summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--include/llvm/Bitcode/Archive.h562
1 files changed, 562 insertions, 0 deletions
diff --git a/include/llvm/Bitcode/Archive.h b/include/llvm/Bitcode/Archive.h
new file mode 100644
index 00000000000..26dcf60e1a7
--- /dev/null
+++ b/include/llvm/Bitcode/Archive.h
@@ -0,0 +1,562 @@
+//===-- llvm/Bitcode/Archive.h - LLVM Bitcode Archive -----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by Reid Spencer and is distributed under the
+// University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This header file declares the Archive and ArchiveMember classes that provide
+// manipulation of LLVM Archive files. The implementation is provided by the
+// lib/Bitcode/Archive library. This library is used to read and write
+// archive (*.a) files that contain LLVM bitcode files (or others).
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_BITECODE_ARCHIVE_H
+#define LLVM_BITECODE_ARCHIVE_H
+
+#include "llvm/ADT/ilist"
+#include "llvm/System/Path.h"
+#include "llvm/System/MappedFile.h"
+#include <map>
+#include <set>
+#include <fstream>
+
+namespace llvm {
+
+// Forward declare classes
+class ModuleProvider; // From VMCore
+class Module; // From VMCore
+class Archive; // Declared below
+class ArchiveMemberHeader; // Internal implementation class
+
+/// This class is the main class manipulated by users of the Archive class. It
+/// holds information about one member of the Archive. It is also the element
+/// stored by the Archive's ilist, the Archive's main abstraction. Because of
+/// the special requirements of archive files, users are not permitted to
+/// construct ArchiveMember instances. You should obtain them from the methods
+/// of the Archive class instead.
+/// @brief This class represents a single archive member.
+class ArchiveMember {
+ /// @name Types
+ /// @{
+ public:
+ /// These flags are used internally by the archive member to specify various
+ /// characteristics of the member. The various "is" methods below provide
+ /// access to the flags. The flags are not user settable.
+ enum Flags {
+ CompressedFlag = 1, ///< Member is a normal compressed file
+ SVR4SymbolTableFlag = 2, ///< Member is a SVR4 symbol table
+ BSD4SymbolTableFlag = 4, ///< Member is a BSD4 symbol table
+ LLVMSymbolTableFlag = 8, ///< Member is an LLVM symbol table
+ BytecodeFlag = 16, ///< Member is uncompressed bytecode
+ CompressedBytecodeFlag = 32, ///< Member is compressed bytecode
+ HasPathFlag = 64, ///< Member has a full or partial path
+ HasLongFilenameFlag = 128, ///< Member uses the long filename syntax
+ StringTableFlag = 256 ///< Member is an ar(1) format string table
+ };
+
+ /// @}
+ /// @name Accessors
+ /// @{
+ public:
+ /// @returns the parent Archive instance
+ /// @brief Get the archive associated with this member
+ Archive* getArchive() const { return parent; }
+
+ /// @returns the path to the Archive's file
+ /// @brief Get the path to the archive member
+ const sys::Path& getPath() const { return path; }
+
+ /// The "user" is the owner of the file per Unix security. This may not
+ /// have any applicability on non-Unix systems but is a required component
+ /// of the "ar" file format.
+ /// @brief Get the user associated with this archive member.
+ unsigned getUser() const { return info.getUser(); }
+
+ /// The "group" is the owning group of the file per Unix security. This
+ /// may not have any applicability on non-Unix systems but is a required
+ /// component of the "ar" file format.
+ /// @brief Get the group associated with this archive member.
+ unsigned getGroup() const { return info.getGroup(); }
+
+ /// The "mode" specifies the access permissions for the file per Unix
+ /// security. This may not have any applicabiity on non-Unix systems but is
+ /// a required component of the "ar" file format.
+ /// @brief Get the permission mode associated with this archive member.
+ unsigned getMode() const { return info.getMode(); }
+
+ /// This method returns the time at which the archive member was last
+ /// modified when it was not in the archive.
+ /// @brief Get the time of last modification of the archive member.
+ sys::TimeValue getModTime() const { return info.getTimestamp(); }
+
+ /// @returns the size of the archive member in bytes.
+ /// @brief Get the size of the archive member.
+ uint64_t getSize() const { return info.getSize(); }
+
+ /// This method returns the total size of the archive member as it
+ /// appears on disk. This includes the file content, the header, the
+ /// long file name if any, and the padding.
+ /// @brief Get total on-disk member size.
+ unsigned getMemberSize() const;
+
+ /// This method will return a pointer to the in-memory content of the
+ /// archive member, if it is available. If the data has not been loaded
+ /// into memory, the return value will be null.
+ /// @returns a pointer to the member's data.
+ /// @brief Get the data content of the archive member
+ const void* getData() const { return data; }
+
+ /// This method determines if the member is a regular compressed file. Note
+ /// that compressed bytecode files will yield "false" for this method.
+ /// @see isCompressedBytecode()
+ /// @returns true iff the archive member is a compressed regular file.
+ /// @brief Determine if the member is a compressed regular file.
+ bool isCompressed() const { return flags&CompressedFlag; }
+
+ /// @returns true iff the member is a SVR4 (non-LLVM) symbol table
+ /// @brief Determine if this member is a SVR4 symbol table.
+ bool isSVR4SymbolTable() const { return flags&SVR4SymbolTableFlag; }
+
+ /// @returns true iff the member is a BSD4.4 (non-LLVM) symbol table
+ /// @brief Determine if this member is a BSD4.4 symbol table.
+ bool isBSD4SymbolTable() const { return flags&BSD4SymbolTableFlag; }
+
+ /// @returns true iff the archive member is the LLVM symbol table
+ /// @brief Determine if this member is the LLVM symbol table.
+ bool isLLVMSymbolTable() const { return flags&LLVMSymbolTableFlag; }
+
+ /// @returns true iff the archive member is the ar(1) string table
+ /// @brief Determine if this member is the ar(1) string table.
+ bool isStringTable() const { return flags&StringTableFlag; }
+
+ /// @returns true iff the archive member is an uncompressed bytecode file.
+ /// @brief Determine if this member is a bytecode file.
+ bool isBytecode() const { return flags&BytecodeFlag; }
+
+ /// @returns true iff the archive member is a compressed bytecode file.
+ /// @brief Determine if the member is a compressed bytecode file.
+ bool isCompressedBytecode() const { return flags&CompressedBytecodeFlag;}
+
+ /// @returns true iff the file name contains a path (directory) component.
+ /// @brief Determine if the member has a path
+ bool hasPath() const { return flags&HasPathFlag; }
+
+ /// Long filenames are an artifact of the ar(1) file format which allows
+ /// up to sixteen characters in its header and doesn't allow a path
+ /// separator character (/). To avoid this, a "long format" member name is
+ /// allowed that doesn't have this restriction. This method determines if
+ /// that "long format" is used for this member.
+ /// @returns true iff the file name uses the long form
+ /// @brief Determin if the member has a long file name
+ bool hasLongFilename() const { return flags&HasLongFilenameFlag; }
+
+ /// This method returns the status info (like Unix stat(2)) for the archive
+ /// member. The status info provides the file's size, permissions, and
+ /// modification time. The contents of the Path::StatusInfo structure, other
+ /// than the size and modification time, may not have utility on non-Unix
+ /// systems.
+ /// @returns the status info for the archive member
+ /// @brief Obtain the status info for the archive member
+ const sys::FileStatus &getFileStatus() const { return info; }
+
+ /// This method causes the archive member to be replaced with the contents
+ /// of the file specified by \p File. The contents of \p this will be
+ /// updated to reflect the new data from \p File. The \p File must exist and
+ /// be readable on entry to this method.
+ /// @returns true if an error occurred, false otherwise
+ /// @brief Replace contents of archive member with a new file.
+ bool replaceWith(const sys::Path &aFile, std::string* ErrMsg);
+
+ /// @}
+ /// @name ilist methods - do not use
+ /// @{
+ public:
+ const ArchiveMember *getNext() const { return next; }
+ const ArchiveMember *getPrev() const { return prev; }
+ ArchiveMember *getNext() { return next; }
+ ArchiveMember *getPrev() { return prev; }
+ void setPrev(ArchiveMember* p) { prev = p; }
+ void setNext(ArchiveMember* n) { next = n; }
+
+ /// @}
+ /// @name Data
+ /// @{
+ private:
+ ArchiveMember* next; ///< Pointer to next archive member
+ ArchiveMember* prev; ///< Pointer to previous archive member
+ Archive* parent; ///< Pointer to parent archive
+ sys::PathWithStatus path; ///< Path of file containing the member
+ sys::FileStatus info; ///< Status info (size,mode,date)
+ unsigned flags; ///< Flags about the archive member
+ const void* data; ///< Data for the member
+
+ /// @}
+ /// @name Constructors
+ /// @{
+ public:
+ /// The default constructor is only used by the Archive's iplist when it
+ /// constructs the list's sentry node.
+ ArchiveMember();
+
+ private:
+ /// Used internally by the Archive class to construct an ArchiveMember.
+ /// The contents of the ArchiveMember are filled out by the Archive class.
+ ArchiveMember(Archive *PAR);
+
+ // So Archive can construct an ArchiveMember
+ friend class llvm::Archive;
+ /// @}
+};
+
+/// This class defines the interface to LLVM Archive files. The Archive class
+/// presents the archive file as an ilist of ArchiveMember objects. The members
+/// can be rearranged in any fashion either by directly editing the ilist or by
+/// using editing methods on the Archive class (recommended). The Archive
+/// class also provides several ways of accessing the archive file for various
+/// purposes such as editing and linking. Full symbol table support is provided
+/// for loading only those files that resolve symbols. Note that read
+/// performance of this library is _crucial_ for performance of JIT type
+/// applications and the linkers. Consequently, the implementation of the class
+/// is optimized for reading.
+class Archive {
+
+ /// @name Types
+ /// @{
+ public:
+ /// This is the ilist type over which users may iterate to examine
+ /// the contents of the archive
+ /// @brief The ilist type of ArchiveMembers that Archive contains.
+ typedef iplist<ArchiveMember> MembersList;
+
+ /// @brief Forward mutable iterator over ArchiveMember
+ typedef MembersList::iterator iterator;
+
+ /// @brief Forward immutable iterator over ArchiveMember
+ typedef MembersList::const_iterator const_iterator;
+
+ /// @brief Reverse mutable iterator over ArchiveMember
+ typedef std::reverse_iterator<iterator> reverse_iterator;
+
+ /// @brief Reverse immutable iterator over ArchiveMember
+ typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
+
+ /// @brief The in-memory version of the symbol table
+ typedef std::map<std::string,unsigned> SymTabType;
+
+ /// @}
+ /// @name ilist accessor methods
+ /// @{
+ public:
+ inline iterator begin() { return members.begin(); }
+ inline const_iterator begin() const { return members.begin(); }
+ inline iterator end () { return members.end(); }
+ inline const_iterator end () const { return members.end(); }
+
+ inline reverse_iterator rbegin() { return members.rbegin(); }
+ inline const_reverse_iterator rbegin() const { return members.rbegin(); }
+ inline reverse_iterator rend () { return members.rend(); }
+ inline const_reverse_iterator rend () const { return members.rend(); }
+
+ inline unsigned size() const { return members.size(); }
+ inline bool empty() const { return members.empty(); }
+ inline const ArchiveMember& front() const { return members.front(); }
+ inline ArchiveMember& front() { return members.front(); }
+ inline const ArchiveMember& back() const { return members.back(); }
+ inline ArchiveMember& back() { return members.back(); }
+
+ /// @}
+ /// @name ilist mutator methods
+ /// @{
+ public:
+ /// This method splices a \p src member from an archive (possibly \p this),
+ /// to a position just before the member given by \p dest in \p this. When
+ /// the archive is written, \p src will be written in its new location.
+ /// @brief Move a member to a new location
+ inline void splice(iterator dest, Archive& arch, iterator src)
+ { return members.splice(dest,arch.members,src); }
+
+ /// This method erases a \p target member from the archive. When the
+ /// archive is written, it will no longer contain \p target. The associated
+ /// ArchiveMember is deleted.
+ /// @brief Erase a member.
+ inline iterator erase(iterator target) { return members.erase(target); }
+
+ /// @}
+ /// @name Constructors
+ /// @{
+ public:
+ /// Create an empty archive file and associate it with the \p Filename. This
+ /// method does not actually create the archive disk file. It creates an
+ /// empty Archive object. If the writeToDisk method is called, the archive
+ /// file \p Filename will be created at that point, with whatever content
+ /// the returned Archive object has at that time.
+ /// @returns An Archive* that represents the new archive file.
+ /// @brief Create an empty Archive.
+ static Archive* CreateEmpty(
+ const sys::Path& Filename ///< Name of the archive to (eventually) create.
+ );
+
+ /// Open an existing archive and load its contents in preparation for
+ /// editing. After this call, the member ilist is completely populated based
+ /// on the contents of the archive file. You should use this form of open if
+ /// you intend to modify the archive or traverse its contents (e.g. for
+ /// printing).
+ /// @brief Open and load an archive file
+ static Archive* OpenAndLoad(
+ const sys::Path& filePath, ///< The file path to open and load
+ std::string* ErrorMessage ///< An optional error string
+ );
+
+ /// This method opens an existing archive file from \p Filename and reads in
+ /// its symbol table without reading in any of the archive's members. This
+ /// reduces both I/O and cpu time in opening the archive if it is to be used
+ /// solely for symbol lookup (e.g. during linking). The \p Filename must
+ /// exist and be an archive file or an exception will be thrown. This form
+ /// of opening the archive is intended for read-only operations that need to
+ /// locate members via the symbol table for link editing. Since the archve
+ /// members are not read by this method, the archive will appear empty upon
+ /// return. If editing operations are performed on the archive, they will
+ /// completely replace the contents of the archive! It is recommended that
+ /// if this form of opening the archive is used that only the symbol table
+ /// lookup methods (getSymbolTable, findModuleDefiningSymbol, and
+ /// findModulesDefiningSymbols) be used.
+ /// @throws std::string if an error occurs opening the file
+ /// @returns an Archive* that represents the archive file.
+ /// @brief Open an existing archive and load its symbols.
+ static Archive* OpenAndLoadSymbols(
+ const sys::Path& Filename, ///< Name of the archive file to open
+ std::string* ErrorMessage=0 ///< An optional error string
+ );
+
+ /// This destructor cleans up the Archive object, releases all memory, and
+ /// closes files. It does nothing with the archive file on disk. If you
+ /// haven't used the writeToDisk method by the time the destructor is
+ /// called, all changes to the archive will be lost.
+ /// @throws std::string if an error occurs
+ /// @brief Destruct in-memory archive
+ ~Archive();
+
+ /// @}
+ /// @name Accessors
+ /// @{
+ public:
+ /// @returns the path to the archive file.
+ /// @brief Get the archive path.
+ const sys::Path& getPath() { return archPath; }
+
+ /// This method is provided so that editing methods can be invoked directly
+ /// on the Archive's iplist of ArchiveMember. However, it is recommended
+ /// that the usual STL style iterator interface be used instead.
+ /// @returns the iplist of ArchiveMember
+ /// @brief Get the iplist of the members
+ MembersList& getMembers() { return members; }
+
+ /// This method allows direct query of the Archive's symbol table. The
+ /// symbol table is a std::map of std::string (the symbol) to unsigned (the
+ /// file offset). Note that for efficiency reasons, the offset stored in
+ /// the symbol table is not the actual offset. It is the offset from the
+ /// beginning of the first "real" file member (after the symbol table). Use
+ /// the getFirstFileOffset() to obtain that offset and add this value to the
+ /// offset in the symbol table to obtain the real file offset. Note that
+ /// there is purposefully no interface provided by Archive to look up
+ /// members by their offset. Use the findModulesDefiningSymbols and
+ /// findModuleDefiningSymbol methods instead.
+ /// @returns the Archive's symbol table.
+ /// @brief Get the archive's symbol table
+ const SymTabType& getSymbolTable() { return symTab; }
+
+ /// This method returns the offset in the archive file to the first "real"
+ /// file member. Archive files, on disk, have a signature and might have a
+ /// symbol table that precedes the first actual file member. This method
+ /// allows you to determine what the size of those fields are.
+ /// @returns the offset to the first "real" file member in the archive.
+ /// @brief Get the offset to the first "real" file member in the archive.
+ unsigned getFirstFileOffset() { return firstFileOffset; }
+
+ /// This method will scan the archive for bytecode modules, interpret them
+ /// and return a vector of the instantiated modules in \p Modules. If an
+ /// error occurs, this method will return true. If \p ErrMessage is not null
+ /// and an error occurs, \p *ErrMessage will be set to a string explaining
+ /// the error that occurred.
+ /// @returns true if an error occurred
+ /// @brief Instantiate all the bytecode modules located in the archive
+ bool getAllModules(std::vector<Module*>& Modules, std::string* ErrMessage);
+
+ /// This accessor looks up the \p symbol in the archive's symbol table and
+ /// returns the associated module that defines that symbol. This method can
+ /// be called as many times as necessary. This is handy for linking the
+ /// archive into another module based on unresolved symbols. Note that the
+ /// ModuleProvider returned by this accessor should not be deleted by the
+ /// caller. It is managed internally by the Archive class. It is possible
+ /// that multiple calls to this accessor will return the same ModuleProvider
+ /// instance because the associated module defines multiple symbols.
+ /// @returns The ModuleProvider* found or null if the archive does not
+ /// contain a module that defines the \p symbol.
+ /// @brief Look up a module by symbol name.
+ ModuleProvider* findModuleDefiningSymbol(
+ const std::string& symbol, ///< Symbol to be sought
+ std::string* ErrMessage ///< Error message storage, if non-zero
+ );
+
+ /// This method is similar to findModuleDefiningSymbol but allows lookup of
+ /// more than one symbol at a time. If \p symbols contains a list of
+ /// undefined symbols in some module, then calling this method is like
+ /// making one complete pass through the archive to resolve symbols but is
+ /// more efficient than looking at the individual members. Note that on
+ /// exit, the symbols resolved by this method will be removed from \p
+ /// symbols to ensure they are not re-searched on a subsequent call. If
+ /// you need to retain the list of symbols, make a copy.
+ /// @brief Look up multiple symbols in the archive.
+ bool findModulesDefiningSymbols(
+ std::set<std::string>& symbols, ///< Symbols to be sought
+ std::set<ModuleProvider*>& modules, ///< The modules matching \p symbols
+ std::string* ErrMessage ///< Error msg storage, if non-zero
+ );
+
+ /// This method determines whether the archive is a properly formed llvm
+ /// bytecode archive. It first makes sure the symbol table has been loaded
+ /// and has a non-zero size. If it does, then it is an archive. If not,
+ /// then it tries to load all the bytecode modules of the archive. Finally,
+ /// it returns whether it was successfull.
+ /// @returns true if the archive is a proper llvm bytecode archive
+ /// @brief Determine whether the archive is a proper llvm bytecode archive.
+ bool isBytecodeArchive();
+
+ /// @}
+ /// @name Mutators
+ /// @{
+ public:
+ /// This method is the only way to get the archive written to disk. It
+ /// creates or overwrites the file specified when \p this was created
+ /// or opened. The arguments provide options for writing the archive. If
+ /// \p CreateSymbolTable is true, the archive is scanned for bytecode files
+ /// and a symbol table of the externally visible function and global
+ /// variable names is created. If \p TruncateNames is true, the names of the
+ /// archive members will have their path component stripped and the file
+ /// name will be truncated at 15 characters. If \p Compress is specified,
+ /// all archive members will be compressed before being written. If
+ /// \p PrintSymTab is true, the symbol table will be printed to std::cout.
+ /// @returns true if an error occurred, \p error set to error message
+ /// @returns false if the writing succeeded.
+ /// @brief Write (possibly modified) archive contents to disk
+ bool writeToDisk(
+ bool CreateSymbolTable=false, ///< Create Symbol table
+ bool TruncateNames=false, ///< Truncate the filename to 15 chars
+ bool Compress=false, ///< Compress files
+ std::string* ErrMessage=0 ///< If non-null, where error msg is set
+ );
+
+ /// This method adds a new file to the archive. The \p filename is examined
+ /// to determine just enough information to create an ArchiveMember object
+ /// which is then inserted into the Archive object's ilist at the location
+ /// given by \p where.
+ /// @returns true if an error occured, false otherwise
+ /// @brief Add a file to the archive.
+ bool addFileBefore(
+ const sys::Path& filename, ///< The file to be added
+ iterator where, ///< Insertion point
+ std::string* ErrMsg ///< Optional error message location
+ );
+
+ /// @}
+ /// @name Implementation
+ /// @{
+ protected:
+ /// @brief Construct an Archive for \p filename and optionally map it
+ /// into memory.
+ Archive(const sys::Path& filename);
+
+ /// @param error Set to address of a std::string to get error messages
+ /// @returns false on error
+ /// @brief Parse the symbol table at \p data.
+ bool parseSymbolTable(const void* data,unsigned len,std::string* error);
+
+ /// @returns A fully populated ArchiveMember or 0 if an error occurred.
+ /// @brief Parse the header of a member starting at \p At
+ ArchiveMember* parseMemberHeader(
+ const char*&At, ///< The pointer to the location we're parsing
+ const char*End, ///< The pointer to the end of the archive
+ std::string* error ///< Optional error message catcher
+ );
+
+ /// @param error Set to address of a std::string to get error messages
+ /// @returns false on error
+ /// @brief Check that the archive signature is correct
+ bool checkSignature(std::string* ErrMessage);
+
+ /// @param error Set to address of a std::string to get error messages
+ /// @returns false on error
+ /// @brief Load the entire archive.
+ bool loadArchive(std::string* ErrMessage);
+
+ /// @param error Set to address of a std::string to get error messages
+ /// @returns false on error
+ /// @brief Load just the symbol table.
+ bool loadSymbolTable(std::string* ErrMessage);
+
+ /// @brief Write the symbol table to an ofstream.
+ void writeSymbolTable(std::ofstream& ARFile);
+
+ /// Writes one ArchiveMember to an ofstream. If an error occurs, returns
+ /// false, otherwise true. If an error occurs and error is non-null then
+ /// it will be set to an error message.
+ /// @returns false Writing member succeeded
+ /// @returns true Writing member failed, \p error set to error message
+ bool writeMember(
+ const ArchiveMember& member, ///< The member to be written
+ std::ofstream& ARFile, ///< The file to write member onto
+ bool CreateSymbolTable, ///< Should symbol table be created?
+ bool TruncateNames, ///< Should names be truncated to 11 chars?
+ bool ShouldCompress, ///< Should the member be compressed?
+ std::string* ErrMessage ///< If non-null, place were error msg is set
+ );
+
+ /// @brief Fill in an ArchiveMemberHeader from ArchiveMember.
+ bool fillHeader(const ArchiveMember&mbr,
+ ArchiveMemberHeader& hdr,int sz, bool TruncateNames) const;
+
+ /// @brief Maps archive into memory
+ bool mapToMemory(std::string* ErrMsg);
+
+ /// @brief Frees all the members and unmaps the archive file.
+ void cleanUpMemory();
+
+ /// This type is used to keep track of bytecode modules loaded from the
+ /// symbol table. It maps the file offset to a pair that consists of the
+ /// associated ArchiveMember and the ModuleProvider.
+ /// @brief Module mapping type
+ typedef std::map<unsigned,std::pair<ModuleProvider*,ArchiveMember*> >
+ ModuleMap;
+
+
+ /// @}
+ /// @name Data
+ /// @{
+ protected:
+ sys::Path archPath; ///< Path to the archive file we read/write
+ MembersList members; ///< The ilist of ArchiveMember
+ sys::MappedFile* mapfile; ///< Raw Archive contents mapped into memory
+ const char* base; ///< Base of the memory mapped file data
+ SymTabType symTab; ///< The symbol table
+ std::string strtab; ///< The string table for long file names
+ unsigned symTabSize; ///< Size in bytes of symbol table
+ unsigned firstFileOffset; ///< Offset to first normal file.
+ ModuleMap modules; ///< The modules loaded via symbol lookup.
+ ArchiveMember* foreignST; ///< This holds the foreign symbol table.
+ /// @}
+ /// @name Hidden
+ /// @{
+ private:
+ Archive(); ///< Do not implement
+ Archive(const Archive&); ///< Do not implement
+ Archive& operator=(const Archive&); ///< Do not implement
+ /// @}
+};
+
+} // End llvm namespace
+
+#endif