//===-- llvm/CodeGen/MachineFunction.h --------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Collect native machine code for a function. This class contains a list of // MachineBasicBlock instances that make up the current compiled function. // // This class also contains pointers to various classes which hold // target-specific information about the generated code. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_MACHINEFUNCTION_H #define LLVM_CODEGEN_MACHINEFUNCTION_H #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/Support/Annotation.h" namespace llvm { class Function; class TargetMachine; class SSARegMap; class MachineFrameInfo; class MachineConstantPool; // ilist_traits template <> struct ilist_traits { // this is only set by the MachineFunction owning the ilist friend class MachineFunction; MachineFunction* Parent; public: ilist_traits() : Parent(0) { } static MachineBasicBlock* getPrev(MachineBasicBlock* N) { return N->Prev; } static MachineBasicBlock* getNext(MachineBasicBlock* N) { return N->Next; } static const MachineBasicBlock* getPrev(const MachineBasicBlock* N) { return N->Prev; } static const MachineBasicBlock* getNext(const MachineBasicBlock* N) { return N->Next; } static void setPrev(MachineBasicBlock* N, MachineBasicBlock* prev) { N->Prev = prev; } static void setNext(MachineBasicBlock* N, MachineBasicBlock* next) { N->Next = next; } static MachineBasicBlock* createSentinel(); static void destroySentinel(MachineBasicBlock *MBB) { delete MBB; } void addNodeToList(MachineBasicBlock* N); void removeNodeFromList(MachineBasicBlock* N); void transferNodesFromList(iplist > &toList, ilist_iterator first, ilist_iterator last); }; /// MachineFunctionInfo - This class can be derived from and used by targets to /// hold private target-specific information for each MachineFunction. Objects /// of type are accessed/created with MF::getInfo and destroyed when the /// MachineFunction is destroyed. struct MachineFunctionInfo { virtual ~MachineFunctionInfo() {}; }; class MachineFunction : private Annotation { const Function *Fn; const TargetMachine &Target; // List of machine basic blocks in function ilist BasicBlocks; // Keeping track of mapping from SSA values to registers SSARegMap *SSARegMapping; // Used to keep track of target-specific per-machine function information for // the target implementation. MachineFunctionInfo *MFInfo; // Keep track of objects allocated on the stack. MachineFrameInfo *FrameInfo; // Keep track of constants which are spilled to memory MachineConstantPool *ConstantPool; // Function-level unique numbering for MachineBasicBlocks. When a // MachineBasicBlock is inserted into a MachineFunction is it automatically // numbered and this vector keeps track of the mapping from ID's to MBB's. std::vector MBBNumbering; /// UsedPhysRegs - This is a new[]'d array of bools that is computed and set /// by the register allocator, and must be kept up to date by passes that run /// after register allocation (though most don't modify this). This is used /// so that the code generator knows which callee save registers to save and /// for other target specific uses. bool *UsedPhysRegs; /// LiveIns/LiveOuts - Keep track of the physical registers that are /// livein/liveout of the function. Live in values are typically arguments in /// registers, live out values are typically return values in registers. std::vector LiveIns, LiveOuts; public: MachineFunction(const Function *Fn, const TargetMachine &TM); ~MachineFunction(); /// getFunction - Return the LLVM function that this machine code represents /// const Function *getFunction() const { return Fn; } /// getTarget - Return the target machine this machine code is compiled with /// const TargetMachine &getTarget() const { return Target; } /// SSARegMap Interface... Keep track of information about each SSA virtual /// register, such as which register class it belongs to. /// SSARegMap *getSSARegMap() const { return SSARegMapping; } void clearSSARegMap(); /// getFrameInfo - Return the frame info object for the current function. /// This object contains information about objects allocated on the stack /// frame of the current function in an abstract way. /// MachineFrameInfo *getFrameInfo() const { return FrameInfo; } /// getConstantPool - Return the constant pool object for the current /// function. /// MachineConstantPool *getConstantPool() const { return ConstantPool; } /// MachineFunctionInfo - Keep track of various per-function pieces of /// information for backends that would like to do so. (Currently, /// SPARC and IA64.) /// template Ty *getInfo() { if (!MFInfo) MFInfo = new Ty(*this); assert((void*)dynamic_cast(MFInfo) == (void*)MFInfo && "Invalid concrete type or multiple inheritence for getInfo"); return static_cast(MFInfo); } /// setUsedPhysRegs - The register allocator should call this to initialized /// the UsedPhysRegs set. This should be passed a new[]'d array with entries /// for all of the physical registers that the target supports. Each array /// entry should be set to true iff the physical register is used within the /// function. void setUsedPhysRegs(bool *UPR) { UsedPhysRegs = UPR; } /// getUsedPhysregs - This returns the UsedPhysRegs array. This returns null /// before register allocation. bool *getUsedPhysregs() { return UsedPhysRegs; } const bool *getUsedPhysregs() const { return UsedPhysRegs; } /// isPhysRegUsed - Return true if the specified register is used in this /// function. This only works after register allocation. bool isPhysRegUsed(unsigned Reg) { return UsedPhysRegs[Reg]; } /// changePhyRegUsed - This method allows code that runs after register /// allocation to keep the PhysRegsUsed array up-to-date. void changePhyRegUsed(unsigned Reg, bool State) { UsedPhysRegs[Reg] = State; } // LiveIn/LiveOut management methods. /// addLiveIn/Out - Add the specified register as a live in/out. Note that it /// is an error to add the same register to the same set more than once. void addLiveIn(unsigned Reg) { LiveIns.push_back(Reg); } void addLiveOut(unsigned Reg) { LiveOuts.push_back(Reg); } // Iteration support for live in/out sets. These sets are kept in sorted // order by their register number. typedef std::vector::const_iterator liveinout_iterator; liveinout_iterator livein_begin() const { return LiveIns.begin(); } liveinout_iterator livein_end() const { return LiveIns.end(); } liveinout_iterator liveout_begin() const { return LiveOuts.begin(); } liveinout_iterator liveout_end() const { return LiveOuts.end(); } /// getBlockNumbered - MachineBasicBlocks are automatically numbered when they /// are inserted into the machine function. The block number for a machine /// basic block can be found by using the MBB::getBlockNumber method, this /// method provides the inverse mapping. /// MachineBasicBlock *getBlockNumbered(unsigned N) { assert(N < MBBNumbering.size() && "Illegal block number"); assert(MBBNumbering[N] && "Block was removed from the machine function!"); return MBBNumbering[N]; } /// getLastBlock - Returns the MachineBasicBlock with the greatest number MachineBasicBlock *getLastBlock() { return MBBNumbering.back(); } const MachineBasicBlock *getLastBlock() const { return MBBNumbering.back(); } /// print - Print out the MachineFunction in a format suitable for debugging /// to the specified stream. /// void print(std::ostream &OS) const; /// viewCFG - This function is meant for use from the debugger. You can just /// say 'call F->viewCFG()' and a ghostview window should pop up from the /// program, displaying the CFG of the current function with the code for each /// basic block inside. This depends on there being a 'dot' and 'gv' program /// in your path. /// void viewCFG() const; /// viewCFGOnly - This function is meant for use from the debugger. It works /// just like viewCFG, but it does not include the contents of basic blocks /// into the nodes, just the label. If you are only interested in the CFG /// this can make the graph smaller. /// void viewCFGOnly() const; /// dump - Print the current MachineFunction to cerr, useful for debugger use. /// void dump() const; /// construct - Allocate and initialize a MachineFunction for a given Function /// and Target /// static MachineFunction& construct(const Function *F, const TargetMachine &TM); /// destruct - Destroy the MachineFunction corresponding to a given Function /// static void destruct(const Function *F); /// get - Return a handle to a MachineFunction corresponding to the given /// Function. This should not be called before "construct()" for a given /// Function. /// static MachineFunction& get(const Function *F); // Provide accessors for the MachineBasicBlock list... typedef ilist BasicBlockListType; typedef BasicBlockListType::iterator iterator; typedef BasicBlockListType::const_iterator const_iterator; typedef std::reverse_iterator const_reverse_iterator; typedef std::reverse_iterator reverse_iterator; // Provide accessors for basic blocks... const BasicBlockListType &getBasicBlockList() const { return BasicBlocks; } BasicBlockListType &getBasicBlockList() { return BasicBlocks; } //===--------------------------------------------------------------------===// // BasicBlock iterator forwarding functions // iterator begin() { return BasicBlocks.begin(); } const_iterator begin() const { return BasicBlocks.begin(); } iterator end () { return BasicBlocks.end(); } const_iterator end () const { return BasicBlocks.end(); } reverse_iterator rbegin() { return BasicBlocks.rbegin(); } const_reverse_iterator rbegin() const { return BasicBlocks.rbegin(); } reverse_iterator rend () { return BasicBlocks.rend(); } const_reverse_iterator rend () const { return BasicBlocks.rend(); } unsigned size() const { return BasicBlocks.size(); } bool empty() const { return BasicBlocks.empty(); } const MachineBasicBlock &front() const { return BasicBlocks.front(); } MachineBasicBlock &front() { return BasicBlocks.front(); } const MachineBasicBlock & back() const { return BasicBlocks.back(); } MachineBasicBlock & back() { return BasicBlocks.back(); } //===--------------------------------------------------------------------===// // Internal functions used to automatically number MachineBasicBlocks // /// getNextMBBNumber - Returns the next unique number to be assigned /// to a MachineBasicBlock in this MachineFunction. /// unsigned addToMBBNumbering(MachineBasicBlock *MBB) { MBBNumbering.push_back(MBB); return MBBNumbering.size()-1; } /// removeFromMBBNumbering - Remove the specific machine basic block from our /// tracker, this is only really to be used by the MachineBasicBlock /// implementation. void removeFromMBBNumbering(unsigned N) { assert(N < MBBNumbering.size() && "Illegal basic block #"); MBBNumbering[N] = 0; } }; //===--------------------------------------------------------------------===// // GraphTraits specializations for function basic block graphs (CFGs) //===--------------------------------------------------------------------===// // Provide specializations of GraphTraits to be able to treat a // machine function as a graph of machine basic blocks... these are // the same as the machine basic block iterators, except that the root // node is implicitly the first node of the function. // template <> struct GraphTraits : public GraphTraits { static NodeType *getEntryNode(MachineFunction *F) { return &F->front(); } // nodes_iterator/begin/end - Allow iteration over all nodes in the graph typedef MachineFunction::iterator nodes_iterator; static nodes_iterator nodes_begin(MachineFunction *F) { return F->begin(); } static nodes_iterator nodes_end (MachineFunction *F) { return F->end(); } }; template <> struct GraphTraits : public GraphTraits { static NodeType *getEntryNode(const MachineFunction *F) { return &F->front(); } // nodes_iterator/begin/end - Allow iteration over all nodes in the graph typedef MachineFunction::const_iterator nodes_iterator; static nodes_iterator nodes_begin(const MachineFunction *F) { return F->begin(); } static nodes_iterator nodes_end (const MachineFunction *F) { return F->end(); } }; // Provide specializations of GraphTraits to be able to treat a function as a // graph of basic blocks... and to walk it in inverse order. Inverse order for // a function is considered to be when traversing the predecessor edges of a BB // instead of the successor edges. // template <> struct GraphTraits > : public GraphTraits > { static NodeType *getEntryNode(Inverse G) { return &G.Graph->front(); } }; template <> struct GraphTraits > : public GraphTraits > { static NodeType *getEntryNode(Inverse G) { return &G.Graph->front(); } }; } // End llvm namespace #endif