGraphOK() const { for (node_const_iterator NI = node_begin(), E = node_end(); NI != E; ++NI) NI->assertOK(); for (ScalarMapTy::const_iterator I = ScalarMap.begin(), E = ScalarMap.end(); I != E; ++I) { assert(!I->second.isNull() && "Null node in scalarmap!"); AssertNodeInGraph(I->second.getNode()); if (GlobalValue *GV = dyn_cast(I->first)) { assert(I->second.getNode()->isGlobalNode() && "Global points to node, but node isn't global?"); AssertNodeContainsGlobal(I->second.getNode(), GV); } } AssertCallNodesInGraph(); AssertAuxCallNodesInGraph(); // Check that all pointer arguments to any functions in this graph have // destinations. for (ReturnNodesTy::const_iterator RI = ReturnNodes.begin(), E = ReturnNodes.end(); RI != E; ++RI) { Function &F = *RI->first; for (Function::arg_iterator AI = F.arg_begin(); AI != F.arg_end(); ++AI) if (isPointerType(AI->getType())) assert(!getNodeForValue(AI).isNull() && "Pointer argument must be in the scalar map!"); } } /// computeNodeMapping - Given roots in two different DSGraphs, traverse the /// nodes reachable from the two graphs, computing the mapping of nodes from the /// first to the second graph. This mapping may be many-to-one (i.e. the first /// graph may have multiple nodes representing one node in the second graph), /// but it will not work if there is a one-to-many or many-to-many mapping. /// void DSGraph::computeNodeMapping(const DSNodeHandle &NH1, const DSNodeHandle &NH2, NodeMapTy &NodeMap, bool StrictChecking) { DSNode *N1 = NH1.getNode(), *N2 = NH2.getNode(); if (N1 == 0 || N2 == 0) return; DSNodeHandle &Entry = NodeMap[N1]; if (!Entry.isNull()) { // Termination of recursion! if (StrictChecking) { assert(Entry.getNode() == N2 && "Inconsistent mapping detected!"); assert((Entry.getOffset() == (NH2.getOffset()-NH1.getOffset()) || Entry.getNode()->isNodeCompletelyFolded()) && "Inconsistent mapping detected!"); } return; } Entry.setTo(N2, NH2.getOffset()-NH1.getOffset()); // Loop over all of the fields that N1 and N2 have in common, recursively // mapping the edges together now. int N2Idx = NH2.getOffset()-NH1.getOffset(); unsigned N2Size = N2->getSize(); if (N2Size == 0) return; // No edges to map to. for (unsigned i = 0, e = N1->getSize(); i < e; i += DS::PointerSize) { const DSNodeHandle &N1NH = N1->getLink(i); // Don't call N2->getLink if not needed (avoiding crash if N2Idx is not // aligned right). if (!N1NH.isNull()) { if (unsigned(N2Idx)+i < N2Size) computeNodeMapping(N1NH, N2->getLink(N2Idx+i), NodeMap); else computeNodeMapping(N1NH, N2->getLink(unsigned(N2Idx+i) % N2Size), NodeMap); } } } /// computeGToGGMapping - Compute the mapping of nodes in the global graph to /// nodes in this graph. void DSGraph::computeGToGGMapping(NodeMapTy &NodeMap) { DSGraph &GG = *getGlobalsGraph(); DSScalarMap &SM = getScalarMap(); for (DSScalarMap::global_iterator I = SM.global_begin(), E = SM.global_end(); I != E; ++I) DSGraph::computeNodeMapping(SM[*I], GG.getNodeForValue(*I), NodeMap); } /// computeGGToGMapping - Compute the mapping of nodes in the global graph to /// nodes in this graph. Note that any uses of this method are probably bugs, /// unless it is known that the globals graph has been merged into this graph! void DSGraph::computeGGToGMapping(InvNodeMapTy &InvNodeMap) { NodeMapTy NodeMap; computeGToGGMapping(NodeMap); while (!NodeMap.empty()) { InvNodeMap.insert(std::make_pair(NodeMap.begin()->second, NodeMap.begin()->first)); NodeMap.erase(NodeMap.begin()); } } /// computeCalleeCallerMapping - Given a call from a function in the current /// graph to the 'Callee' function (which lives in 'CalleeGraph'), compute the /// mapping of nodes from the callee to nodes in the caller. void DSGraph::computeCalleeCallerMapping(DSCallSite CS, const Function &Callee, DSGraph &CalleeGraph, NodeMapTy &NodeMap) { DSCallSite CalleeArgs = CalleeGraph.getCallSiteForArguments(const_cast(Callee)); computeNodeMapping(CalleeArgs.getRetVal(), CS.getRetVal(), NodeMap); unsigned NumArgs = CS.getNumPtrArgs(); if (NumArgs > CalleeArgs.getNumPtrArgs()) NumArgs = CalleeArgs.getNumPtrArgs(); for (unsigned i = 0; i != NumArgs; ++i) computeNodeMapping(CalleeArgs.getPtrArg(i), CS.getPtrArg(i), NodeMap); // Map the nodes that are pointed to by globals. DSScalarMap &CalleeSM = CalleeGraph.getScalarMap(); DSScalarMap &CallerSM = getScalarMap(); if (CalleeSM.global_size() >= CallerSM.global_size()) { for (DSScalarMap::global_iterator GI = CallerSM.global_begin(), E = CallerSM.global_end(); GI != E; ++GI) if (CalleeSM.global_count(*GI)) computeNodeMapping(CalleeSM[*GI], CallerSM[*GI], NodeMap); } else { for (DSScalarMap::global_iterator GI = CalleeSM.global_begin(), E = CalleeSM.global_end(); GI != E; ++GI) if (CallerSM.global_count(*GI)) computeNodeMapping(CalleeSM[*GI], CallerSM[*GI], NodeMap); } }