
03/24/2007 01:27 PMSteps to creating a font...

Page 1 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

Tutorial

This tutorial is also available as a pdf version. If you wish to follow along with the tutorial, this bundle should provide you
with the basic files you need.
I shall not presume to teach aesthetics, I concentrate solely on the mechanics here.

Font Creation
Creating a glyph (tracing outlines)
Navigating to other glyphs
On to the next glyph (consistent directions)
Consistent serifs and stem widths
Building accented glyphs
Building a ligature
Lookups and features
Examining metrics

Setting the baseline to baseline spacing of a font
Kerning
Glyph variants
Anchoring marks
Conditional features
Checking your font
Bitmaps
Generating it
Font Families
Final Summary
Bitmap strikes
Scripting Tutorial
Notes on various scripts

NOBLEMAN: Now this is what I call workmanship. There is nothing on earth more exquisite than a bonny book,
with well-placed columns of rich black writing in beautiful borders, and illuminated pictures cunningly inset.
But nowadays, instead of looking at books, people read them. A book might as well be one of those orders for
bacon and bran that you are scribbling.

-- Saint Joan, Scene IV
George Bernard Shaw, 1924

Font creation
First create a new font with the New command in the File menu (or by using the -new argument at startup).

03/24/2007 01:27 PMSteps to creating a font...

Page 2 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

Give the font a name with the Font Info command from the Element menu. You use this same command to set the
copyright message and change the ascent and descent (the sum of these two determines the size of the em square for the
font, and by convention is 1000 for postscript fonts, a power of two (often 2048 or 4096) for truetype fonts and 15,000 for
Ikarus fonts). (Also if you are planning on making a truetype font you might want to check the Quadratic Splines checkbox to use the native truetype
format. Editing is a little more difficult in this mode though)

You may also wish to use Encoding->Reencode to change what characters are available in your font. FontForge generally
creates new fonts with an ISO-8859-1, which contains (most of) the characters needed for Western Europe (the latin letters,
some accented letters, digits, and symbols).

Creating a glyph

03/24/2007 01:27 PMSteps to creating a font...

Page 3 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

Once you have done that you are ready to start editing glyphs. Double click on the entry for "C" in the font view above.
You should now have an empty Outline Glyph window:

The outline glyph window contains two palettes snuggled up on the left side of the window. The top palette contains a set of
editing tools, and the bottom palette controls which layers of the window are visible or editable.

The foreground layer contains the outline that will become part of the font. The background layer can contain images or line
drawings that help you draw this particular glyph. The guide layer contains lines that are useful on a font-wide basis (such
as the x-height). Currently all layers are empty.

This window also shows the glyph's internal coordinate system with the x and y axes drawn in light grey. A line
representing the glyph's advance width is drawn in black at the right edge of the window. FontForge assigns an advance
width of one em (in PostScript that will usually be 1000 units) to the advance width of a new glyph.

Select the Import command from the File menu and import an image of the glyph you are creating. It will be scaled so that
it is as high as the em-square.

Select the background layer as editable from the layers palette, move the mouse pointer to one of the edges of the image,
hold down the shift key, depress and drag the corner until the image is a reasonable size, then move the pointer onto the
dark part of the image, depress the mouse and drag until the image is properly positioned.

03/24/2007 01:27 PMSteps to creating a font...

Page 4 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

If you have downloaded the autotrace program you can invoke Element->AutoTrace to generate an outline from the
image. But if you have not you must add points yourself. Change the active layer to be the foreground, and go to the tools
palette and select the round (or curve) point. Then move the pointer to the edge of the image and add a point. I find that it is
best to add points at places where the curve is horizontal or vertical, at corners, or where the curve changes inflection (A
change of inflection occurs in a curve like "S" where the curve changes from being open to the left to being open on the
right. If you follow these rules hinting will work better.

It is best to enter a curve in a clockwise fashion, so the next point should be added up at the top of the image on the flat
section. Because the shape becomes flat here, a curve point is not appropriate, rather a tangent point is (this looks like a
little triangle on the tools palette). A tangent point makes a nice transition from curves to straight lines because the curve
leaves the point with the same slope the line had when it entered.

03/24/2007 01:27 PMSteps to creating a font...

Page 5 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

At the moment this "curve" doesn't match the image at all, don't worry about that we'll fix it later, and anyway it will
change on its own as we continue. Note that we now have a control point attached to the tangent point (the little blue x).
The next point needs to go where the image changes direction abruptly. Neither a curve nor a tangent point is appropriate
here, instead we must use a corner point (one of the little squares on the tools palette).

As you see the old curve now follows the image a bit more closely. We continue adding points until we are ready to close
the path.

03/24/2007 01:27 PMSteps to creating a font...

Page 6 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

Then we close the path just by adding a new point on top of the old start point

Now we must make the curve track the image more closely, to do this we must adjust the control points (the blue "x"es). To
make all the control points visible select the pointer tool and double-click on the curve and then move the control points
around until the curve looks right.

03/24/2007 01:27 PMSteps to creating a font...

Page 7 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

Finally we set width. Again with the pointer tool, move the mouse to the width line on the right edge of the screen, depress
and drag the line back to a reasonable location.

And we are done with this glyph.

If you are mathematically inclined you may be interested in the coordinates that fontforge shows in the upper left of the
window. Generally you can draw glyphs quite happily without bothering about these, but for those who are interested here is
some basic info:

Each glyph has its own coordinate system.
The vertical origin is the font's baseline (the line on which most latin letters rest)
The horizontal origin is the place where drawing the glyph will commence. In the example above what gets drawn
initially is empty space, that is fairly common, and that empty space (the distance from the origin to the left edge of
the glyph) is called the left side bearing.
The units of the coordinate system are determined by the em-size of the font. This is the sum of the font's ascent and
descent. In the example above the font's ascent is 800 and descent is 200, and the ascent line (the one just above the
top of the "C") is 800 units from the baseline, while the descent line is 200 units below.
So a position of 282,408 (as above) means that the cursor is 282 units right of the horizontal origin and 408 units
above the baseline (or halfway between baseline and ascent).

03/24/2007 01:27 PMSteps to creating a font...

Page 8 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

Navigating to glyphs.
The font view provides one way of navigating around the glyphs in a font. Simple scroll around it until you find the glyph
you need and then double click on it to open a window looking at that glyph.

Typing a glyph will move to that glyph.

However some fonts are huge (Chinese, Japanese and Korean fonts have thousands or even tens of thousands of glyphs) and
scrolling around the font view is a an inefficient way of finding your glyph. View->Goto provides a simple dialog which
will allow you to move directly to any glyph for which you know the name (or encoding). If your font is a Unicode font,
then this dialog will also allow you to find glyphs by block name (ie. Hebrew rather than Alef).

The simplest way to navigate is just to go to the next or previous glyph. And View->Next Char and View->Prev Char will
do exactly that.

Creating the letter "o" -- consistent directions
In the previous example the bitmap of the letter filled the canvas of the image. And when FontForge imported the image it
needed to be scaled once in the program. But usually when you create the image of the letter you have some idea of how
much white space there should be around it. If your images are exactly one em high then FontForge will scale them
automatically to be the right size. So in the following examples all the images have exactly the right amount of white-space
around them to fit perfectly in an em.

For the next example double click on the square in the font view that should contain "o", and import "o_Ambrosia.png" into
it.

Stages in editing "o"

Notice that the first outline is drawn clockwise and the second counter-clockwise. This change in drawing direction is
important. Both PostScript and TrueType require that the outer boundary of a glyph be drawn in a certain direction (they
happen to be opposite from each other, which is a mild annoyance), within FontForge all outer boundaries must be drawn
clockwise, while all inner boundaries must be drawn counter-clockwise.

If you fail to alternate directions between outer and inner boundaries you may get results like the one on the left . If
you fail to draw the outer contour in a clockwise fashion the errors are more subtle, but will generally result in a less
pleasing result once the glyph has been rasterized.

03/24/2007 01:27 PMSteps to creating a font...

Page 9 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

TECHNICAL AND CONFUSING: the exact behavior of rasterizers varies. Early PostScript rasterizers used a "non-zero winding number rule" while
more recent ones use an "even-odd" rule. TrueType uses the "non-zero" rule. The description given above is for the "non-zero" rule. The "even-odd" rule
would fill the "o" correctly no matter which way the paths were drawn (though there would probably be subtle problems with hinting).

Filling using the even-odd rules that a line is drawn from the current pixel to infinity (in any direction) and the number of contour crossings is counted. If
this number is even the pixel is not filled. If the number is odd the pixel is filled. In the non-zero winding number rule the same line is drawn, contour
crossings in a clockwise direction add 1 to the crossing count, counter-clockwise contours subtract 1. If the result is 0 the pixel is not filled, any other
result will fill it.

The command Element->Correct Direction will look at each selected contour, figure out whether it qualifies as an outer
or inner contour and will reverse the drawing direction when the contour is drawn incorrectly.

Creating letters with consistent stem widths, serifs and heights.
Many Latin (Greek, Cyrillic) fonts have serifs, special terminators at the end of stems. And in almost all LGC fonts there
should only be a small number of stem widths used (ie. the vertical stem of "l" and "i" should probably be the same).

FontForge does not have a good way to enforce consistency, but it does have various commands to help you check for it,
and to find discrepancies.

Let us start with the letter "l" and go through the familiar process of importing a bitmap and defining it's outline.

The imported image Use the magnify tool to
examine the bottom
serif, and note that it is
symmetric left to right.

Outline the right half
of the serif

select the outline,
invoke Edit ->
Copy then Edit ->
Paste, and finally
Element ->
Transform ->
Transform and
select Flip (from
the pull down list)
and check
Horizontal

Drag the flipped
serif over to the left
until it snuggles up

Deselect the path, and select one end point
and drag it until it is on top of the end point of
the other half

Finish off the glyph

03/24/2007 01:27 PMSteps to creating a font...

Page 10 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

against the left edge
of the glyph

But let's do two
more things. First
let's measure the
stem width, and
second let's mark
the height of the "l"

Select the ruler tool
from the tool palette,
and drag it from one
edge of the stem to the
other. A little window
pops up showing the
width is 58 units, the
drag direction is 180
degrees, and the drag
was -58 units
horizontally, and 0
units vertically.

Go to the layers
palette and select the
Guide radio box (this
makes the guide
layer editable). Then
draw a line at the top
of the "l", this line
will be visible in all
glyphs and marks the
ascent height of this
font.

Now let's do "i". This glyph looks very much like a short "l" with a dot on top. So let's copy the "l" into the "i"; this will
automatically give us the right stem width and the correct advance width. The copy may be done either from the font view
(by selecting the square with the "l" in it and pressing Edit->Copy) or from the outline view (by Edit->Select->Select
All and Edit->Copy). Similarly the Paste may be done either in the font view (by selecting the "i" square and pressing
Edit->Paste) or the outline view (by opening the "i" glyph and pressing Edit->Paste).

Import the "i" image, and
copy the "l" glyph.

Select the top
serif of the l

drag it down to
the right height

go to the guide layer and
add a line at the x-height

Let's look briefly back at the "o" we built before. You may notice that the "o" reaches a little above the guide
line we put in to mark the x-height (and a little below the baseline). This is called overshoot and is an attempt
to remedy an optical illusion. A curve actually needs to rise about 3% (of its diameter) above the x-height for
it to appear on the x-height.

Let's look at "k". Again we will copy an "l" into it and import an appropriate image.

03/24/2007 01:27 PMSteps to creating a font...

Page 11 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

Import the "k" image and copy the "l"
glyph. Note that the x-height line
matches the "k" (as we would hope).
Also note that the width of the "l" is
inappropriate for "k" so we'll have to
select it and drag it over.

Select the knife
tool from the
palette, and cut
the stem of the "l"
shape at
appropriate points
for "k".

Remove the splines between
the cut points. An easy way
to do this is to grab the
spline itself, (which selects
its end points) and then do
Edit -> Clear.

Select the end points and convert them
into corner points with Point ->
Corner.

Then draw in the
outer contour.

And the inner contour.
Finally do an Edit ->
Select -> Select All
and an Element ->
Correct Direction.

Building accented glyphs
Latin, Greek and Cyrillic all have a large complement of accented glyphs. FontForge provides several ways to build
accented glyphs out of base glyphs.

The most obvious mechanism is simple copy and paste: Copy the letter "A" and Paste it to "Ã" then copy the tilde accent
and Paste it Into "Ã" (note Paste Into is subtly different from Paste. Paste clears out the glyph before pasting, while Paste
Into merges what was in the glyph with the what is in the clipboard). Then you open up "Ã" and position the accent so that
it appears properly centered over the A.

This mechanism is not particularly efficient, if you change the shape of the letter "A" you will need to regenerate all the
accented glyphs built from it. FontForge has the concept of a Reference to a glyph. So you can Copy a Reference to "A",
and Paste it, the Copy a Reference to tilde and Paste it Into, and then again adjust the position of the accent over the A.

Then if you change the shape of the A the shape of the A in "Ã" will be updated automagically -- as will the width of "Ã".

But FontForge knows that "Ã" is built out of "A" and the tilde accent, and it can easily create your accented glyphs itself by
placing the references in "Ã" and then positioning the accent over the "A". (The Unicode consortium provides a database
which lists the components of every accented glyph in Unicode and FontForge uses this).

As an example, open the file: tutorial/Ambrosia.sfd, then select all the glyphs at encodings 0xc0-0xff, and then press

03/24/2007 01:27 PMSteps to creating a font...

Page 12 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

Element->Build->Build Accented all the accented glyphs will magically appear (there are a few glyphs in this range which
are not accented, and they will remain blank).

FontForge has a heuristic for positioning accents (most accents are centered over the highest point of the glyph), sometimes
this will produce bad results (if the one of the two stems of "u" is slightly taller than the other the accent will be placed over
it rather than being centered over the glyph), so you should be prepared to look at your accented glyphs after creating them.
You may need to adjust one or two (or you may even want to redesign your base glyphs slightly).

Creating a ligature
Unicode contains a number of ligature glyphs (in latin we have: Æ, OE, fi, etc. while in arabic there are hundreds). Again
Unicode provides a database listing the components of each standard ligature.

FontForge cannot create a nice ligature for you, but what it can do is put all the components of the ligature into the glyph
with Element->Build->Build Composite. This makes it slightly easier (at least in latin) to design a ligature.

Steps to building a ligature

Use the Element ->
Glyph Info dialog to
name the glyph and
mark it as a ligature.
Then use Element ->
Build -> Build
Composite to insert
references to the
ligature components.

Use the Edit-> Unlink
References command
to turn the references
into a set of contours.

Adjust the components
so that they will look
better together. Here
the stem of the first f
has been lowered.

Use the Element ->
Remove Overlap
command to clean up
the glyph.

Finally drag the
ligature caret lines
from the origin to more
appropriate places
between the
components.

Some word processors will allow the editing caret to be placed inside a ligature (with a caret position between each
component of the ligature). This means that the user of that word processor does not need to know s/he is dealing with a
ligature and sees behavior very similar to what s/he would see if the components were present. But if the word processor is
to be able to do this it must have some information from the font designer giving the locations of appropriate caret
positions. As soon as FontForge notices that a glyph is a ligature it will insert in it enough caret location lines to fit between
the ligature's components. FontForge places these on the origin, if you leave them on the origin FontForge will ignore them.
But once you have built your ligature you might want to move the pointer tool over to the origin line, press the button and
drag one of the caret lines to its correct location. (Only Apple Advanced Typography and OpenType support this).

There are a good many ligatures needed for the indic scripts, but Unicode does not provide an encoding for them. If you
wish to build a ligature that is not part of Unicode you may do so. First add an unencoded glyph to your font (or if your font

03/24/2007 01:27 PMSteps to creating a font...

Page 13 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

is a Unicode font, you could use a code point in the private use area), and name the glyph. The name is important, if you
name it correctly FontForge will be able to figure out that it is a ligature and what its components are. If you want to build a
ligature out of the glyphs "longs", "longs" and "l" then name it "longs_longs_l", if you want to build a ligature out of
Unicode 0D15, 0D4D and 0D15 then name it "uni0D15_uni0D4D_uni0D15".

Once you have named your ligature, and inserted its components (with Build Composite), you probably want to open the
glyph, Unlink your References and edit them to make a pleasing shape (as above).

Lookups and Features
Unfortunately simply creating
a ligature glyph is not enough.
You must also include
information in the font to say
that the glyph is a ligature, and
to say what components it is
built from.

In OpenType this is handled
by lookups and features. A
lookup is a collection of tables
in the font which contain
transformation information. A
feature is a collection of
lookups and is a provides
semantic information to the
world outside the font about
what that set of lookups can
be expected to do. So in the
example above the lookup
would contain the information
that "f" + "f" + "i" should turn
into "ffi", while the feature
would say that this is a
standard ligature for the latin
script.

So the first time you create a
ligature glyph you will need to
create a lookup (and a lookup
subtable) in which the information for that glyph will reside. Any subsequent ligatures can probably share the same lookup
and subtable.

(This may seem like overkill for latin ligatures, and perhaps it is, bt the complexity is needed for more complex writing
systems).

You would open the Lookups pane of the Element->FontInfo command and press the [Add Lookup] button. This will give
you a new dialog in which you can fill in the attributes of your new lookup.

You must first choose the lookup type. For ligatures
this should be "Ligature Substitution". You may then
bind this lookup to a feature, script and language set.
The "ffi" ligature is a standard ligature in latin
typesetting so it should be bound to the 'liga' tag, and

03/24/2007 01:27 PMSteps to creating a font...

Page 14 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

the 'latn' script. (If you click on the little box to the right
of "liga" you will get a pulldown list of the so-called
"friendly names" for the features. "liga" corresponds to
"Standard Ligatures").

The language is a bit tricky. This ligature should
probably be active for all languages except Turkish that
use the latin script (Turkish uses a dotlessi and it is not
clear whether the "i" in the "fi" and "ffi" ligatures has a
dot over it). So we want to list all languages but
Turkish. That's a lot of languages. The convention
instead is that if a language isn't mentioned explicitly
anywhere in the font then that language will be treated
as the "default" language. So to make this feature not
be active for Turkish, we'd have to create some other
feature which specifically mentioned Turkish in its
language list.

Underneath the feature list is a set of flags. In latin
ligatures none of these flags need be set. In Arabic one might want to set both "Right to Left" and "Ignore Combining
Marks".

Next the lookup must be given a name. This name is for your use and will never be seen in the real font. The name must be
distinct from the name of any other lookup however.

Finally you get to decide whether you want the ligatures in this lookup to be stored in afm files.

Once you have created a lookup, you must create a
subtable in that lookup. Select the lookup line (in the
Lookups pane of Font Info) and press [Add Subtable].
This is a fairly simple dialog... you simply provide a name
for the sub-table, and then another dialog will pop up and
you will (finally) be able to store your ligature
information.

CAVEAT: OpenType engines will only apply features
which they believe are appropriate for the current script
(in Latin scripts, Uniscribe will apply 'liga'). Even worse,
some applications may choose not to apply any features
ever (Word does not do ligatures in latin -- though this may have changed with the 2007 release?). Microsoft tries to
document what features they apply for which scripts in Uniscribe, but that isn't very helpful since Word and Office have
quite different behavior than the default.

Examining and controlling metrics
After you have created the shapes of your glyphs you must next figure out the spacing between glyphs.
The space between any two glyph has two components, the space after the first glyph, and the space
before the second glyph. In a left to right world these two are called the right side bearing and the left side
bearing respectively.

The left side bearing may be changed by the simple expedient of Edit->Select All (in the outline view)
and then dragging the selected objects to the appropriate place. The right side bearing may be changed by
selecting the advance width line and adjusting it appropriately.

03/24/2007 01:27 PMSteps to creating a font...

Page 15 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

However it is generally better not to set the metrics of a single glyph in isolation, you should see the glyph in the context of
other glyphs and set it from that perspective. Use the Window->Open Metrics Window command.

Any glyphs selected in the fontview (when you invoke the metrics view) will be displayed in the metrics view. You may
change which glyphs are displayed by either typing new ones in to the text field at the top of the view, or by dragging a
glyph from the fontview.

From here you may adjust any glyph's metrics by typing into the textfields below it, or you may select a glyph (by clicking
on its image) and drag it around (to adjust the left side bearing), or drag its width line (to adjust its right side bearing).

If you want to generate a "typewriter" style font (where all glyphs have the same width) execute an Edit->Select All
from the fontview and then Metrics->Set Width. This will set the widths of all glyphs to the same value. After doing that
you might also want to execute Metrics->Center in Width to even out the left and right spacing on each glyph.

If all this manual operation seems too complicated, try Metrics->Auto Width.
This will automagically assign widths to glyphs. These widths are not up to
professional standards, but they are generally reasonable approximations.

Vertical Metrics

FontForge provides some support for the vertical metrics needed for CJK fonts.
First you must tell FontForge that this font should contain vertical metrics, do
this with Element->Font Info->General->Has Vertical Metrics. Then in
each outline glyph enable VMetrics in the Layers palette.

You should now see a vertical advance line somewhere underneath your glyph.
You may drag this line just as you would the horizontal advance (width) line.

Setting the baseline to baseline spacing of a font.

You might imagine that there would be an easy way to set this seemingly important quantity. Unfortunately there is not.

In a PostScript Type1 font (or bare CFF font)

03/24/2007 01:27 PMSteps to creating a font...

Page 16 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

There is no way to set this value.
At all, ever.
In traditional typography the inter-line spacing is 1em (which in FontForge is the ascent+descent of a font). Some
applications will use this. Other applications will use the font's bounding box (summing the maximum ascender height
with the minimum descender depth) -- a very bad, but very common approach.

In a TrueType or OpenType font
Unfortunately this depends on the platform

Mac
On a mac the baseline to baseline spacing is determined again by the bounding box values of the font, specified
in the 'hhea' table, possibly modified by a linegap (Which you can set in FontForge with Element->FontInfo-
>OS/2.

On Windows
According to the OpenType spec, the baseline to baseline distance is set by the values of Typographic Ascent
and Descent of the 'OS/2' table. These can be set with Element->FontInfo->OS/2, but are usually allowed to
default to the Ascent and Descent values of FontForge -- they generally sum to 1em and are equivalent to the
traditional unleaded default.
Again this may be modified by a linegap field.
Unfortunately Windows programs rarely follow the standard (which I expect doesn't supprise anyone), and
generally they will use the font's bounding box as specified in the Win Ascent/Descent fields of the 'OS/2' table.

On linux/unix
I doubt there is any standard behavior. Unix apps will probably choose one of the above.

Typographically ept applications will allow users to adjust baseline to baseline spacing, so the default value may not be all
that relevant.

Kerning
If you are careful in setting the left and right side-bearings you can design your font so that the spacing looks nice in almost
all cases. But there are always some cases which confound simple solutions.

Consider "To" or "Av" here the standard choices are inappropriate. The "o" will look better if it can slide more to the left
and snuggle under the top bar of the "T". This is called kerning, and it is used to control inter-glyph spacing on a pair-by-
pair basis.

Kerning

03/24/2007 01:27 PMSteps to creating a font...

Page 17 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

In the above example the left image shows the
unkerned text, the right shows the kerned text. To
create a kerned pair in the metrics window, simply
click on the right glyph of the pair, the line (normally
the horizontal advance) between the two should go
green (and becomes the kerned advance). Drag this line
around until the spacing looks nice.

Sadly that statement is a simplification... Before you
can create a kerning pair you must create a kerning
lookup (see the section on lookups). Once again you
bring up the Element->Font Info->Lookups pane and
this time you must select the GPOS (Glyph Positioning)
tab at the top of the pane. Once again you press [Add
Lookup]. This time the lookup type is "Pairwise
Positioning", and the feature is "kern" (or perhaps
"vkrn" if you want to do vertical kerning).

Once you have created your lookup you again select it
and press the [Add Subtable] button (which asks you to
name the subtable). Then FontForge will ask you
whether you want a subtable of kerning pairs or kerning
classes.

If you have many glyphs which have similar kerning features you might wish to create a set of kerning classes (which
might say that A, À, Á, Â, Â, Ã and Ä all kern alike). However for this example you want a kerning pair subtable.

Then FontForge will popup a dialog allowing you to set the
kerning subtable directly. You may set your kerning pairs
from here, though I prefer the metrics view myself because
you can see more glyphs and so get a better feel for the
"color" of the font.

(Some glyph combinations are better treated by creating a
ligature than by kerning the letters)

Vertical Kerning

FontForge has equivalent support for vertical kerning. It
can read and write vertical kerning information from and to
truetype, opentype and svg fonts. It allows you to create
vertical kerning classes. The metrics window has a vertical
mode in which you can set vertical kerning pairs. Finally it
has a command which will copy horizontal kerning
information to the vertically rotated glyphs (That is, if the
combination "A" "V" is horizontally kerned by -200, then
"A.vert" "V.vert" should be vertically kerned by -200.

(Vertical kerning is only available if the font has vertical
metrics)

Glyph Variants

03/24/2007 01:27 PMSteps to creating a font...

Page 18 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

In many scripts glyphs have several variant glyphs. In latin the most obvious example is that every letter has both an upper
case and a lower case variant. A more esoteric example would be that in renaissance times the long-s variant (of s) was
used initially and medially in a word, while the short-s was only used at the end of a word.

Most Arabic glyphs have four variants (initial, medial, final and isolated).

The digits often have several variants: tabular digits (where all digits have the same advance width so that tables of numbers
don't look ragged), proportional digits (where each digit has a width appropriate to its shape) and old-style or lower case
digits () where some digits have descenders and others have ascenders.

Some of these variants are built into the encodings (the upper and lower case distinction is), but in other cases you should
provide extra information in the font so that the word processor can be aware of the variants (Arabic is midway between the
two, the various forms are in the encoding, but you need to provide extra information as well).

Let us consider the case of the digits mentioned above.
Assume that the glyph called "one" contains the tabular
variant of one, the glyph "one.prop" contains the
proportional variant and "one.oldstyle" contains the lower-
case variant, and so on for all the other digits. Before you
do anything else you must create two lookups and
associated subtables (I shan't go into that again. Here the
lookup type is "Single Substitution", and the features are
"pnum" for Proportional Numbers and "onum" for
Oldstyle Figures. Also the digits aren't in any single script,
but are in many, so make this feature apply to multiple
scripts (including "DFLT").

When FontForge brings up the dialog to fill in the oldstyle
lookup subtable notice that there is a button [Default
Using Suffix:] followed by a text field containing a suffix.
Set the text field to "oldstyle" and press the button. It will
search through all glyphs in all the scripts of the feature and find any "oldstyle" variants of them and populate the table with
them.

Sometimes it makes more sense to think of all the
substitutions available for a specific glyph (rather than all
substitutions in a specific lookup). So instead if filling up
the subtable dialog for "Proportional Numbers" let us
instead select "one" from the fontview, Element->Glyph
Info, select the Substitutions tab and press the <New>
button.

(Note: Type0, Type1 and Type3 PostScript fonts have no
notation to handle this. You need to be creating an
OpenType or TrueType font for these variants to be
output).

Conditional Variants

FontForge supports OpenType's Contextual Substitution
and Chaining Contextual Substitution sub-tables, and to
a lesser extent, Apple's contextual glyph substitution

sub-table. This means that you can insert conditional variants into your font. The next page will go into this in greater detail.

03/24/2007 01:27 PMSteps to creating a font...

Page 19 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

Anchoring marks
Some scripts (Arabic, Hebrew) need vowel marks placed around the main text glyphs. Other scripts (some variants of Latin
and Greek) have so many possible accent combinations that having preassembled glyphs for all combinations is unwieldy.

In OpenType (which includes MicroSoft's TrueType fonts) it is possible to indicate on all base glyphs where marks should
attach, and on all marks where the base glyphs should attach. Thus one could put an anchor centered above a lowercase-a
indicating that all accents (acute, grave, umlaut, circumflex, tilde, macron, ring, caron, ...) should attach there, and
underneath all the accents one could put another anchor so that when the two glyphs are adjacent in the text the word-
processor will know where to place the accent so that it rides above the "a".

+ =>

Not all accents ride centered above the letter (the dot and ogonek ride below the letter), so you may need more than one
anchor for different styles of attachment.

Finally some letters can have multiple attachments, unicode U+1EA4, for example, is an A with a circumflex and an acute.
Normally the circumflex and the acute will attach at the same point, which would be ugly and confusing. Instead we create
a different kind of anchor, a mark to mark anchor, on the circumflex and allow the acute accent to attach to that.

Before one can create an anchor in a glyph one must (of course) create a lookup and subtable. This is another Glyph
Positioning lookup (so you enter it in the GPOS pane). Once you have created the subtable you will be presented with
another dialog asking for anchor classes, you must create an anchor class for each type of attachment (thus in the case of A
above with two types of attachments (one above and one below) you would create two anchor classes.

Then for each glyph in which an attachment will be made, you should first click at the point where the anchor is to be
created and then bring up the Point->Add Anchor dialog.

You can examine (and correct) how a glyph fits to any others that combine with it by using the View->Anchor Control...
command.

A warning about mark attachments: Not all software supports them. And even more confusing software may support
them for some scripts and not for others.

Conditional Features
OpenType and Apple fonts both provide contextual features. These are features which only take place in a given context
and are essential for typesetting Indic and Arabic scripts. In OpenType a context is specified by a set of patterns that are
tested against the glyph stream of a document. If a pattern matches then any substitutions it defines will be applied. In an
Apple font, the context is specified by a state machine -- a mini program which parses and transforms the glyph stream.

Conditional features may involve substitutions, ligatures or kerning (and some more obscure behaviors). First I shall provide
an example of a contextual substitution, later of contextual ligatures.

03/24/2007 01:27 PMSteps to creating a font...

Page 20 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

Instead of an Indic or Arabic example, let us take something I'm more familiar
with, the problem of typesetting a latin script font where the letters ``b,'' ``o,'' ``v''
and ``w'' join their following letter near the x-height, while all other letters join near
the baseline. Thus we need two variants for each glyph, one that joins (on the left)
at the baseline (the default variant) and one which joins at the x-height. Let us call
this second set of letters the ``high'' letters and name them ``a.high,'' ``b.high'' and so forth.

OpenType Example

Warning
The following example may not work! The font tables produced by it are all correct, but the
designers of OpenType (or its implementors) decided that the latin script does not need complex
conditional features and many implementations of OpenType do not support them for latin. This
is not even mentioned in the standard, but is hidden away in supplemental information on
microsoft's site.

Why do I provide an example which doesn't work? It's the best I can do. If I knew enough about
Indic or Arabic typesetting I would provide an example for those scripts. But I don't. The
procedures are the same. If you follow them for some other scripts they will work.

On some systems and in some applications 'calt' is supported for latn and this example will work.
On other systems/applications the example can be made to work by replacing the 'calt' feature tag
(conditional alternatives) with a Required tag (but I gather that is now deprecated).

We divide the set of possible glyphs into three classes: the letters ``bovw'', all other letters, and all other glyphs. We need to
create two patterns, the first will match a glyph in the ``bovw'' class followed by another glyph in the ``bovw'' class, while
the second will match a glyph in the ``bovw'' class followed by any other letter. If either of these matches the second glyph
should be transformed into its high variant.

[bovw] [bovw] => Apply a substitution to second letter
[bovw] <any other letter> => Apply a substitution to the second letter

(You might wonder why I don't just have a class of all letters and use one rule instead of two? Because in this case all my
classes must be disjoint, I mayn't have one glyph appearing in two classes).

The first thing we must do is create a simple substitution mapping each low letter to its high variant. This is a "Simple
Substitution" lookup, but it will not be attached to any feature, instead it will be invoked by a contextual lookup. Let us call
this lookup "high". We must (of course) create a subtable to go with our lookup, and we can use the [Default with Suffix:]
button to fill it up with the high variants.

The tricky part is defining the context. This is done by defining yet another lookup, a contextual chaining lookup which
should be associated with a 'calt' feature. And of course we want an associated subtable). This will pop up a series of
dialogs to edit a contextual subtable

The first dialog allows you to specify the overall format of the
substitution. We want a class based system -- we've already mentioned
what the glyph classes will be.

03/24/2007 01:27 PMSteps to creating a font...

Page 21 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

The next dialog finally shows something interesting. At the top are a
series of patterns to match and substitutions that will be applied if the
string matches. Underneath that are the glyph classes that this
substitution uses. A contextual chaining dialog divides the glyph stream
into three categories: those glyphs before the current glyph (these are
called backtracking glyphs), the current glyph itself (you may specify
more than one), and this (these) glyphs may have simple substitutions
applied to them, and finally glyphs after the current glyph (these are
called lookahead glyphs).

Each category of glyphs may divide glyphs into a different set of
classes, but in this example we use the same classes for all categories
(this makes it easier to convert the substitution to Apple's format). The
first line (in the ``List of lists'' field) should be read thus: If a
backtracking glyph (the glyph before the current one) in class 1 is
followed by the current glyph in class 2, then location 0 --the only
location -- in the match string (that is the current glyph) should have
simple substitution `high' applied to it.

If you look at the glyph class definitions you will see that class 1
includes those glyphs which must be followed by a high variant, so this
seems reasonable.

The second line is similar except that it matches glyphs in class 1. Looking at the class definitions we see that classes 1 & 2
include all the letters, so these two lines mean that if any letter follows one of ``bovw'' then that letter should be converted
to its `high' variant.

To edit a glyph class simply double click on it. To create a new one
press the [New] button (under the class list). This produces another
dialog showing all the names of all the glyphs in the current class.
Pressing the [Select] button will set the selection in the font window to
match the glyphs in the class, while the [Set] button will do the reverse
and set the class to the selection in the font window. These provide a
short cut to typing in a lot of glyph names.

Pressing the [Next] button defines the class and returns to the overview
dialog.

To edit a pattern double click on it, or to create a new one press the

03/24/2007 01:27 PMSteps to creating a font...

Page 22 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

[New] button (under the List of lists). Again the pattern string is divided
into three categories,
those glyphs before
the current one, the
current one itself,
and any glyphs after
the current one. You
choose which
category of the
pattern you are
editing with the tabs
at the top of the
dialog.

Underneath these is
the subset of the
pattern that falls
within the current
category, the classes
defined for this category, and finally the substitutions for the current
glyph(s). Clicking on one of the classes will add the class number to the

pattern.

To edit a substitution double click on it, or to create a new one press the [New] button (under ``An ordered list...''). The
sequence number specifies which glyph among the current glyphs should be modified, and the tag specifies a four character
substitution name

A warning about contextual behavior: Not all software supports them. And even more confusing software may support
them for some scripts and not for others.

Apple advanced typography

Apple specifies a context with a finite state machine, which is essentially a tiny program that looks at the glyph stream and
decides what substitutions to apply. Each state machine has a set of glyph class definitions (just as in the OpenType
example), and a set of states. The process begins in state 0 at the start of the glyph stream. The computer determines what
class the current glyph is in and then looks at the current state to see how it will behave when given input from that class.
The behavior includes the ability to change to a different state, advancing the input to the next glyph, applying a substitution
to either the current glyph or a previous one (the ``marked'' glyph).

Using the same example of a latin script font... We again need a
simple substitution to convert each letter into its high alternate.
The process is the same as it was for OpenType, and indeed we
can use the same substitution. Again we divide the glyphs into
three classes (Apple gives us some extra classes whether we
want them or no, but conceptually we use the same three classes
as in the OpenType example). We want a state machine with
two states (again Apple gives us an extra state for free, but we
shall ignore that), one is the start state (the base state -- where nothing changes), and the other is the state where we've just
read a glyph from the ``bovw'' class.

Apple Advanced Typography does not quite fit into the
OpentType concepts of lookups and features, but it is
close enough that I sort of force it to. So once again we
create a GSUB lookup. This time the lookup type is

03/24/2007 01:27 PMSteps to creating a font...

Page 23 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

"Mac Contextual State Machine", and the feature is
actually a mac feature/setting, two numbers. When we
create a new subtable of this type we get a state
machine dialog, as shown below.

At the
top of
the
dialog
we see
a set of
class

definitions, and at the bottom is a representation of the state machine itself.

Double clicking on a class
brings up a dialog similar to
that used in OpenType

Clicking on a transition in the state machine
(there is a transition for each state / class
combination) produces a transition dialog.
This controls how the state machine behaves
when it is in a given state and receives a
glyph in a given class. In this example it is
in state 2 (which means it has already read a

``bovw'' glyph), and it has received a glyph in class 4 (which is another ``bovw'' glyph). In
this case the next state will be state 2 again (we will have just read a new ``bovw'' glyph),
read another glyph and apply the ``high'' substitution to the current glyph.

At the bottom of the dialog are a series of buttons that allow you to navigate through the
transitions of the state machine.

Pressing [OK] many times will extract you from this chain of dialogs and add a new state
machine to your font.

OpenType, Greek ligatures
Greek has a character (U+03D7) which is equivalent to the Latin ampersand. Just as the ampersand is (originally) a ligature
of "E" and "t", so U+03D7 is a ligature of "kappa" and "iota". However this ligature should only be used if "kappa" and
"iota" make up a word unto themselves, it should not be used for more normal occurances of the two within a longer word.

So the first thing to do is create the ligature itself. Add the glyph for U+03D7, and
then create a ligature lookup and subtable (with Element->Font Info->Lookups) to

03/24/2007 01:27 PMSteps to creating a font...

Page 24 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

bind U+03D7 to be a ligature of "kappa" and "iota". This lookup will never be used
directly -- only under the control of another, a conditional feature -- so we don't give it
a feature tag.

Next the conditional bit.

I'm going to use the notation <letters> to represent a class consisting of all greek
letters.

. 1 <letters> kappa iota => no substitution

. 2 kappa iota <letters> => no substitution

. 3 kappa iota => apply the ligature "WORD"

(Now as I read the standard all these rules could be put into one subtable, and the font validation tools I have agree with me -- but the layout engines do
not. The layout engines seem to insist that each rule live in its own subtable. This is inconvenient (the classes must be defined in each subtable) but it
seems to work.)

These rules will be executed in order, and the first one that matches the input text will be the (one and only) rule applied.
Consider these three strings, , , all contain kappa and iota but each contains more letters around them, so none
should be replaced by the ligature.

The first string, , will match the first rule above (it contains letters before the kappa iota sequence) and no
substitution will be done. It also matches the third rule, but we never get that far.
The second string, , will match the second rule above (it contains letters after the sequence) and again no
substitution will be done. It would match the third rule, but we stop with the first match.
The third string, , matches all the rules, but since the search stops at the first match, only the first rule will be
applied, and no substitution will be done.
The string, , matches neither of the first two rules but does match the last, so here the ligature will be formed.

You might wonder why I don't just have one rule

. 1 <any non-letter> kappa iota <any non-letter> => apply our ligature

It seems much simpler.

Well there's one main reason:

This does not work if the kappa is at the beginning of the input stream (it will not be preceded by any glyphs, but
might still need replacing), or iota at the end.

Now how do we convert these rules into a contextual lookup?

We use Element->Font Info->Lookups->Add Lookup to create a new contextual
chaining lookup. This is the top level lookup and should be bound to a feature tag in
the Greek script.

03/24/2007 01:27 PMSteps to creating a font...

Page 25 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

We have three rules, each rule lives in its own subtable, so we will create three
subtables, one for each. The order in which these subtables n the Lookups pane is
important because that is the order in which the the rules they contain will be
executed. We must insure that that final rule which actually invokes the ligature is the
last one executed (and the last one in the list).

Since we are planning on using the class of all
greek letters we will want to use a class format for
this feature. Then we press the [Next>] button.

The main match will be on the letters kappa and iota in all three rules,
so we need one class for each of them. So in the Match Classes area
we press the [New] button...

03/24/2007 01:27 PMSteps to creating a font...

Page 26 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

And type in the word "kappa" and press [Next>]

Now we have a class containing the single glyph "kappa". We want
to do the same thing for "iota" so we press [New] again.

Again type in "iota" and press [Next>]

Now we have all the classes we need here. We still need to create
classes for the lookahead and backtrack. We only need one class for
these groups and that class will consist of all greek letters.

03/24/2007 01:27 PMSteps to creating a font...

Page 27 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

The check box [*] Same as Match Classes is
set, but we don't want that, we want our own
classes here. So uncheck it.

Now the buttons become active and we can create a new class by
pressing [New]

Now you could go back to the font view and
select all of the greek letters, and then press the
[Set From Font] button in the class dialog.

But in this case the class we are interested in (all the greek letters) is
built it, and you can select it from the Standard Class pulldown list
(Letters in script(s)) Then press [Next>].

03/24/2007 01:27 PMSteps to creating a font...

Page 28 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

Then go through the same process for the look ahead classes (adding
one class which consists of all the greek letters.

Now we have all our classes defined and are
finally ready to create the patterns for our rules.
So underneath "List of lists of class numbers"
press the [New] button.

The first rule begins with all the greek letters in the backtrack area, so
click on the "Backtrack" tab, and then press on the class consisting of
all the greek letters. This puts the class number into the pattern area
(the List of class numbers)

In the match area we want to match kappa and
then iota, so click on the Match tab, and then on
the entries for "kappa" and "iota".

We are done with the first rule. It says:

The previous character should match class 1 of the backtrack
classes (and that class contains all greek letters, which is what
we want)
The current character should match class 1 of the match classes
(and that class contains "kappa")

03/24/2007 01:27 PMSteps to creating a font...

Page 29 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

This rule has no substitutions, so leave the bottom
area blank and press [Next>].

The next character should match class 2 of the match classes
(which is iota)
And if the match is successful, do absolutely nothing.

We've got two more rules though, so press [OK] and then [Add
Subtable]. Then go through the process of adding all the classes, and
then add the match string for this rule.

We are done with the second rule. It says:

The current character should match class 1
of the match classes (and that class contains
"kappa")
The next character should match class 2 of
the match classes (which is iota)
The character after that should match class 1
of the lookahead classes (and that class
contains all the greek letters)
And if the match is successful, do absolutely
nothing.

This rule does have substitutions -- we want to take the two characters
and convert them into a ligature. So Press [New] under the sequence
position list, we want to start at the first character (sequence position
0) and apply the ligature we called "WORD":

03/24/2007 01:27 PMSteps to creating a font...

Page 30 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

Press [OK] and [Add Subtable] for the final
rule.
So if anything doesn't match the first two rules,
and does contain a kappa followed by an iota, it
must be a two letter stand-alone greek word. And
we want to apply our ligature to it.

Now we are done. Press a series of [OK]s until all the dialogs have
been accepted.

Once you have created your lookups you may test the result in the metrics view.

03/24/2007 01:27 PMSteps to creating a font...

Page 31 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

(This example was provided by Apostolos Syropoulos)

Checking a font
After you have finished making all the glyphs in your font you should check it for inconsistencies. FontForge has a
command, Element->Find Problems which is designed to find many common problems.

Simply select all the glyphs in the font and then bring up the Find Problems dialog. Be warned though: Not everything it
reports as a problem is a real problem, some may be an element of the font's design that FontForge does not expect.

The dialog can search for problems like:

Stems which are close to but not exactly some standard value.
Points which are close to but not exactly some standard height
Paths which are almost but not quite vertical or horizontal
Control points which are in unlikely places
Points which are almost but not quite on a hint
...

I find it best just to check for a similar problems at a time, otherwise switching between different kinds of problems can be
distracting.

Bitmaps
At this point you might want some bitmaps to go with the outline font (this is not compulsory). Go to Element->Bitmap
Strikes Available and select the pixel sizes you want bitmaps in (Note, that on X and MS windows pixel sizes often do
not correspond exactly to point sizes. You can then use the bitmap editor (Window->Open Bitmap) to clean up the bitmaps,
or you can generate your bitmap fonts and then use someone else's bitmap editor to clean them up.

03/24/2007 01:27 PMSteps to creating a font...

Page 32 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

Bitmaps are discussed in more detail in the next section.

Generating a font
If you save your file it will be saved in a format that only FontForge understands (as far as I know anyway). This is not
very helpful if you want to use the font.

Instead you must use File->Generate to convert your font
into one of the standard font formats. FontForge presents
what looks like a vast array of font formats, but in reality
there are just several variants on a few basic font formats:
PostScript Type 1, TrueType, OpenType (and for CJK fonts,
also CID-keyed fonts).

You also have a choice of bitmap formats. FontForge
supports bdf (used by X), mac NFNT (used by the Mac),
Windows FNT (used by Windows 2.0 I think) and storing
bitmaps inside true (or open) type wrappers.

Font Families
After you have generated a font, you probably want to generate a sequence of similar fonts. In Latin, Greek and Cyrillic
fonts italic (or oblique), bold, condensed, expanded styles are fairly common.

Fonts with different styles in the same family should share the same Family Name (in the Element->Font Info->Names

03/24/2007 01:27 PMSteps to creating a font...

Page 33 of 33file:///usr/local/share/doc/fontforge/htdocs/editexample-full.html

dialog). The Font Name should be the Family Name with the style name(s) appended to the end, often preceded by a
hyphen. So in the font family "Helvetica" all fonts should have the Family Name set to "Helvetica". The plain style could be
called simply "Helvetica" or "Helvetica-Regular", the bold style "Helvetica-Bold", the oblique (Helvetica doesn't have a
true italic) "Helvetica-Oblique", etc.

FontForge has a command (which doesn't work well yet, but I hope to improve eventually) Element->MetaFont which is
designed to help you create a bold (condensed, expanded, etc.) style from a plain one.

The Element->Transform->Transform->Skew command can turn a plain font into an Oblique one. Creating a true italic
font is generally a bit more complex, the shape of the "a" changes dramatically to "a", the "f" gains a descender as "f", the
serifs on "ilm" etc. become rounded as "ilm" and there will probably be other subtle differences. Also, after having skewed
a font you should Element->Add Extrema.

If you already have a "Bold" and a "Plain" style of a font (and each glyph has the same number of points in the same
order), you can use the Element->Interpolate Font command to generate a "DemiBold" style.

TrueType fonts (and Windows) support a very fine gradation of stem thicknesses (the Mac really only understands Plain
and Bold). If you go to Element->Font Info->OS/2 you can set the weight to be any value between 0 and 999 (with plain
generally being at 400 or 500, and Bold at 700). TrueType fonts also support a range of widths (while the Mac only
supports condensed, plain and expanded).

On Windows machines, as long as you get the names right,
the system should be able to figure out what fonts go into
what families. But on the Mac the situation is (or was, it is
changing and I don't understand all the new extensions yet)
more complicated. The Mac supports a limited range of
styles (plain, italic, bold, outline, condensed, expanded and
combinations of these) anything outside these must go into
a separate family. Then a special table needs to be
constructed (called the FOND) which holds pointers to the
various fonts in the family. If you open all the fonts you
want to be in a given family (and if they have been given
the proper names) and then from the plain font select File-
>Generate Family. This will list all the fonts that FontForge
thinks belong to the same family as the current font and
will allow you to generate a FOND structure as well as font
files for all family members (sometimes all the fonts live in
one file, sometimes they don't, it depends on the font
format chosen).

Final Summary
So you have made a new font. But it does you no good just
sitting on your disk, you must install it on your machine.
On some systems this is as simple as just dragging the new
font into your system Fonts folder, but on other systems
there is a fair amount work involved still. See the Installing
fonts FAQ.

For a tutorial about FontForge's scripting mechanism click
here.

