diff options
author | Behdad Esfahbod <behdad@behdad.org> | 2008-12-27 23:13:45 -0500 |
---|---|---|
committer | Behdad Esfahbod <behdad@behdad.org> | 2008-12-27 23:44:58 -0500 |
commit | ef0f6c3ca311c41c9062e1298b020eae1212984e (patch) | |
tree | 8cf73cf584c1fcf565b3a4c5092a734b48cd2b9e | |
parent | f2f62c7c4402a28a65c8171238d163af6b2fb95a (diff) |
[spline] Add an analytical bounder for splines
The way this works is very simple: Once for X, and once for Y, it
takes the derivative of the bezier equation, equals it to zero and
solves to find the extreme points, and if the extreme points are
interesting, adds them to the bounder.
Not the fastest algorithm out there, but my estimate is that if
_de_casteljau() ends up breaking a stroke in at least 10 pieces,
then the new bounder is faster. Would be good to see some real
perf data.
-rw-r--r-- | src/cairo-path-bounds.c | 18 | ||||
-rw-r--r-- | src/cairo-spline.c | 131 | ||||
-rw-r--r-- | src/cairoint.h | 6 |
3 files changed, 141 insertions, 14 deletions
diff --git a/src/cairo-path-bounds.c b/src/cairo-path-bounds.c index dca237b0..698d1fa5 100644 --- a/src/cairo-path-bounds.c +++ b/src/cairo-path-bounds.c @@ -123,21 +123,11 @@ _cairo_path_bounder_curve_to (void *closure, const cairo_point_t *d) { cairo_path_bounder_t *bounder = closure; - cairo_spline_t spline; - - /* XXX Is there a faster way to determine the bounding box of a - * Bezier curve than its decomposition? - * - * Using the control points alone can be wildly inaccurate. - */ - if (! _cairo_spline_init (&spline, - _cairo_path_bounder_line_to, bounder, - &bounder->current_point, b, c, d)) - { - return _cairo_path_bounder_line_to (bounder, d); - } - return _cairo_spline_decompose (&spline, bounder->tolerance); + _cairo_spline_bound (_cairo_path_bounder_line_to, bounder, + &bounder->current_point, b, c, d); + + return CAIRO_STATUS_SUCCESS; } static cairo_status_t diff --git a/src/cairo-spline.c b/src/cairo-spline.c index 7e794cf5..9ae15f97 100644 --- a/src/cairo-spline.c +++ b/src/cairo-spline.c @@ -208,3 +208,134 @@ _cairo_spline_decompose (cairo_spline_t *spline, double tolerance) return _cairo_spline_add_point (spline, &spline->knots.d); } + +void +_cairo_spline_bound (cairo_spline_add_point_func_t add_point_func, + void *closure, + const cairo_point_t *p0, const cairo_point_t *p1, + const cairo_point_t *p2, const cairo_point_t *p3) +{ + double x0, x1, x2, x3; + double y0, y1, y2, y3; + double a, b, c, delta; + double t[4]; + int t_num = 0, i; + + x0 = _cairo_fixed_to_double (p0->x); + y0 = _cairo_fixed_to_double (p0->y); + x1 = _cairo_fixed_to_double (p1->x); + y1 = _cairo_fixed_to_double (p1->y); + x2 = _cairo_fixed_to_double (p2->x); + y2 = _cairo_fixed_to_double (p2->y); + x3 = _cairo_fixed_to_double (p3->x); + y3 = _cairo_fixed_to_double (p3->y); + + /* The spline can be written as a polynomial of the four points: + * + * (1-t)³p0 + t(1-t)²p1 + t²(1-t)p2 + t³p3 + * + * for 0≤t≤1. Now, the X and Y components of the spline follow the + * same polynomial but with x and y replaced for p. To find the + * bounds of the spline, we just need to find the X and Y bounds. + * To find the bound, we take the derivative and equal it to zero, + * and solve to find the t's that give the extreme points. + * + * Here is the derivative of the curve, sorted on t: + * + * 3t²(-p0+3p1-3p2+p3) + 6t(3p0-6p1+3p2) -3p0+3p1 + * + * Let: + * + * a = -p0+3p1-3p2+p3 + * b = 3p0-6p1+3p2 + * c = -3p0+3p1 + * + * Gives: + * + * a.t² + 2b.t + c = 0 + * + * With: + * + * delta = b*b - a*c + * + * the extreme points are at -c/2b if a is zero, at (-b±√delta)/a if + * delta is positive, and at -b/a if delta is zero. + */ + +#define ADD(t0) \ + if (0 < (t0) && (t0) < 1) \ + t[t_num++] = (t0); + + /* Find X extremes */ + a = -x0 + 3*x1 - 3*x2 + x3; + b = x0 - 2*x1 + x2; + c = -x0 + x1; + delta = b * b - a * c; + if (a == 0) { + double t0 = -c / (2*b); + ADD (t0); + } else if (delta > 0) { + double sqrt_delta = sqrt (delta); + double t1 = (-b - sqrt_delta) / a; + double t2 = (-b + sqrt_delta) / a; + ADD (t1); + ADD (t2); + } else if (delta == 0) { + double t0 = -b / a; + ADD (t0); + } + + /* Find Y extremes */ + a = -y0 + 3*y1 - 3*y2 + y3; + b = y0 - 2*y1 + y2; + c = -y0 + y1; + delta = b * b - a * c; + if (a == 0) { + double t0 = -c / (2*b); + ADD (t0); + } else if (delta > 0) { + double sqrt_delta = sqrt (delta); + double t1 = (-b - sqrt_delta) / a; + double t2 = (-b + sqrt_delta) / a; + ADD (t1); + ADD (t2); + } else if (delta == 0) { + double t0 = -b / a; + ADD (t0); + } + + add_point_func (closure, p0); + for (i = 0; i < t_num; i++) { + cairo_point_t p; + double x, y; + double t_1_0, t_0_1; + double t_2_0, t_0_2; + double t_3_0, t_2_1, t_1_2, t_0_3; + + t_1_0 = t[i]; /* t */ + t_0_1 = 1 - t_1_0; /* (1 - t) */ + + t_2_0 = t_1_0 * t_1_0; /* t * t */ + t_0_2 = t_0_1 * t_0_1; /* (1 - t) * (1 - t) */ + + t_3_0 = t_2_0 * t_1_0; /* t * t * t */ + t_2_1 = t_2_0 * t_0_1; /* t * t * (1 - t) */ + t_1_2 = t_1_0 * t_0_2; /* t * (1 - t) * (1 - t) */ + t_0_3 = t_0_1 * t_0_2; /* (1 - t) * (1 - t) * (1 - t) */ + + /* Bezier polynomial */ + x = x0 * t_0_3 + + 3 * x1 * t_1_2 + + 3 * x2 * t_2_1 + + x3 * t_3_0; + y = y0 * t_0_3 + + 3 * y1 * t_1_2 + + 3 * y2 * t_2_1 + + y3 * t_3_0; + + p.x = _cairo_fixed_from_double (x); + p.y = _cairo_fixed_from_double (y); + add_point_func (closure, &p); + } + add_point_func (closure, p3); +} diff --git a/src/cairoint.h b/src/cairoint.h index f72c5cc6..95b5e0fa 100644 --- a/src/cairoint.h +++ b/src/cairoint.h @@ -2266,6 +2266,12 @@ _cairo_spline_init (cairo_spline_t *spline, cairo_private cairo_status_t _cairo_spline_decompose (cairo_spline_t *spline, double tolerance); +void +_cairo_spline_bound (cairo_spline_add_point_func_t add_point_func, + void *closure, + const cairo_point_t *p0, const cairo_point_t *p1, + const cairo_point_t *p2, const cairo_point_t *p3); + /* cairo-matrix.c */ cairo_private void _cairo_matrix_get_affine (const cairo_matrix_t *matrix, |