summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorFrank Henigman <fjhenigman@google.com>2013-10-07 21:17:39 -0400
committerChad Versace <chad.versace@linux.intel.com>2013-10-10 18:16:41 -0700
commit49ed5991ee002762f963104facdc6b291f14a9b5 (patch)
tree0c94f006701e26086e1cc60402db9bc1fc03ac89
parent0fda1cb498b1308f09679b1947fd038f680dffb8 (diff)
i965: extend fast texture upload
Extend the fast texture upload from BGRA X-tiled to include RGBA, Alpha/Luminance, and Y-tiled. Speed improvements, measured with mesa demos teximage program, on 256 x 256 texture, in MB/s, on a Sandy Bridge (Ivy is comparable): before after increase BGRA/X-tiled 3266 4524 1.39x BGRA/Y-tiled 1739 3971 2.28x RGBA/X-tiled 474 4694 9.90x RGBA/Y-tiled 477 3368 7.06x L/X-tiled 1268 1516 1.20x L/Y-tiled 1439 1581 1.10x v2: Cosmetic changes only: reformat and reword comments, make doxygen-friendly, rename variables, use existing macros, add an assert. Signed-off-by: Frank Henigman <fjhenigman@google.com> Reviewed-and-tested-by: Chad Versace <chad.versace@linux.intel.com>
-rw-r--r--src/mesa/drivers/dri/i965/intel_tex_subimage.c471
1 files changed, 402 insertions, 69 deletions
diff --git a/src/mesa/drivers/dri/i965/intel_tex_subimage.c b/src/mesa/drivers/dri/i965/intel_tex_subimage.c
index 05e684cf57..5cfdbd9682 100644
--- a/src/mesa/drivers/dri/i965/intel_tex_subimage.c
+++ b/src/mesa/drivers/dri/i965/intel_tex_subimage.c
@@ -43,6 +43,43 @@
#define FILE_DEBUG_FLAG DEBUG_TEXTURE
+#define ALIGN_DOWN(a, b) ROUND_DOWN_TO(a, b)
+#define ALIGN_UP(a, b) ALIGN(a, b)
+
+/* Tile dimensions.
+ * Width and span are in bytes, height is in pixels (i.e. unitless).
+ * A "span" is the most number of bytes we can copy from linear to tiled
+ * without needing to calculate a new destination address.
+ */
+static const uint32_t xtile_width = 512;
+static const uint32_t xtile_height = 8;
+static const uint32_t xtile_span = 64;
+static const uint32_t ytile_width = 128;
+static const uint32_t ytile_height = 32;
+static const uint32_t ytile_span = 16;
+
+typedef void *(*mem_copy_fn)(void *dest, const void *src, size_t n);
+
+/**
+ * Each row from y0 to y1 is copied in three parts: [x0,x1), [x1,x2), [x2,x3).
+ * These ranges are in bytes, i.e. pixels * bytes-per-pixel.
+ * The first and last ranges must be shorter than a "span" (the longest linear
+ * stretch within a tile) and the middle must equal a whole number of spans.
+ * Ranges may be empty. The region copied must land entirely within one tile.
+ * 'dst' is the start of the tile and 'src' is the corresponding
+ * address to copy from, though copying begins at (x0, y0).
+ * To enable swizzling 'swizzle_bit' must be 1<<6, otherwise zero.
+ * Swizzling flips bit 6 in the copy destination offset, when certain other
+ * bits are set in it.
+ */
+typedef void (*tile_copy_fn)(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
+ uint32_t y0, uint32_t y1,
+ char *dst, const char *src,
+ uint32_t src_pitch,
+ uint32_t swizzle_bit,
+ mem_copy_fn mem_copy);
+
+
static bool
intel_blit_texsubimage(struct gl_context * ctx,
struct gl_texture_image *texImage,
@@ -132,26 +169,351 @@ err:
return false;
}
+#ifdef __SSSE3__
+static const uint8_t rgba8_permutation[16] =
+ { 2,1,0,3, 6,5,4,7, 10,9,8,11, 14,13,12,15 };
+
+typedef char v16 __attribute__((vector_size(16)));
+
+/* NOTE: dst must be 16 byte aligned */
+#define rgba8_copy_16(dst, src) \
+ *(v16*)(dst) = __builtin_ia32_pshufb128( \
+ (v16) __builtin_ia32_loadups((float*)(src)), \
+ *(v16*) rgba8_permutation \
+ )
+#endif
+
+/**
+ * Copy RGBA to BGRA - swap R and B.
+ */
+static inline void *
+rgba8_copy(void *dst, const void *src, size_t bytes)
+{
+ uint8_t *d = dst;
+ uint8_t const *s = src;
+
+#ifdef __SSSE3__
+ /* Fast copying for tile spans.
+ *
+ * As long as the destination texture is 16 aligned,
+ * any 16 or 64 spans we get here should also be 16 aligned.
+ */
+
+ if (bytes == 16) {
+ assert(!(((uintptr_t)dst) & 0xf));
+ rgba8_copy_16(d+ 0, s+ 0);
+ return dst;
+ }
+
+ if (bytes == 64) {
+ assert(!(((uintptr_t)dst) & 0xf));
+ rgba8_copy_16(d+ 0, s+ 0);
+ rgba8_copy_16(d+16, s+16);
+ rgba8_copy_16(d+32, s+32);
+ rgba8_copy_16(d+48, s+48);
+ return dst;
+ }
+#endif
+
+ while (bytes >= 4) {
+ d[0] = s[2];
+ d[1] = s[1];
+ d[2] = s[0];
+ d[3] = s[3];
+ d += 4;
+ s += 4;
+ bytes -= 4;
+ }
+ return dst;
+}
+
+/**
+ * Copy texture data from linear to X tile layout.
+ *
+ * \copydoc tile_copy_fn
+ */
+static inline void
+xtile_copy(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
+ uint32_t y0, uint32_t y1,
+ char *dst, const char *src,
+ uint32_t src_pitch,
+ uint32_t swizzle_bit,
+ mem_copy_fn mem_copy)
+{
+ /* The copy destination offset for each range copied is the sum of
+ * an X offset 'x0' or 'xo' and a Y offset 'yo.'
+ */
+ uint32_t xo, yo;
+
+ src += y0 * src_pitch;
+
+ for (yo = y0 * xtile_width; yo < y1 * xtile_width; yo += xtile_width) {
+ /* Bits 9 and 10 of the copy destination offset control swizzling.
+ * Only 'yo' contributes to those bits in the total offset,
+ * so calculate 'swizzle' just once per row.
+ * Move bits 9 and 10 three and four places respectively down
+ * to bit 6 and xor them.
+ */
+ uint32_t swizzle = ((yo >> 3) ^ (yo >> 4)) & swizzle_bit;
+
+ mem_copy(dst + ((x0 + yo) ^ swizzle), src + x0, x1 - x0);
+
+ for (xo = x1; xo < x2; xo += xtile_span) {
+ mem_copy(dst + ((xo + yo) ^ swizzle), src + xo, xtile_span);
+ }
+
+ mem_copy(dst + ((xo + yo) ^ swizzle), src + x2, x3 - x2);
+
+ src += src_pitch;
+ }
+}
+
+/**
+ * Copy texture data from linear to Y tile layout.
+ *
+ * \copydoc tile_copy_fn
+ */
+static inline void
+ytile_copy(
+ uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
+ uint32_t y0, uint32_t y1,
+ char *dst, const char *src,
+ uint32_t src_pitch,
+ uint32_t swizzle_bit,
+ mem_copy_fn mem_copy)
+{
+ /* Y tiles consist of columns that are 'ytile_span' wide (and the same height
+ * as the tile). Thus the destination offset for (x,y) is the sum of:
+ * (x % column_width) // position within column
+ * (x / column_width) * bytes_per_column // column number * bytes per column
+ * y * column_width
+ *
+ * The copy destination offset for each range copied is the sum of
+ * an X offset 'xo0' or 'xo' and a Y offset 'yo.'
+ */
+ const uint32_t column_width = ytile_span;
+ const uint32_t bytes_per_column = column_width * ytile_height;
+
+ uint32_t xo0 = (x0 % ytile_span) + (x0 / ytile_span) * bytes_per_column;
+ uint32_t xo1 = (x1 % ytile_span) + (x1 / ytile_span) * bytes_per_column;
+
+ /* Bit 9 of the destination offset control swizzling.
+ * Only the X offset contributes to bit 9 of the total offset,
+ * so swizzle can be calculated in advance for these X positions.
+ * Move bit 9 three places down to bit 6.
+ */
+ uint32_t swizzle0 = (xo0 >> 3) & swizzle_bit;
+ uint32_t swizzle1 = (xo1 >> 3) & swizzle_bit;
+
+ uint32_t x, yo;
+
+ src += y0 * src_pitch;
+
+ for (yo = y0 * column_width; yo < y1 * column_width; yo += column_width) {
+ uint32_t xo = xo1;
+ uint32_t swizzle = swizzle1;
+
+ mem_copy(dst + ((xo0 + yo) ^ swizzle0), src + x0, x1 - x0);
+
+ /* Step by spans/columns. As it happens, the swizzle bit flips
+ * at each step so we don't need to calculate it explicitly.
+ */
+ for (x = x1; x < x2; x += ytile_span) {
+ mem_copy(dst + ((xo + yo) ^ swizzle), src + x, ytile_span);
+ xo += bytes_per_column;
+ swizzle ^= swizzle_bit;
+ }
+
+ mem_copy(dst + ((xo + yo) ^ swizzle), src + x2, x3 - x2);
+
+ src += src_pitch;
+ }
+}
+
+/**
+ * Copy texture data from linear to X tile layout, faster.
+ *
+ * Same as \ref xtile_copy but faster, because it passes constant parameters
+ * for common cases, allowing the compiler to inline code optimized for those
+ * cases.
+ *
+ * \copydoc tile_copy_fn
+ */
+static void
+xtile_copy_faster(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
+ uint32_t y0, uint32_t y1,
+ char *dst, const char *src,
+ uint32_t src_pitch,
+ uint32_t swizzle_bit,
+ mem_copy_fn mem_copy)
+{
+ if (x0 == 0 && x3 == xtile_width && y0 == 0 && y1 == xtile_height) {
+ if (mem_copy == memcpy)
+ return xtile_copy(0, 0, xtile_width, xtile_width, 0, xtile_height,
+ dst, src, src_pitch, swizzle_bit, memcpy);
+ else if (mem_copy == rgba8_copy)
+ return xtile_copy(0, 0, xtile_width, xtile_width, 0, xtile_height,
+ dst, src, src_pitch, swizzle_bit, rgba8_copy);
+ } else {
+ if (mem_copy == memcpy)
+ return xtile_copy(x0, x1, x2, x3, y0, y1,
+ dst, src, src_pitch, swizzle_bit, memcpy);
+ else if (mem_copy == rgba8_copy)
+ return xtile_copy(x0, x1, x2, x3, y0, y1,
+ dst, src, src_pitch, swizzle_bit, rgba8_copy);
+ }
+ xtile_copy(x0, x1, x2, x3, y0, y1,
+ dst, src, src_pitch, swizzle_bit, mem_copy);
+}
+
+/**
+ * Copy texture data from linear to Y tile layout, faster.
+ *
+ * Same as \ref ytile_copy but faster, because it passes constant parameters
+ * for common cases, allowing the compiler to inline code optimized for those
+ * cases.
+ *
+ * \copydoc tile_copy_fn
+ */
+static void
+ytile_copy_faster(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
+ uint32_t y0, uint32_t y1,
+ char *dst, const char *src,
+ uint32_t src_pitch,
+ uint32_t swizzle_bit,
+ mem_copy_fn mem_copy)
+{
+ if (x0 == 0 && x3 == ytile_width && y0 == 0 && y1 == ytile_height) {
+ if (mem_copy == memcpy)
+ return ytile_copy(0, 0, ytile_width, ytile_width, 0, ytile_height,
+ dst, src, src_pitch, swizzle_bit, memcpy);
+ else if (mem_copy == rgba8_copy)
+ return ytile_copy(0, 0, ytile_width, ytile_width, 0, ytile_height,
+ dst, src, src_pitch, swizzle_bit, rgba8_copy);
+ } else {
+ if (mem_copy == memcpy)
+ return ytile_copy(x0, x1, x2, x3, y0, y1,
+ dst, src, src_pitch, swizzle_bit, memcpy);
+ else if (mem_copy == rgba8_copy)
+ return ytile_copy(x0, x1, x2, x3, y0, y1,
+ dst, src, src_pitch, swizzle_bit, rgba8_copy);
+ }
+ ytile_copy(x0, x1, x2, x3, y0, y1,
+ dst, src, src_pitch, swizzle_bit, mem_copy);
+}
+
+/**
+ * Copy from linear to tiled texture.
+ *
+ * Divide the region given by X range [xt1, xt2) and Y range [yt1, yt2) into
+ * pieces that do not cross tile boundaries and copy each piece with a tile
+ * copy function (\ref tile_copy_fn).
+ * The X range is in bytes, i.e. pixels * bytes-per-pixel.
+ * The Y range is in pixels (i.e. unitless).
+ * 'dst' is the start of the texture and 'src' is the corresponding
+ * address to copy from, though copying begins at (xt1, yt1).
+ */
+static void
+linear_to_tiled(uint32_t xt1, uint32_t xt2,
+ uint32_t yt1, uint32_t yt2,
+ char *dst, const char *src,
+ uint32_t dst_pitch, uint32_t src_pitch,
+ bool has_swizzling,
+ uint32_t tiling,
+ mem_copy_fn mem_copy)
+{
+ tile_copy_fn tile_copy;
+ uint32_t xt0, xt3;
+ uint32_t yt0, yt3;
+ uint32_t xt, yt;
+ uint32_t tw, th, span;
+ uint32_t swizzle_bit = has_swizzling ? 1<<6 : 0;
+
+ if (tiling == I915_TILING_X) {
+ tw = xtile_width;
+ th = xtile_height;
+ span = xtile_span;
+ tile_copy = xtile_copy_faster;
+ } else if (tiling == I915_TILING_Y) {
+ tw = ytile_width;
+ th = ytile_height;
+ span = ytile_span;
+ tile_copy = ytile_copy_faster;
+ } else {
+ assert(!"unsupported tiling");
+ return;
+ }
+
+ /* Round out to tile boundaries. */
+ xt0 = ALIGN_DOWN(xt1, tw);
+ xt3 = ALIGN_UP (xt2, tw);
+ yt0 = ALIGN_DOWN(yt1, th);
+ yt3 = ALIGN_UP (yt2, th);
+
+ /* Loop over all tiles to which we have something to copy.
+ * 'xt' and 'yt' are the origin of the destination tile, whether copying
+ * copying a full or partial tile.
+ * tile_copy() copies one tile or partial tile.
+ * Looping x inside y is the faster memory access pattern.
+ */
+ for (yt = yt0; yt < yt3; yt += th) {
+ for (xt = xt0; xt < xt3; xt += tw) {
+ /* The area to update is [x0,x3) x [y0,y1).
+ * May not want the whole tile, hence the min and max.
+ */
+ uint32_t x0 = MAX2(xt1, xt);
+ uint32_t y0 = MAX2(yt1, yt);
+ uint32_t x3 = MIN2(xt2, xt + tw);
+ uint32_t y1 = MIN2(yt2, yt + th);
+
+ /* [x0,x3) is split into [x0,x1), [x1,x2), [x2,x3) such that
+ * the middle interval is the longest span-aligned part.
+ * The sub-ranges could be empty.
+ */
+ uint32_t x1, x2;
+ x1 = ALIGN_UP(x0, span);
+ if (x1 > x3)
+ x1 = x2 = x3;
+ else
+ x2 = ALIGN_DOWN(x3, span);
+
+ assert(x0 <= x1 && x1 <= x2 && x2 <= x3);
+ assert(x1 - x0 < span && x3 - x2 < span);
+ assert(x3 - x0 <= tw);
+ assert((x2 - x1) % span == 0);
+
+ /* Translate by (xt,yt) for single-tile copier. */
+ tile_copy(x0-xt, x1-xt, x2-xt, x3-xt,
+ y0-yt, y1-yt,
+ dst + xt * th + yt * dst_pitch,
+ src + xt + yt * src_pitch,
+ src_pitch,
+ swizzle_bit,
+ mem_copy);
+ }
+ }
+}
+
/**
* \brief A fast path for glTexImage and glTexSubImage.
*
* \param for_glTexImage Was this called from glTexImage or glTexSubImage?
*
- * This fast path is taken when the hardware natively supports the texture
- * format (such as GL_BGRA) and when the texture memory is X-tiled. It uploads
+ * This fast path is taken when the texture format is BGRA, RGBA,
+ * A or L and when the texture memory is X- or Y-tiled. It uploads
* the texture data by mapping the texture memory without a GTT fence, thus
- * acquiring a tiled view of the memory, and then memcpy'ing sucessive
- * subspans within each tile.
+ * acquiring a tiled view of the memory, and then copying sucessive
+ * spans within each tile.
*
* This is a performance win over the conventional texture upload path because
* it avoids the performance penalty of writing through the write-combine
* buffer. In the conventional texture upload path,
* texstore.c:store_texsubimage(), the texture memory is mapped through a GTT
* fence, thus acquiring a linear view of the memory, then each row in the
- * image is memcpy'd. In this fast path, we replace each row's memcpy with
- * a sequence of memcpy's over each bit6 swizzle span in the row.
+ * image is memcpy'd. In this fast path, we replace each row's copy with
+ * a sequence of copies over each linear span in tile.
*
- * This fast path's use case is Google Chrome's paint rectangles. Chrome (as
+ * One use case is Google Chrome's paint rectangles. Chrome (as
* of version 21) renders each page as a tiling of 256x256 GL_BGRA textures.
* Each page's content is initially uploaded with glTexImage2D and damaged
* regions are updated with glTexSubImage2D. On some workloads, the
@@ -176,14 +538,15 @@ intel_texsubimage_tiled_memcpy(struct gl_context * ctx,
int error = 0;
- /* This fastpath is restricted to a specific texture type: level 0 of
- * a 2D BGRA texture. It could be generalized to support more types by
- * varying the arithmetic loop below.
+ uint32_t cpp;
+ mem_copy_fn mem_copy = NULL;
+
+ /* This fastpath is restricted to specific texture types: level 0 of
+ * a 2D BGRA, RGBA, L8 or A8 texture. It could be generalized to support
+ * more types.
*/
if (!brw->has_llc ||
- format != GL_BGRA ||
type != GL_UNSIGNED_BYTE ||
- texImage->TexFormat != MESA_FORMAT_ARGB8888 ||
texImage->TexObject->Target != GL_TEXTURE_2D ||
texImage->Level != 0 ||
pixels == NULL ||
@@ -197,12 +560,28 @@ intel_texsubimage_tiled_memcpy(struct gl_context * ctx,
packing->Invert)
return false;
+ if ((texImage->TexFormat == MESA_FORMAT_L8 && format == GL_LUMINANCE) ||
+ (texImage->TexFormat == MESA_FORMAT_A8 && format == GL_ALPHA)) {
+ cpp = 1;
+ mem_copy = memcpy;
+ } else if (texImage->TexFormat == MESA_FORMAT_ARGB8888) {
+ cpp = 4;
+ if (format == GL_BGRA) {
+ mem_copy = memcpy;
+ } else if (format == GL_RGBA) {
+ mem_copy = rgba8_copy;
+ }
+ }
+ if (!mem_copy)
+ return false;
+
if (for_glTexImage)
ctx->Driver.AllocTextureImageBuffer(ctx, texImage);
if (!image->mt ||
- image->mt->region->tiling != I915_TILING_X) {
- /* The algorithm below is written only for X-tiled memory. */
+ (image->mt->region->tiling != I915_TILING_X &&
+ image->mt->region->tiling != I915_TILING_Y)) {
+ /* The algorithm is written only for X- or Y-tiled memory. */
return false;
}
@@ -236,61 +615,15 @@ intel_texsubimage_tiled_memcpy(struct gl_context * ctx,
DBG("%s: level=%d offset=(%d,%d) (w,h)=(%d,%d)\n",
__FUNCTION__, texImage->Level, xoffset, yoffset, width, height);
- /* In the tiling algorithm below, some variables are in units of pixels,
- * others are in units of bytes, and others (such as height) are unitless.
- * Each variable name is suffixed with its units.
- */
-
- const uint32_t x_max_pixels = xoffset + width;
- const uint32_t y_max_pixels = yoffset + height;
-
- const uint32_t tile_size_bytes = 4096;
-
- const uint32_t tile_width_bytes = 512;
- const uint32_t tile_width_pixels = 128;
-
- const uint32_t tile_height = 8;
-
- const uint32_t cpp = 4; /* chars per pixel of GL_BGRA */
- const uint32_t swizzle_width_pixels = 16;
-
- const uint32_t stride_bytes = image->mt->region->pitch;
- const uint32_t width_tiles = stride_bytes / tile_width_bytes;
-
- for (uint32_t y_pixels = yoffset; y_pixels < y_max_pixels; ++y_pixels) {
- const uint32_t y_offset_bytes = (y_pixels / tile_height) * width_tiles * tile_size_bytes
- + (y_pixels % tile_height) * tile_width_bytes;
-
- for (uint32_t x_pixels = xoffset; x_pixels < x_max_pixels; x_pixels += swizzle_width_pixels) {
- const uint32_t x_offset_bytes = (x_pixels / tile_width_pixels) * tile_size_bytes
- + (x_pixels % tile_width_pixels) * cpp;
-
- intptr_t offset_bytes = y_offset_bytes + x_offset_bytes;
- if (brw->has_swizzling) {
-#if 0
- /* Clear, unoptimized version. */
- bool bit6 = (offset_bytes >> 6) & 1;
- bool bit9 = (offset_bytes >> 9) & 1;
- bool bit10 = (offset_bytes >> 10) & 1;
-
- if (bit9 ^ bit10)
- offset_bytes ^= (1 << 6);
-#else
- /* Optimized, obfuscated version. */
- offset_bytes ^= ((offset_bytes >> 3) ^ (offset_bytes >> 4))
- & (1 << 6);
-#endif
- }
-
- const uint32_t swizzle_bound_pixels = ALIGN(x_pixels + 1, swizzle_width_pixels);
- const uint32_t memcpy_bound_pixels = MIN2(x_max_pixels, swizzle_bound_pixels);
- const uint32_t copy_size = cpp * (memcpy_bound_pixels - x_pixels);
-
- memcpy(bo->virtual + offset_bytes, pixels, copy_size);
- pixels += copy_size;
- x_pixels -= (x_pixels % swizzle_width_pixels);
- }
- }
+ linear_to_tiled(
+ xoffset * cpp, (xoffset + width) * cpp,
+ yoffset, yoffset + height,
+ bo->virtual, pixels - (xoffset + yoffset * width) * cpp,
+ image->mt->region->pitch, width * cpp,
+ brw->has_swizzling,
+ image->mt->region->tiling,
+ mem_copy
+ );
drm_intel_bo_unmap(bo);
return true;