/* * Copyright 2011 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include #include "drmP.h" #include "drm_crtc_helper.h" #include "nouveau_drm.h" #include "nouveau_dma.h" #include "nouveau_gem.h" #include "nouveau_connector.h" #include "nouveau_encoder.h" #include "nouveau_crtc.h" #include "nouveau_fence.h" #include "nv50_display.h" #include #include #include #include #define EVO_DMA_NR 9 #define EVO_MASTER (0x00) #define EVO_FLIP(c) (0x01 + (c)) #define EVO_OVLY(c) (0x05 + (c)) #define EVO_OIMM(c) (0x09 + (c)) #define EVO_CURS(c) (0x0d + (c)) /* offsets in shared sync bo of various structures */ #define EVO_SYNC(c, o) ((c) * 0x0100 + (o)) #define EVO_MAST_NTFY EVO_SYNC( 0, 0x00) #define EVO_FLIP_SEM0(c) EVO_SYNC((c), 0x00) #define EVO_FLIP_SEM1(c) EVO_SYNC((c), 0x10) struct evo { int idx; dma_addr_t handle; u32 *ptr; struct { u32 offset; u16 value; } sem; }; struct nvd0_display { struct nouveau_gpuobj *mem; struct nouveau_bo *sync; struct evo evo[9]; struct tasklet_struct tasklet; u32 modeset; }; static struct nvd0_display * nvd0_display(struct drm_device *dev) { return nouveau_display(dev)->priv; } static struct drm_crtc * nvd0_display_crtc_get(struct drm_encoder *encoder) { return nouveau_encoder(encoder)->crtc; } /****************************************************************************** * EVO channel helpers *****************************************************************************/ static inline int evo_icmd(struct drm_device *dev, int id, u32 mthd, u32 data) { struct nouveau_device *device = nouveau_dev(dev); int ret = 0; nv_mask(device, 0x610700 + (id * 0x10), 0x00000001, 0x00000001); nv_wr32(device, 0x610704 + (id * 0x10), data); nv_mask(device, 0x610704 + (id * 0x10), 0x80000ffc, 0x80000000 | mthd); if (!nv_wait(device, 0x610704 + (id * 0x10), 0x80000000, 0x00000000)) ret = -EBUSY; nv_mask(device, 0x610700 + (id * 0x10), 0x00000001, 0x00000000); return ret; } static u32 * evo_wait(struct drm_device *dev, int id, int nr) { struct nouveau_device *device = nouveau_dev(dev); struct nouveau_drm *drm = nouveau_drm(dev); struct nvd0_display *disp = nvd0_display(dev); u32 put = nv_rd32(device, 0x640000 + (id * 0x1000)) / 4; if (put + nr >= (PAGE_SIZE / 4)) { disp->evo[id].ptr[put] = 0x20000000; nv_wr32(device, 0x640000 + (id * 0x1000), 0x00000000); if (!nv_wait(device, 0x640004 + (id * 0x1000), ~0, 0x00000000)) { NV_ERROR(drm, "evo %d dma stalled\n", id); return NULL; } put = 0; } return disp->evo[id].ptr + put; } static void evo_kick(u32 *push, struct drm_device *dev, int id) { struct nouveau_device *device = nouveau_dev(dev); struct nvd0_display *disp = nvd0_display(dev); nv_wr32(device, 0x640000 + (id * 0x1000), (push - disp->evo[id].ptr) << 2); } #define evo_mthd(p,m,s) *((p)++) = (((s) << 18) | (m)) #define evo_data(p,d) *((p)++) = (d) static int evo_init_dma(struct drm_device *dev, int ch) { struct nouveau_device *device = nouveau_dev(dev); struct nouveau_drm *drm = nouveau_drm(dev); struct nvd0_display *disp = nvd0_display(dev); u32 flags; flags = 0x00000000; if (ch == EVO_MASTER) flags |= 0x01000000; nv_wr32(device, 0x610494 + (ch * 0x0010), (disp->evo[ch].handle >> 8) | 3); nv_wr32(device, 0x610498 + (ch * 0x0010), 0x00010000); nv_wr32(device, 0x61049c + (ch * 0x0010), 0x00000001); nv_mask(device, 0x610490 + (ch * 0x0010), 0x00000010, 0x00000010); nv_wr32(device, 0x640000 + (ch * 0x1000), 0x00000000); nv_wr32(device, 0x610490 + (ch * 0x0010), 0x00000013 | flags); if (!nv_wait(device, 0x610490 + (ch * 0x0010), 0x80000000, 0x00000000)) { NV_ERROR(drm, "PDISP: ch%d 0x%08x\n", ch, nv_rd32(device, 0x610490 + (ch * 0x0010))); return -EBUSY; } nv_mask(device, 0x610090, (1 << ch), (1 << ch)); nv_mask(device, 0x6100a0, (1 << ch), (1 << ch)); return 0; } static void evo_fini_dma(struct drm_device *dev, int ch) { struct nouveau_device *device = nouveau_dev(dev); if (!(nv_rd32(device, 0x610490 + (ch * 0x0010)) & 0x00000010)) return; nv_mask(device, 0x610490 + (ch * 0x0010), 0x00000010, 0x00000000); nv_mask(device, 0x610490 + (ch * 0x0010), 0x00000003, 0x00000000); nv_wait(device, 0x610490 + (ch * 0x0010), 0x80000000, 0x00000000); nv_mask(device, 0x610090, (1 << ch), 0x00000000); nv_mask(device, 0x6100a0, (1 << ch), 0x00000000); } static inline void evo_piow(struct drm_device *dev, int ch, u16 mthd, u32 data) { struct nouveau_device *device = nouveau_dev(dev); nv_wr32(device, 0x640000 + (ch * 0x1000) + mthd, data); } static int evo_init_pio(struct drm_device *dev, int ch) { struct nouveau_device *device = nouveau_dev(dev); struct nouveau_drm *drm = nouveau_drm(dev); nv_wr32(device, 0x610490 + (ch * 0x0010), 0x00000001); if (!nv_wait(device, 0x610490 + (ch * 0x0010), 0x00010000, 0x00010000)) { NV_ERROR(drm, "PDISP: ch%d 0x%08x\n", ch, nv_rd32(device, 0x610490 + (ch * 0x0010))); return -EBUSY; } nv_mask(device, 0x610090, (1 << ch), (1 << ch)); nv_mask(device, 0x6100a0, (1 << ch), (1 << ch)); return 0; } static void evo_fini_pio(struct drm_device *dev, int ch) { struct nouveau_device *device = nouveau_dev(dev); if (!(nv_rd32(device, 0x610490 + (ch * 0x0010)) & 0x00000001)) return; nv_mask(device, 0x610490 + (ch * 0x0010), 0x00000010, 0x00000010); nv_mask(device, 0x610490 + (ch * 0x0010), 0x00000001, 0x00000000); nv_wait(device, 0x610490 + (ch * 0x0010), 0x00010000, 0x00000000); nv_mask(device, 0x610090, (1 << ch), 0x00000000); nv_mask(device, 0x6100a0, (1 << ch), 0x00000000); } static bool evo_sync_wait(void *data) { return nouveau_bo_rd32(data, EVO_MAST_NTFY) != 0x00000000; } static int evo_sync(struct drm_device *dev, int ch) { struct nouveau_device *device = nouveau_dev(dev); struct nvd0_display *disp = nvd0_display(dev); u32 *push = evo_wait(dev, ch, 8); if (push) { nouveau_bo_wr32(disp->sync, EVO_MAST_NTFY, 0x00000000); evo_mthd(push, 0x0084, 1); evo_data(push, 0x80000000 | EVO_MAST_NTFY); evo_mthd(push, 0x0080, 2); evo_data(push, 0x00000000); evo_data(push, 0x00000000); evo_kick(push, dev, ch); if (nv_wait_cb(device, evo_sync_wait, disp->sync)) return 0; } return -EBUSY; } /****************************************************************************** * Page flipping channel *****************************************************************************/ struct nouveau_bo * nvd0_display_crtc_sema(struct drm_device *dev, int crtc) { return nvd0_display(dev)->sync; } void nvd0_display_flip_stop(struct drm_crtc *crtc) { struct nvd0_display *disp = nvd0_display(crtc->dev); struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct evo *evo = &disp->evo[EVO_FLIP(nv_crtc->index)]; u32 *push; push = evo_wait(crtc->dev, evo->idx, 8); if (push) { evo_mthd(push, 0x0084, 1); evo_data(push, 0x00000000); evo_mthd(push, 0x0094, 1); evo_data(push, 0x00000000); evo_mthd(push, 0x00c0, 1); evo_data(push, 0x00000000); evo_mthd(push, 0x0080, 1); evo_data(push, 0x00000000); evo_kick(push, crtc->dev, evo->idx); } } int nvd0_display_flip_next(struct drm_crtc *crtc, struct drm_framebuffer *fb, struct nouveau_channel *chan, u32 swap_interval) { struct nouveau_framebuffer *nv_fb = nouveau_framebuffer(fb); struct nvd0_display *disp = nvd0_display(crtc->dev); struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct evo *evo = &disp->evo[EVO_FLIP(nv_crtc->index)]; u64 offset; u32 *push; int ret; swap_interval <<= 4; if (swap_interval == 0) swap_interval |= 0x100; push = evo_wait(crtc->dev, evo->idx, 128); if (unlikely(push == NULL)) return -EBUSY; /* synchronise with the rendering channel, if necessary */ if (likely(chan)) { ret = RING_SPACE(chan, 10); if (ret) return ret; offset = nvc0_fence_crtc(chan, nv_crtc->index); offset += evo->sem.offset; BEGIN_NVC0(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4); OUT_RING (chan, upper_32_bits(offset)); OUT_RING (chan, lower_32_bits(offset)); OUT_RING (chan, 0xf00d0000 | evo->sem.value); OUT_RING (chan, 0x1002); BEGIN_NVC0(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4); OUT_RING (chan, upper_32_bits(offset)); OUT_RING (chan, lower_32_bits(offset ^ 0x10)); OUT_RING (chan, 0x74b1e000); OUT_RING (chan, 0x1001); FIRE_RING (chan); } else { nouveau_bo_wr32(disp->sync, evo->sem.offset / 4, 0xf00d0000 | evo->sem.value); evo_sync(crtc->dev, EVO_MASTER); } /* queue the flip */ evo_mthd(push, 0x0100, 1); evo_data(push, 0xfffe0000); evo_mthd(push, 0x0084, 1); evo_data(push, swap_interval); if (!(swap_interval & 0x00000100)) { evo_mthd(push, 0x00e0, 1); evo_data(push, 0x40000000); } evo_mthd(push, 0x0088, 4); evo_data(push, evo->sem.offset); evo_data(push, 0xf00d0000 | evo->sem.value); evo_data(push, 0x74b1e000); evo_data(push, NvEvoSync); evo_mthd(push, 0x00a0, 2); evo_data(push, 0x00000000); evo_data(push, 0x00000000); evo_mthd(push, 0x00c0, 1); evo_data(push, nv_fb->r_dma); evo_mthd(push, 0x0110, 2); evo_data(push, 0x00000000); evo_data(push, 0x00000000); evo_mthd(push, 0x0400, 5); evo_data(push, nv_fb->nvbo->bo.offset >> 8); evo_data(push, 0); evo_data(push, (fb->height << 16) | fb->width); evo_data(push, nv_fb->r_pitch); evo_data(push, nv_fb->r_format); evo_mthd(push, 0x0080, 1); evo_data(push, 0x00000000); evo_kick(push, crtc->dev, evo->idx); evo->sem.offset ^= 0x10; evo->sem.value++; return 0; } /****************************************************************************** * CRTC *****************************************************************************/ static int nvd0_crtc_set_dither(struct nouveau_crtc *nv_crtc, bool update) { struct nouveau_drm *drm = nouveau_drm(nv_crtc->base.dev); struct drm_device *dev = nv_crtc->base.dev; struct nouveau_connector *nv_connector; struct drm_connector *connector; u32 *push, mode = 0x00; u32 mthd; nv_connector = nouveau_crtc_connector_get(nv_crtc); connector = &nv_connector->base; if (nv_connector->dithering_mode == DITHERING_MODE_AUTO) { if (nv_crtc->base.fb->depth > connector->display_info.bpc * 3) mode = DITHERING_MODE_DYNAMIC2X2; } else { mode = nv_connector->dithering_mode; } if (nv_connector->dithering_depth == DITHERING_DEPTH_AUTO) { if (connector->display_info.bpc >= 8) mode |= DITHERING_DEPTH_8BPC; } else { mode |= nv_connector->dithering_depth; } if (nv_device(drm->device)->card_type < NV_E0) mthd = 0x0490 + (nv_crtc->index * 0x0300); else mthd = 0x04a0 + (nv_crtc->index * 0x0300); push = evo_wait(dev, EVO_MASTER, 4); if (push) { evo_mthd(push, mthd, 1); evo_data(push, mode); if (update) { evo_mthd(push, 0x0080, 1); evo_data(push, 0x00000000); } evo_kick(push, dev, EVO_MASTER); } return 0; } static int nvd0_crtc_set_scale(struct nouveau_crtc *nv_crtc, bool update) { struct drm_display_mode *omode, *umode = &nv_crtc->base.mode; struct drm_device *dev = nv_crtc->base.dev; struct drm_crtc *crtc = &nv_crtc->base; struct nouveau_connector *nv_connector; int mode = DRM_MODE_SCALE_NONE; u32 oX, oY, *push; /* start off at the resolution we programmed the crtc for, this * effectively handles NONE/FULL scaling */ nv_connector = nouveau_crtc_connector_get(nv_crtc); if (nv_connector && nv_connector->native_mode) mode = nv_connector->scaling_mode; if (mode != DRM_MODE_SCALE_NONE) omode = nv_connector->native_mode; else omode = umode; oX = omode->hdisplay; oY = omode->vdisplay; if (omode->flags & DRM_MODE_FLAG_DBLSCAN) oY *= 2; /* add overscan compensation if necessary, will keep the aspect * ratio the same as the backend mode unless overridden by the * user setting both hborder and vborder properties. */ if (nv_connector && ( nv_connector->underscan == UNDERSCAN_ON || (nv_connector->underscan == UNDERSCAN_AUTO && nv_connector->edid && drm_detect_hdmi_monitor(nv_connector->edid)))) { u32 bX = nv_connector->underscan_hborder; u32 bY = nv_connector->underscan_vborder; u32 aspect = (oY << 19) / oX; if (bX) { oX -= (bX * 2); if (bY) oY -= (bY * 2); else oY = ((oX * aspect) + (aspect / 2)) >> 19; } else { oX -= (oX >> 4) + 32; if (bY) oY -= (bY * 2); else oY = ((oX * aspect) + (aspect / 2)) >> 19; } } /* handle CENTER/ASPECT scaling, taking into account the areas * removed already for overscan compensation */ switch (mode) { case DRM_MODE_SCALE_CENTER: oX = min((u32)umode->hdisplay, oX); oY = min((u32)umode->vdisplay, oY); /* fall-through */ case DRM_MODE_SCALE_ASPECT: if (oY < oX) { u32 aspect = (umode->hdisplay << 19) / umode->vdisplay; oX = ((oY * aspect) + (aspect / 2)) >> 19; } else { u32 aspect = (umode->vdisplay << 19) / umode->hdisplay; oY = ((oX * aspect) + (aspect / 2)) >> 19; } break; default: break; } push = evo_wait(dev, EVO_MASTER, 8); if (push) { evo_mthd(push, 0x04c0 + (nv_crtc->index * 0x300), 3); evo_data(push, (oY << 16) | oX); evo_data(push, (oY << 16) | oX); evo_data(push, (oY << 16) | oX); evo_mthd(push, 0x0494 + (nv_crtc->index * 0x300), 1); evo_data(push, 0x00000000); evo_mthd(push, 0x04b8 + (nv_crtc->index * 0x300), 1); evo_data(push, (umode->vdisplay << 16) | umode->hdisplay); evo_kick(push, dev, EVO_MASTER); if (update) { nvd0_display_flip_stop(crtc); nvd0_display_flip_next(crtc, crtc->fb, NULL, 1); } } return 0; } static int nvd0_crtc_set_image(struct nouveau_crtc *nv_crtc, struct drm_framebuffer *fb, int x, int y, bool update) { struct nouveau_framebuffer *nvfb = nouveau_framebuffer(fb); u32 *push; push = evo_wait(fb->dev, EVO_MASTER, 16); if (push) { evo_mthd(push, 0x0460 + (nv_crtc->index * 0x300), 1); evo_data(push, nvfb->nvbo->bo.offset >> 8); evo_mthd(push, 0x0468 + (nv_crtc->index * 0x300), 4); evo_data(push, (fb->height << 16) | fb->width); evo_data(push, nvfb->r_pitch); evo_data(push, nvfb->r_format); evo_data(push, nvfb->r_dma); evo_mthd(push, 0x04b0 + (nv_crtc->index * 0x300), 1); evo_data(push, (y << 16) | x); if (update) { evo_mthd(push, 0x0080, 1); evo_data(push, 0x00000000); } evo_kick(push, fb->dev, EVO_MASTER); } nv_crtc->fb.tile_flags = nvfb->r_dma; return 0; } static void nvd0_crtc_cursor_show(struct nouveau_crtc *nv_crtc, bool show, bool update) { struct drm_device *dev = nv_crtc->base.dev; u32 *push = evo_wait(dev, EVO_MASTER, 16); if (push) { if (show) { evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 2); evo_data(push, 0x85000000); evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8); evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1); evo_data(push, NvEvoVRAM); } else { evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 1); evo_data(push, 0x05000000); evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1); evo_data(push, 0x00000000); } if (update) { evo_mthd(push, 0x0080, 1); evo_data(push, 0x00000000); } evo_kick(push, dev, EVO_MASTER); } } static void nvd0_crtc_dpms(struct drm_crtc *crtc, int mode) { } static void nvd0_crtc_prepare(struct drm_crtc *crtc) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); u32 *push; nvd0_display_flip_stop(crtc); push = evo_wait(crtc->dev, EVO_MASTER, 2); if (push) { evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1); evo_data(push, 0x00000000); evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 1); evo_data(push, 0x03000000); evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1); evo_data(push, 0x00000000); evo_kick(push, crtc->dev, EVO_MASTER); } nvd0_crtc_cursor_show(nv_crtc, false, false); } static void nvd0_crtc_commit(struct drm_crtc *crtc) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); u32 *push; push = evo_wait(crtc->dev, EVO_MASTER, 32); if (push) { evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1); evo_data(push, nv_crtc->fb.tile_flags); evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 4); evo_data(push, 0x83000000); evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8); evo_data(push, 0x00000000); evo_data(push, 0x00000000); evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1); evo_data(push, NvEvoVRAM); evo_mthd(push, 0x0430 + (nv_crtc->index * 0x300), 1); evo_data(push, 0xffffff00); evo_kick(push, crtc->dev, EVO_MASTER); } nvd0_crtc_cursor_show(nv_crtc, nv_crtc->cursor.visible, true); nvd0_display_flip_next(crtc, crtc->fb, NULL, 1); } static bool nvd0_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { return true; } static int nvd0_crtc_swap_fbs(struct drm_crtc *crtc, struct drm_framebuffer *old_fb) { struct nouveau_framebuffer *nvfb = nouveau_framebuffer(crtc->fb); int ret; ret = nouveau_bo_pin(nvfb->nvbo, TTM_PL_FLAG_VRAM); if (ret) return ret; if (old_fb) { nvfb = nouveau_framebuffer(old_fb); nouveau_bo_unpin(nvfb->nvbo); } return 0; } static int nvd0_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *umode, struct drm_display_mode *mode, int x, int y, struct drm_framebuffer *old_fb) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct nouveau_connector *nv_connector; u32 ilace = (mode->flags & DRM_MODE_FLAG_INTERLACE) ? 2 : 1; u32 vscan = (mode->flags & DRM_MODE_FLAG_DBLSCAN) ? 2 : 1; u32 hactive, hsynce, hbackp, hfrontp, hblanke, hblanks; u32 vactive, vsynce, vbackp, vfrontp, vblanke, vblanks; u32 vblan2e = 0, vblan2s = 1; u32 *push; int ret; hactive = mode->htotal; hsynce = mode->hsync_end - mode->hsync_start - 1; hbackp = mode->htotal - mode->hsync_end; hblanke = hsynce + hbackp; hfrontp = mode->hsync_start - mode->hdisplay; hblanks = mode->htotal - hfrontp - 1; vactive = mode->vtotal * vscan / ilace; vsynce = ((mode->vsync_end - mode->vsync_start) * vscan / ilace) - 1; vbackp = (mode->vtotal - mode->vsync_end) * vscan / ilace; vblanke = vsynce + vbackp; vfrontp = (mode->vsync_start - mode->vdisplay) * vscan / ilace; vblanks = vactive - vfrontp - 1; if (mode->flags & DRM_MODE_FLAG_INTERLACE) { vblan2e = vactive + vsynce + vbackp; vblan2s = vblan2e + (mode->vdisplay * vscan / ilace); vactive = (vactive * 2) + 1; } ret = nvd0_crtc_swap_fbs(crtc, old_fb); if (ret) return ret; push = evo_wait(crtc->dev, EVO_MASTER, 64); if (push) { evo_mthd(push, 0x0410 + (nv_crtc->index * 0x300), 6); evo_data(push, 0x00000000); evo_data(push, (vactive << 16) | hactive); evo_data(push, ( vsynce << 16) | hsynce); evo_data(push, (vblanke << 16) | hblanke); evo_data(push, (vblanks << 16) | hblanks); evo_data(push, (vblan2e << 16) | vblan2s); evo_mthd(push, 0x042c + (nv_crtc->index * 0x300), 1); evo_data(push, 0x00000000); /* ??? */ evo_mthd(push, 0x0450 + (nv_crtc->index * 0x300), 3); evo_data(push, mode->clock * 1000); evo_data(push, 0x00200000); /* ??? */ evo_data(push, mode->clock * 1000); evo_mthd(push, 0x04d0 + (nv_crtc->index * 0x300), 2); evo_data(push, 0x00000311); evo_data(push, 0x00000100); evo_kick(push, crtc->dev, EVO_MASTER); } nv_connector = nouveau_crtc_connector_get(nv_crtc); nvd0_crtc_set_dither(nv_crtc, false); nvd0_crtc_set_scale(nv_crtc, false); nvd0_crtc_set_image(nv_crtc, crtc->fb, x, y, false); return 0; } static int nvd0_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y, struct drm_framebuffer *old_fb) { struct nouveau_drm *drm = nouveau_drm(crtc->dev); struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); int ret; if (!crtc->fb) { NV_DEBUG(drm, "No FB bound\n"); return 0; } ret = nvd0_crtc_swap_fbs(crtc, old_fb); if (ret) return ret; nvd0_display_flip_stop(crtc); nvd0_crtc_set_image(nv_crtc, crtc->fb, x, y, true); nvd0_display_flip_next(crtc, crtc->fb, NULL, 1); return 0; } static int nvd0_crtc_mode_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb, int x, int y, enum mode_set_atomic state) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); nvd0_display_flip_stop(crtc); nvd0_crtc_set_image(nv_crtc, fb, x, y, true); return 0; } static void nvd0_crtc_lut_load(struct drm_crtc *crtc) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo); int i; for (i = 0; i < 256; i++) { writew(0x6000 + (nv_crtc->lut.r[i] >> 2), lut + (i * 0x20) + 0); writew(0x6000 + (nv_crtc->lut.g[i] >> 2), lut + (i * 0x20) + 2); writew(0x6000 + (nv_crtc->lut.b[i] >> 2), lut + (i * 0x20) + 4); } } static int nvd0_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv, uint32_t handle, uint32_t width, uint32_t height) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct drm_device *dev = crtc->dev; struct drm_gem_object *gem; struct nouveau_bo *nvbo; bool visible = (handle != 0); int i, ret = 0; if (visible) { if (width != 64 || height != 64) return -EINVAL; gem = drm_gem_object_lookup(dev, file_priv, handle); if (unlikely(!gem)) return -ENOENT; nvbo = nouveau_gem_object(gem); ret = nouveau_bo_map(nvbo); if (ret == 0) { for (i = 0; i < 64 * 64; i++) { u32 v = nouveau_bo_rd32(nvbo, i); nouveau_bo_wr32(nv_crtc->cursor.nvbo, i, v); } nouveau_bo_unmap(nvbo); } drm_gem_object_unreference_unlocked(gem); } if (visible != nv_crtc->cursor.visible) { nvd0_crtc_cursor_show(nv_crtc, visible, true); nv_crtc->cursor.visible = visible; } return ret; } static int nvd0_crtc_cursor_move(struct drm_crtc *crtc, int x, int y) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); int ch = EVO_CURS(nv_crtc->index); evo_piow(crtc->dev, ch, 0x0084, (y << 16) | (x & 0xffff)); evo_piow(crtc->dev, ch, 0x0080, 0x00000000); return 0; } static void nvd0_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b, uint32_t start, uint32_t size) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); u32 end = max(start + size, (u32)256); u32 i; for (i = start; i < end; i++) { nv_crtc->lut.r[i] = r[i]; nv_crtc->lut.g[i] = g[i]; nv_crtc->lut.b[i] = b[i]; } nvd0_crtc_lut_load(crtc); } static void nvd0_crtc_destroy(struct drm_crtc *crtc) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); nouveau_bo_unmap(nv_crtc->cursor.nvbo); nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo); nouveau_bo_unmap(nv_crtc->lut.nvbo); nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo); drm_crtc_cleanup(crtc); kfree(crtc); } static const struct drm_crtc_helper_funcs nvd0_crtc_hfunc = { .dpms = nvd0_crtc_dpms, .prepare = nvd0_crtc_prepare, .commit = nvd0_crtc_commit, .mode_fixup = nvd0_crtc_mode_fixup, .mode_set = nvd0_crtc_mode_set, .mode_set_base = nvd0_crtc_mode_set_base, .mode_set_base_atomic = nvd0_crtc_mode_set_base_atomic, .load_lut = nvd0_crtc_lut_load, }; static const struct drm_crtc_funcs nvd0_crtc_func = { .cursor_set = nvd0_crtc_cursor_set, .cursor_move = nvd0_crtc_cursor_move, .gamma_set = nvd0_crtc_gamma_set, .set_config = drm_crtc_helper_set_config, .destroy = nvd0_crtc_destroy, .page_flip = nouveau_crtc_page_flip, }; static void nvd0_cursor_set_pos(struct nouveau_crtc *nv_crtc, int x, int y) { } static void nvd0_cursor_set_offset(struct nouveau_crtc *nv_crtc, uint32_t offset) { } static int nvd0_crtc_create(struct drm_device *dev, int index) { struct nouveau_crtc *nv_crtc; struct drm_crtc *crtc; int ret, i; nv_crtc = kzalloc(sizeof(*nv_crtc), GFP_KERNEL); if (!nv_crtc) return -ENOMEM; nv_crtc->index = index; nv_crtc->set_dither = nvd0_crtc_set_dither; nv_crtc->set_scale = nvd0_crtc_set_scale; nv_crtc->cursor.set_offset = nvd0_cursor_set_offset; nv_crtc->cursor.set_pos = nvd0_cursor_set_pos; for (i = 0; i < 256; i++) { nv_crtc->lut.r[i] = i << 8; nv_crtc->lut.g[i] = i << 8; nv_crtc->lut.b[i] = i << 8; } crtc = &nv_crtc->base; drm_crtc_init(dev, crtc, &nvd0_crtc_func); drm_crtc_helper_add(crtc, &nvd0_crtc_hfunc); drm_mode_crtc_set_gamma_size(crtc, 256); ret = nouveau_bo_new(dev, 64 * 64 * 4, 0x100, TTM_PL_FLAG_VRAM, 0, 0x0000, NULL, &nv_crtc->cursor.nvbo); if (!ret) { ret = nouveau_bo_pin(nv_crtc->cursor.nvbo, TTM_PL_FLAG_VRAM); if (!ret) ret = nouveau_bo_map(nv_crtc->cursor.nvbo); if (ret) nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo); } if (ret) goto out; ret = nouveau_bo_new(dev, 8192, 0x100, TTM_PL_FLAG_VRAM, 0, 0x0000, NULL, &nv_crtc->lut.nvbo); if (!ret) { ret = nouveau_bo_pin(nv_crtc->lut.nvbo, TTM_PL_FLAG_VRAM); if (!ret) ret = nouveau_bo_map(nv_crtc->lut.nvbo); if (ret) nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo); } if (ret) goto out; nvd0_crtc_lut_load(crtc); out: if (ret) nvd0_crtc_destroy(crtc); return ret; } /****************************************************************************** * DAC *****************************************************************************/ static void nvd0_dac_dpms(struct drm_encoder *encoder, int mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct drm_device *dev = encoder->dev; struct nouveau_device *device = nouveau_dev(dev); int or = nv_encoder->or; u32 dpms_ctrl; dpms_ctrl = 0x80000000; if (mode == DRM_MODE_DPMS_STANDBY || mode == DRM_MODE_DPMS_OFF) dpms_ctrl |= 0x00000001; if (mode == DRM_MODE_DPMS_SUSPEND || mode == DRM_MODE_DPMS_OFF) dpms_ctrl |= 0x00000004; nv_wait(device, 0x61a004 + (or * 0x0800), 0x80000000, 0x00000000); nv_mask(device, 0x61a004 + (or * 0x0800), 0xc000007f, dpms_ctrl); nv_wait(device, 0x61a004 + (or * 0x0800), 0x80000000, 0x00000000); } static bool nvd0_dac_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_connector *nv_connector; nv_connector = nouveau_encoder_connector_get(nv_encoder); if (nv_connector && nv_connector->native_mode) { if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) { int id = adjusted_mode->base.id; *adjusted_mode = *nv_connector->native_mode; adjusted_mode->base.id = id; } } return true; } static void nvd0_dac_commit(struct drm_encoder *encoder) { } static void nvd0_dac_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); u32 syncs, magic, *push; syncs = 0x00000001; if (mode->flags & DRM_MODE_FLAG_NHSYNC) syncs |= 0x00000008; if (mode->flags & DRM_MODE_FLAG_NVSYNC) syncs |= 0x00000010; magic = 0x31ec6000 | (nv_crtc->index << 25); if (mode->flags & DRM_MODE_FLAG_INTERLACE) magic |= 0x00000001; nvd0_dac_dpms(encoder, DRM_MODE_DPMS_ON); push = evo_wait(encoder->dev, EVO_MASTER, 8); if (push) { evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2); evo_data(push, syncs); evo_data(push, magic); evo_mthd(push, 0x0180 + (nv_encoder->or * 0x020), 2); evo_data(push, 1 << nv_crtc->index); evo_data(push, 0x00ff); evo_kick(push, encoder->dev, EVO_MASTER); } nv_encoder->crtc = encoder->crtc; } static void nvd0_dac_disconnect(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct drm_device *dev = encoder->dev; u32 *push; if (nv_encoder->crtc) { nvd0_crtc_prepare(nv_encoder->crtc); push = evo_wait(dev, EVO_MASTER, 4); if (push) { evo_mthd(push, 0x0180 + (nv_encoder->or * 0x20), 1); evo_data(push, 0x00000000); evo_mthd(push, 0x0080, 1); evo_data(push, 0x00000000); evo_kick(push, dev, EVO_MASTER); } nv_encoder->crtc = NULL; } } static enum drm_connector_status nvd0_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector) { enum drm_connector_status status = connector_status_disconnected; struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct drm_device *dev = encoder->dev; struct nouveau_device *device = nouveau_dev(dev); int or = nv_encoder->or; u32 load; nv_wr32(device, 0x61a00c + (or * 0x800), 0x00100000); udelay(9500); nv_wr32(device, 0x61a00c + (or * 0x800), 0x80000000); load = nv_rd32(device, 0x61a00c + (or * 0x800)); if ((load & 0x38000000) == 0x38000000) status = connector_status_connected; nv_wr32(device, 0x61a00c + (or * 0x800), 0x00000000); return status; } static void nvd0_dac_destroy(struct drm_encoder *encoder) { drm_encoder_cleanup(encoder); kfree(encoder); } static const struct drm_encoder_helper_funcs nvd0_dac_hfunc = { .dpms = nvd0_dac_dpms, .mode_fixup = nvd0_dac_mode_fixup, .prepare = nvd0_dac_disconnect, .commit = nvd0_dac_commit, .mode_set = nvd0_dac_mode_set, .disable = nvd0_dac_disconnect, .get_crtc = nvd0_display_crtc_get, .detect = nvd0_dac_detect }; static const struct drm_encoder_funcs nvd0_dac_func = { .destroy = nvd0_dac_destroy, }; static int nvd0_dac_create(struct drm_connector *connector, struct dcb_output *dcbe) { struct drm_device *dev = connector->dev; struct nouveau_encoder *nv_encoder; struct drm_encoder *encoder; nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); if (!nv_encoder) return -ENOMEM; nv_encoder->dcb = dcbe; nv_encoder->or = ffs(dcbe->or) - 1; encoder = to_drm_encoder(nv_encoder); encoder->possible_crtcs = dcbe->heads; encoder->possible_clones = 0; drm_encoder_init(dev, encoder, &nvd0_dac_func, DRM_MODE_ENCODER_DAC); drm_encoder_helper_add(encoder, &nvd0_dac_hfunc); drm_mode_connector_attach_encoder(connector, encoder); return 0; } /****************************************************************************** * Audio *****************************************************************************/ static void nvd0_audio_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_connector *nv_connector; struct drm_device *dev = encoder->dev; struct nouveau_device *device = nouveau_dev(dev); int i, or = nv_encoder->or * 0x30; nv_connector = nouveau_encoder_connector_get(nv_encoder); if (!drm_detect_monitor_audio(nv_connector->edid)) return; nv_mask(device, 0x10ec10 + or, 0x80000003, 0x80000001); drm_edid_to_eld(&nv_connector->base, nv_connector->edid); if (nv_connector->base.eld[0]) { u8 *eld = nv_connector->base.eld; for (i = 0; i < eld[2] * 4; i++) nv_wr32(device, 0x10ec00 + or, (i << 8) | eld[i]); for (i = eld[2] * 4; i < 0x60; i++) nv_wr32(device, 0x10ec00 + or, (i << 8) | 0x00); nv_mask(device, 0x10ec10 + or, 0x80000002, 0x80000002); } } static void nvd0_audio_disconnect(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct drm_device *dev = encoder->dev; struct nouveau_device *device = nouveau_dev(dev); int or = nv_encoder->or * 0x30; nv_mask(device, 0x10ec10 + or, 0x80000003, 0x80000000); } /****************************************************************************** * HDMI *****************************************************************************/ static void nvd0_hdmi_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); struct nouveau_connector *nv_connector; struct drm_device *dev = encoder->dev; struct nouveau_device *device = nouveau_dev(dev); int head = nv_crtc->index * 0x800; u32 rekey = 56; /* binary driver, and tegra constant */ u32 max_ac_packet; nv_connector = nouveau_encoder_connector_get(nv_encoder); if (!drm_detect_hdmi_monitor(nv_connector->edid)) return; max_ac_packet = mode->htotal - mode->hdisplay; max_ac_packet -= rekey; max_ac_packet -= 18; /* constant from tegra */ max_ac_packet /= 32; /* AVI InfoFrame */ nv_mask(device, 0x616714 + head, 0x00000001, 0x00000000); nv_wr32(device, 0x61671c + head, 0x000d0282); nv_wr32(device, 0x616720 + head, 0x0000006f); nv_wr32(device, 0x616724 + head, 0x00000000); nv_wr32(device, 0x616728 + head, 0x00000000); nv_wr32(device, 0x61672c + head, 0x00000000); nv_mask(device, 0x616714 + head, 0x00000001, 0x00000001); /* ??? InfoFrame? */ nv_mask(device, 0x6167a4 + head, 0x00000001, 0x00000000); nv_wr32(device, 0x6167ac + head, 0x00000010); nv_mask(device, 0x6167a4 + head, 0x00000001, 0x00000001); /* HDMI_CTRL */ nv_mask(device, 0x616798 + head, 0x401f007f, 0x40000000 | rekey | max_ac_packet << 16); /* NFI, audio doesn't work without it though.. */ nv_mask(device, 0x616548 + head, 0x00000070, 0x00000000); nvd0_audio_mode_set(encoder, mode); } static void nvd0_hdmi_disconnect(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc); struct drm_device *dev = encoder->dev; struct nouveau_device *device = nouveau_dev(dev); int head = nv_crtc->index * 0x800; nvd0_audio_disconnect(encoder); nv_mask(device, 0x616798 + head, 0x40000000, 0x00000000); nv_mask(device, 0x6167a4 + head, 0x00000001, 0x00000000); nv_mask(device, 0x616714 + head, 0x00000001, 0x00000000); } /****************************************************************************** * SOR *****************************************************************************/ static inline u32 nvd0_sor_dp_lane_map(struct drm_device *dev, struct dcb_output *dcb, u8 lane) { static const u8 nvd0[] = { 16, 8, 0, 24 }; return nvd0[lane]; } static void nvd0_sor_dp_train_set(struct drm_device *dev, struct dcb_output *dcb, u8 pattern) { struct nouveau_device *device = nouveau_dev(dev); const u32 or = ffs(dcb->or) - 1, link = !(dcb->sorconf.link & 1); const u32 loff = (or * 0x800) + (link * 0x80); nv_mask(device, 0x61c110 + loff, 0x0f0f0f0f, 0x01010101 * pattern); } static void nvd0_sor_dp_train_adj(struct drm_device *dev, struct dcb_output *dcb, u8 lane, u8 swing, u8 preem) { struct nouveau_device *device = nouveau_dev(dev); struct nouveau_drm *drm = nouveau_drm(dev); const u32 or = ffs(dcb->or) - 1, link = !(dcb->sorconf.link & 1); const u32 loff = (or * 0x800) + (link * 0x80); u32 shift = nvd0_sor_dp_lane_map(dev, dcb, lane); u32 mask = 0x000000ff << shift; u8 *table, *entry, *config = NULL; switch (swing) { case 0: preem += 0; break; case 1: preem += 4; break; case 2: preem += 7; break; case 3: preem += 9; break; } table = nouveau_dp_bios_data(dev, dcb, &entry); if (table) { if (table[0] == 0x30) { config = entry + table[4]; config += table[5] * preem; } else if (table[0] == 0x40) { config = table + table[1]; config += table[2] * table[3]; config += table[6] * preem; } } if (!config) { NV_ERROR(drm, "PDISP: unsupported DP table for chipset\n"); return; } nv_mask(device, 0x61c118 + loff, mask, config[1] << shift); nv_mask(device, 0x61c120 + loff, mask, config[2] << shift); nv_mask(device, 0x61c130 + loff, 0x0000ff00, config[3] << 8); nv_mask(device, 0x61c13c + loff, 0x00000000, 0x00000000); } static void nvd0_sor_dp_link_set(struct drm_device *dev, struct dcb_output *dcb, int crtc, int link_nr, u32 link_bw, bool enhframe) { struct nouveau_device *device = nouveau_dev(dev); const u32 or = ffs(dcb->or) - 1, link = !(dcb->sorconf.link & 1); const u32 loff = (or * 0x800) + (link * 0x80); const u32 soff = (or * 0x800); u32 dpctrl = nv_rd32(device, 0x61c10c + loff) & ~0x001f4000; u32 clksor = nv_rd32(device, 0x612300 + soff) & ~0x007c0000; u32 script = 0x0000, lane_mask = 0; u8 *table, *entry; int i; link_bw /= 27000; table = nouveau_dp_bios_data(dev, dcb, &entry); if (table) { if (table[0] == 0x30) entry = ROMPTR(dev, entry[10]); else if (table[0] == 0x40) entry = ROMPTR(dev, entry[9]); else entry = NULL; while (entry) { if (entry[0] >= link_bw) break; entry += 3; } nouveau_bios_run_init_table(dev, script, dcb, crtc); } clksor |= link_bw << 18; dpctrl |= ((1 << link_nr) - 1) << 16; if (enhframe) dpctrl |= 0x00004000; for (i = 0; i < link_nr; i++) lane_mask |= 1 << (nvd0_sor_dp_lane_map(dev, dcb, i) >> 3); nv_wr32(device, 0x612300 + soff, clksor); nv_wr32(device, 0x61c10c + loff, dpctrl); nv_mask(device, 0x61c130 + loff, 0x0000000f, lane_mask); } static void nvd0_sor_dp_link_get(struct drm_device *dev, struct dcb_output *dcb, u32 *link_nr, u32 *link_bw) { struct nouveau_device *device = nouveau_dev(dev); const u32 or = ffs(dcb->or) - 1, link = !(dcb->sorconf.link & 1); const u32 loff = (or * 0x800) + (link * 0x80); const u32 soff = (or * 0x800); u32 dpctrl = nv_rd32(device, 0x61c10c + loff) & 0x000f0000; u32 clksor = nv_rd32(device, 0x612300 + soff); if (dpctrl > 0x00030000) *link_nr = 4; else if (dpctrl > 0x00010000) *link_nr = 2; else *link_nr = 1; *link_bw = (clksor & 0x007c0000) >> 18; *link_bw *= 27000; } static void nvd0_sor_dp_calc_tu(struct drm_device *dev, struct dcb_output *dcb, u32 crtc, u32 datarate) { struct nouveau_device *device = nouveau_dev(dev); const u32 symbol = 100000; const u32 TU = 64; u32 link_nr, link_bw; u64 ratio, value; nvd0_sor_dp_link_get(dev, dcb, &link_nr, &link_bw); ratio = datarate; ratio *= symbol; do_div(ratio, link_nr * link_bw); value = (symbol - ratio) * TU; value *= ratio; do_div(value, symbol); do_div(value, symbol); value += 5; value |= 0x08000000; nv_wr32(device, 0x616610 + (crtc * 0x800), value); } static void nvd0_sor_dpms(struct drm_encoder *encoder, int mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct drm_device *dev = encoder->dev; struct nouveau_device *device = nouveau_dev(dev); struct drm_encoder *partner; int or = nv_encoder->or; u32 dpms_ctrl; nv_encoder->last_dpms = mode; list_for_each_entry(partner, &dev->mode_config.encoder_list, head) { struct nouveau_encoder *nv_partner = nouveau_encoder(partner); if (partner->encoder_type != DRM_MODE_ENCODER_TMDS) continue; if (nv_partner != nv_encoder && nv_partner->dcb->or == nv_encoder->dcb->or) { if (nv_partner->last_dpms == DRM_MODE_DPMS_ON) return; break; } } dpms_ctrl = (mode == DRM_MODE_DPMS_ON); dpms_ctrl |= 0x80000000; nv_wait(device, 0x61c004 + (or * 0x0800), 0x80000000, 0x00000000); nv_mask(device, 0x61c004 + (or * 0x0800), 0x80000001, dpms_ctrl); nv_wait(device, 0x61c004 + (or * 0x0800), 0x80000000, 0x00000000); nv_wait(device, 0x61c030 + (or * 0x0800), 0x10000000, 0x00000000); if (nv_encoder->dcb->type == DCB_OUTPUT_DP) { struct dp_train_func func = { .link_set = nvd0_sor_dp_link_set, .train_set = nvd0_sor_dp_train_set, .train_adj = nvd0_sor_dp_train_adj }; nouveau_dp_dpms(encoder, mode, nv_encoder->dp.datarate, &func); } } static bool nvd0_sor_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_connector *nv_connector; nv_connector = nouveau_encoder_connector_get(nv_encoder); if (nv_connector && nv_connector->native_mode) { if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) { int id = adjusted_mode->base.id; *adjusted_mode = *nv_connector->native_mode; adjusted_mode->base.id = id; } } return true; } static void nvd0_sor_disconnect(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct drm_device *dev = encoder->dev; u32 *push; if (nv_encoder->crtc) { nvd0_crtc_prepare(nv_encoder->crtc); push = evo_wait(dev, EVO_MASTER, 4); if (push) { evo_mthd(push, 0x0200 + (nv_encoder->or * 0x20), 1); evo_data(push, 0x00000000); evo_mthd(push, 0x0080, 1); evo_data(push, 0x00000000); evo_kick(push, dev, EVO_MASTER); } nvd0_hdmi_disconnect(encoder); nv_encoder->crtc = NULL; nv_encoder->last_dpms = DRM_MODE_DPMS_OFF; } } static void nvd0_sor_prepare(struct drm_encoder *encoder) { nvd0_sor_disconnect(encoder); if (nouveau_encoder(encoder)->dcb->type == DCB_OUTPUT_DP) evo_sync(encoder->dev, EVO_MASTER); } static void nvd0_sor_commit(struct drm_encoder *encoder) { } static void nvd0_sor_mode_set(struct drm_encoder *encoder, struct drm_display_mode *umode, struct drm_display_mode *mode) { struct drm_device *dev = encoder->dev; struct nouveau_drm *drm = nouveau_drm(dev); struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); struct nouveau_connector *nv_connector; struct nvbios *bios = &drm->vbios; u32 mode_ctrl = (1 << nv_crtc->index); u32 syncs, magic, *push; u32 or_config; syncs = 0x00000001; if (mode->flags & DRM_MODE_FLAG_NHSYNC) syncs |= 0x00000008; if (mode->flags & DRM_MODE_FLAG_NVSYNC) syncs |= 0x00000010; magic = 0x31ec6000 | (nv_crtc->index << 25); if (mode->flags & DRM_MODE_FLAG_INTERLACE) magic |= 0x00000001; nv_connector = nouveau_encoder_connector_get(nv_encoder); switch (nv_encoder->dcb->type) { case DCB_OUTPUT_TMDS: if (nv_encoder->dcb->sorconf.link & 1) { if (mode->clock < 165000) mode_ctrl |= 0x00000100; else mode_ctrl |= 0x00000500; } else { mode_ctrl |= 0x00000200; } or_config = (mode_ctrl & 0x00000f00) >> 8; if (mode->clock >= 165000) or_config |= 0x0100; nvd0_hdmi_mode_set(encoder, mode); break; case DCB_OUTPUT_LVDS: or_config = (mode_ctrl & 0x00000f00) >> 8; if (bios->fp_no_ddc) { if (bios->fp.dual_link) or_config |= 0x0100; if (bios->fp.if_is_24bit) or_config |= 0x0200; } else { if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) { if (((u8 *)nv_connector->edid)[121] == 2) or_config |= 0x0100; } else if (mode->clock >= bios->fp.duallink_transition_clk) { or_config |= 0x0100; } if (or_config & 0x0100) { if (bios->fp.strapless_is_24bit & 2) or_config |= 0x0200; } else { if (bios->fp.strapless_is_24bit & 1) or_config |= 0x0200; } if (nv_connector->base.display_info.bpc == 8) or_config |= 0x0200; } break; case DCB_OUTPUT_DP: if (nv_connector->base.display_info.bpc == 6) { nv_encoder->dp.datarate = mode->clock * 18 / 8; syncs |= 0x00000002 << 6; } else { nv_encoder->dp.datarate = mode->clock * 24 / 8; syncs |= 0x00000005 << 6; } if (nv_encoder->dcb->sorconf.link & 1) mode_ctrl |= 0x00000800; else mode_ctrl |= 0x00000900; or_config = (mode_ctrl & 0x00000f00) >> 8; break; default: BUG_ON(1); break; } nvd0_sor_dpms(encoder, DRM_MODE_DPMS_ON); if (nv_encoder->dcb->type == DCB_OUTPUT_DP) { nvd0_sor_dp_calc_tu(dev, nv_encoder->dcb, nv_crtc->index, nv_encoder->dp.datarate); } push = evo_wait(dev, EVO_MASTER, 8); if (push) { evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2); evo_data(push, syncs); evo_data(push, magic); evo_mthd(push, 0x0200 + (nv_encoder->or * 0x020), 2); evo_data(push, mode_ctrl); evo_data(push, or_config); evo_kick(push, dev, EVO_MASTER); } nv_encoder->crtc = encoder->crtc; } static void nvd0_sor_destroy(struct drm_encoder *encoder) { drm_encoder_cleanup(encoder); kfree(encoder); } static const struct drm_encoder_helper_funcs nvd0_sor_hfunc = { .dpms = nvd0_sor_dpms, .mode_fixup = nvd0_sor_mode_fixup, .prepare = nvd0_sor_prepare, .commit = nvd0_sor_commit, .mode_set = nvd0_sor_mode_set, .disable = nvd0_sor_disconnect, .get_crtc = nvd0_display_crtc_get, }; static const struct drm_encoder_funcs nvd0_sor_func = { .destroy = nvd0_sor_destroy, }; static int nvd0_sor_create(struct drm_connector *connector, struct dcb_output *dcbe) { struct drm_device *dev = connector->dev; struct nouveau_encoder *nv_encoder; struct drm_encoder *encoder; nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); if (!nv_encoder) return -ENOMEM; nv_encoder->dcb = dcbe; nv_encoder->or = ffs(dcbe->or) - 1; nv_encoder->last_dpms = DRM_MODE_DPMS_OFF; encoder = to_drm_encoder(nv_encoder); encoder->possible_crtcs = dcbe->heads; encoder->possible_clones = 0; drm_encoder_init(dev, encoder, &nvd0_sor_func, DRM_MODE_ENCODER_TMDS); drm_encoder_helper_add(encoder, &nvd0_sor_hfunc); drm_mode_connector_attach_encoder(connector, encoder); return 0; } /****************************************************************************** * IRQ *****************************************************************************/ static struct dcb_output * lookup_dcb(struct drm_device *dev, int id, u32 mc) { struct nouveau_drm *drm = nouveau_drm(dev); int type, or, i, link = -1; if (id < 4) { type = DCB_OUTPUT_ANALOG; or = id; } else { switch (mc & 0x00000f00) { case 0x00000000: link = 0; type = DCB_OUTPUT_LVDS; break; case 0x00000100: link = 0; type = DCB_OUTPUT_TMDS; break; case 0x00000200: link = 1; type = DCB_OUTPUT_TMDS; break; case 0x00000500: link = 0; type = DCB_OUTPUT_TMDS; break; case 0x00000800: link = 0; type = DCB_OUTPUT_DP; break; case 0x00000900: link = 1; type = DCB_OUTPUT_DP; break; default: NV_ERROR(drm, "PDISP: unknown SOR mc 0x%08x\n", mc); return NULL; } or = id - 4; } for (i = 0; i < drm->vbios.dcb.entries; i++) { struct dcb_output *dcb = &drm->vbios.dcb.entry[i]; if (dcb->type == type && (dcb->or & (1 << or)) && (link < 0 || link == !(dcb->sorconf.link & 1))) return dcb; } NV_ERROR(drm, "PDISP: DCB for %d/0x%08x not found\n", id, mc); return NULL; } static void nvd0_display_unk1_handler(struct drm_device *dev, u32 crtc, u32 mask) { struct nouveau_device *device = nouveau_dev(dev); struct dcb_output *dcb; int i; for (i = 0; mask && i < 8; i++) { u32 mcc = nv_rd32(device, 0x640180 + (i * 0x20)); if (!(mcc & (1 << crtc))) continue; dcb = lookup_dcb(dev, i, mcc); if (!dcb) continue; nouveau_bios_run_display_table(dev, 0x0000, -1, dcb, crtc); } nv_wr32(device, 0x6101d4, 0x00000000); nv_wr32(device, 0x6109d4, 0x00000000); nv_wr32(device, 0x6101d0, 0x80000000); } static void nvd0_display_unk2_handler(struct drm_device *dev, u32 crtc, u32 mask) { struct nouveau_device *device = nouveau_dev(dev); struct nouveau_drm *drm = nouveau_drm(dev); struct dcb_output *dcb; u32 or, tmp, pclk; int i; for (i = 0; mask && i < 8; i++) { u32 mcc = nv_rd32(device, 0x640180 + (i * 0x20)); if (!(mcc & (1 << crtc))) continue; dcb = lookup_dcb(dev, i, mcc); if (!dcb) continue; nouveau_bios_run_display_table(dev, 0x0000, -2, dcb, crtc); } pclk = nv_rd32(device, 0x660450 + (crtc * 0x300)) / 1000; NV_DEBUG(drm, "PDISP: crtc %d pclk %d mask 0x%08x\n", crtc, pclk, mask); if (pclk && (mask & 0x00010000)) { nv50_crtc_set_clock(dev, crtc, pclk); } for (i = 0; mask && i < 8; i++) { u32 mcp = nv_rd32(device, 0x660180 + (i * 0x20)); u32 cfg = nv_rd32(device, 0x660184 + (i * 0x20)); if (!(mcp & (1 << crtc))) continue; dcb = lookup_dcb(dev, i, mcp); if (!dcb) continue; or = ffs(dcb->or) - 1; nouveau_bios_run_display_table(dev, cfg, pclk, dcb, crtc); nv_wr32(device, 0x612200 + (crtc * 0x800), 0x00000000); switch (dcb->type) { case DCB_OUTPUT_ANALOG: nv_wr32(device, 0x612280 + (or * 0x800), 0x00000000); break; case DCB_OUTPUT_TMDS: case DCB_OUTPUT_LVDS: case DCB_OUTPUT_DP: if (cfg & 0x00000100) tmp = 0x00000101; else tmp = 0x00000000; nv_mask(device, 0x612300 + (or * 0x800), 0x00000707, tmp); break; default: break; } break; } nv_wr32(device, 0x6101d4, 0x00000000); nv_wr32(device, 0x6109d4, 0x00000000); nv_wr32(device, 0x6101d0, 0x80000000); } static void nvd0_display_unk4_handler(struct drm_device *dev, u32 crtc, u32 mask) { struct nouveau_device *device = nouveau_dev(dev); struct dcb_output *dcb; int pclk, i; pclk = nv_rd32(device, 0x660450 + (crtc * 0x300)) / 1000; for (i = 0; mask && i < 8; i++) { u32 mcp = nv_rd32(device, 0x660180 + (i * 0x20)); u32 cfg = nv_rd32(device, 0x660184 + (i * 0x20)); if (!(mcp & (1 << crtc))) continue; dcb = lookup_dcb(dev, i, mcp); if (!dcb) continue; nouveau_bios_run_display_table(dev, cfg, -pclk, dcb, crtc); } nv_wr32(device, 0x6101d4, 0x00000000); nv_wr32(device, 0x6109d4, 0x00000000); nv_wr32(device, 0x6101d0, 0x80000000); } static void nvd0_display_bh(unsigned long data) { struct drm_device *dev = (struct drm_device *)data; struct nouveau_device *device = nouveau_dev(dev); struct nouveau_drm *drm = nouveau_drm(dev); struct nvd0_display *disp = nvd0_display(dev); u32 mask = 0, crtc = ~0; int i; if (drm_debug & (DRM_UT_DRIVER | DRM_UT_KMS)) { NV_INFO(drm, "PDISP: modeset req %d\n", disp->modeset); NV_INFO(drm, " STAT: 0x%08x 0x%08x 0x%08x\n", nv_rd32(device, 0x6101d0), nv_rd32(device, 0x6101d4), nv_rd32(device, 0x6109d4)); for (i = 0; i < 8; i++) { NV_INFO(drm, " %s%d: 0x%08x 0x%08x\n", i < 4 ? "DAC" : "SOR", i, nv_rd32(device, 0x640180 + (i * 0x20)), nv_rd32(device, 0x660180 + (i * 0x20))); } } while (!mask && ++crtc < dev->mode_config.num_crtc) mask = nv_rd32(device, 0x6101d4 + (crtc * 0x800)); if (disp->modeset & 0x00000001) nvd0_display_unk1_handler(dev, crtc, mask); if (disp->modeset & 0x00000002) nvd0_display_unk2_handler(dev, crtc, mask); if (disp->modeset & 0x00000004) nvd0_display_unk4_handler(dev, crtc, mask); } void nvd0_display_intr(struct drm_device *dev) { struct nvd0_display *disp = nvd0_display(dev); struct nouveau_device *device = nouveau_dev(dev); struct nouveau_drm *drm = nouveau_drm(dev); u32 intr = nv_rd32(device, 0x610088); if (intr & 0x00000001) { u32 stat = nv_rd32(device, 0x61008c); nv_wr32(device, 0x61008c, stat); intr &= ~0x00000001; } if (intr & 0x00000002) { u32 stat = nv_rd32(device, 0x61009c); int chid = ffs(stat) - 1; if (chid >= 0) { u32 mthd = nv_rd32(device, 0x6101f0 + (chid * 12)); u32 data = nv_rd32(device, 0x6101f4 + (chid * 12)); u32 unkn = nv_rd32(device, 0x6101f8 + (chid * 12)); NV_INFO(drm, "EvoCh: chid %d mthd 0x%04x data 0x%08x " "0x%08x 0x%08x\n", chid, (mthd & 0x0000ffc), data, mthd, unkn); nv_wr32(device, 0x61009c, (1 << chid)); nv_wr32(device, 0x6101f0 + (chid * 12), 0x90000000); } intr &= ~0x00000002; } if (intr & 0x00100000) { u32 stat = nv_rd32(device, 0x6100ac); if (stat & 0x00000007) { disp->modeset = stat; tasklet_schedule(&disp->tasklet); nv_wr32(device, 0x6100ac, (stat & 0x00000007)); stat &= ~0x00000007; } if (stat) { NV_INFO(drm, "PDISP: unknown intr24 0x%08x\n", stat); nv_wr32(device, 0x6100ac, stat); } intr &= ~0x00100000; } intr &= ~0x0f000000; /* vblank, handled in core */ if (intr) NV_INFO(drm, "PDISP: unknown intr 0x%08x\n", intr); } /****************************************************************************** * Init *****************************************************************************/ void nvd0_display_fini(struct drm_device *dev) { int i; /* fini cursors + overlays + flips */ for (i = 1; i >= 0; i--) { evo_fini_pio(dev, EVO_CURS(i)); evo_fini_pio(dev, EVO_OIMM(i)); evo_fini_dma(dev, EVO_OVLY(i)); evo_fini_dma(dev, EVO_FLIP(i)); } /* fini master */ evo_fini_dma(dev, EVO_MASTER); } int nvd0_display_init(struct drm_device *dev) { struct nvd0_display *disp = nvd0_display(dev); struct nouveau_device *device = nouveau_dev(dev); struct nouveau_drm *drm = nouveau_drm(dev); int ret, i; u32 *push; if (nv_rd32(device, 0x6100ac) & 0x00000100) { nv_wr32(device, 0x6100ac, 0x00000100); nv_mask(device, 0x6194e8, 0x00000001, 0x00000000); if (!nv_wait(device, 0x6194e8, 0x00000002, 0x00000000)) { NV_ERROR(drm, "PDISP: 0x6194e8 0x%08x\n", nv_rd32(device, 0x6194e8)); return -EBUSY; } } /* nfi what these are exactly, i do know that SOR_MODE_CTRL won't * work at all unless you do the SOR part below. */ for (i = 0; i < 3; i++) { u32 dac = nv_rd32(device, 0x61a000 + (i * 0x800)); nv_wr32(device, 0x6101c0 + (i * 0x800), dac); } for (i = 0; i < 4; i++) { u32 sor = nv_rd32(device, 0x61c000 + (i * 0x800)); nv_wr32(device, 0x6301c4 + (i * 0x800), sor); } for (i = 0; i < dev->mode_config.num_crtc; i++) { u32 crtc0 = nv_rd32(device, 0x616104 + (i * 0x800)); u32 crtc1 = nv_rd32(device, 0x616108 + (i * 0x800)); u32 crtc2 = nv_rd32(device, 0x61610c + (i * 0x800)); nv_wr32(device, 0x6101b4 + (i * 0x800), crtc0); nv_wr32(device, 0x6101b8 + (i * 0x800), crtc1); nv_wr32(device, 0x6101bc + (i * 0x800), crtc2); } /* point at our hash table / objects, enable interrupts */ nv_wr32(device, 0x610010, (disp->mem->addr >> 8) | 9); nv_mask(device, 0x6100b0, 0x00000307, 0x00000307); /* init master */ ret = evo_init_dma(dev, EVO_MASTER); if (ret) goto error; /* init flips + overlays + cursors */ for (i = 0; i < dev->mode_config.num_crtc; i++) { if ((ret = evo_init_dma(dev, EVO_FLIP(i))) || (ret = evo_init_dma(dev, EVO_OVLY(i))) || (ret = evo_init_pio(dev, EVO_OIMM(i))) || (ret = evo_init_pio(dev, EVO_CURS(i)))) goto error; } push = evo_wait(dev, EVO_MASTER, 32); if (!push) { ret = -EBUSY; goto error; } evo_mthd(push, 0x0088, 1); evo_data(push, NvEvoSync); evo_mthd(push, 0x0084, 1); evo_data(push, 0x00000000); evo_mthd(push, 0x0084, 1); evo_data(push, 0x80000000); evo_mthd(push, 0x008c, 1); evo_data(push, 0x00000000); evo_kick(push, dev, EVO_MASTER); error: if (ret) nvd0_display_fini(dev); return ret; } void nvd0_display_destroy(struct drm_device *dev) { struct nvd0_display *disp = nvd0_display(dev); struct pci_dev *pdev = dev->pdev; int i; for (i = 0; i < EVO_DMA_NR; i++) { struct evo *evo = &disp->evo[i]; pci_free_consistent(pdev, PAGE_SIZE, evo->ptr, evo->handle); } nouveau_gpuobj_ref(NULL, &disp->mem); nouveau_bo_unmap(disp->sync); nouveau_bo_ref(NULL, &disp->sync); nouveau_display(dev)->priv = NULL; kfree(disp); } int nvd0_display_create(struct drm_device *dev) { struct nouveau_device *device = nouveau_dev(dev); struct nouveau_drm *drm = nouveau_drm(dev); struct nouveau_bar *bar = nouveau_bar(device); struct nouveau_fb *pfb = nouveau_fb(device); struct dcb_table *dcb = &drm->vbios.dcb; struct drm_connector *connector, *tmp; struct pci_dev *pdev = dev->pdev; struct nvd0_display *disp; struct dcb_output *dcbe; int crtcs, ret, i; disp = kzalloc(sizeof(*disp), GFP_KERNEL); if (!disp) return -ENOMEM; nouveau_display(dev)->priv = disp; nouveau_display(dev)->dtor = nvd0_display_destroy; nouveau_display(dev)->init = nvd0_display_init; nouveau_display(dev)->fini = nvd0_display_fini; /* create crtc objects to represent the hw heads */ crtcs = nv_rd32(device, 0x022448); for (i = 0; i < crtcs; i++) { ret = nvd0_crtc_create(dev, i); if (ret) goto out; } /* create encoder/connector objects based on VBIOS DCB table */ for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) { connector = nouveau_connector_create(dev, dcbe->connector); if (IS_ERR(connector)) continue; if (dcbe->location != DCB_LOC_ON_CHIP) { NV_WARN(drm, "skipping off-chip encoder %d/%d\n", dcbe->type, ffs(dcbe->or) - 1); continue; } switch (dcbe->type) { case DCB_OUTPUT_TMDS: case DCB_OUTPUT_LVDS: case DCB_OUTPUT_DP: nvd0_sor_create(connector, dcbe); break; case DCB_OUTPUT_ANALOG: nvd0_dac_create(connector, dcbe); break; default: NV_WARN(drm, "skipping unsupported encoder %d/%d\n", dcbe->type, ffs(dcbe->or) - 1); continue; } } /* cull any connectors we created that don't have an encoder */ list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) { if (connector->encoder_ids[0]) continue; NV_WARN(drm, "%s has no encoders, removing\n", drm_get_connector_name(connector)); connector->funcs->destroy(connector); } /* setup interrupt handling */ tasklet_init(&disp->tasklet, nvd0_display_bh, (unsigned long)dev); /* small shared memory area we use for notifiers and semaphores */ ret = nouveau_bo_new(dev, 4096, 0x1000, TTM_PL_FLAG_VRAM, 0, 0x0000, NULL, &disp->sync); if (!ret) { ret = nouveau_bo_pin(disp->sync, TTM_PL_FLAG_VRAM); if (!ret) ret = nouveau_bo_map(disp->sync); if (ret) nouveau_bo_ref(NULL, &disp->sync); } if (ret) goto out; /* hash table and dma objects for the memory areas we care about */ ret = nouveau_gpuobj_new(nv_object(device), NULL, 0x4000, 0x10000, NVOBJ_FLAG_ZERO_ALLOC, &disp->mem); if (ret) goto out; /* create evo dma channels */ for (i = 0; i < EVO_DMA_NR; i++) { struct evo *evo = &disp->evo[i]; u64 offset = disp->sync->bo.offset; u32 dmao = 0x1000 + (i * 0x100); u32 hash = 0x0000 + (i * 0x040); evo->idx = i; evo->sem.offset = EVO_SYNC(evo->idx, 0x00); evo->ptr = pci_alloc_consistent(pdev, PAGE_SIZE, &evo->handle); if (!evo->ptr) { ret = -ENOMEM; goto out; } nv_wo32(disp->mem, dmao + 0x00, 0x00000049); nv_wo32(disp->mem, dmao + 0x04, (offset + 0x0000) >> 8); nv_wo32(disp->mem, dmao + 0x08, (offset + 0x0fff) >> 8); nv_wo32(disp->mem, dmao + 0x0c, 0x00000000); nv_wo32(disp->mem, dmao + 0x10, 0x00000000); nv_wo32(disp->mem, dmao + 0x14, 0x00000000); nv_wo32(disp->mem, hash + 0x00, NvEvoSync); nv_wo32(disp->mem, hash + 0x04, 0x00000001 | (i << 27) | ((dmao + 0x00) << 9)); nv_wo32(disp->mem, dmao + 0x20, 0x00000049); nv_wo32(disp->mem, dmao + 0x24, 0x00000000); nv_wo32(disp->mem, dmao + 0x28, (pfb->ram.size - 1) >> 8); nv_wo32(disp->mem, dmao + 0x2c, 0x00000000); nv_wo32(disp->mem, dmao + 0x30, 0x00000000); nv_wo32(disp->mem, dmao + 0x34, 0x00000000); nv_wo32(disp->mem, hash + 0x08, NvEvoVRAM); nv_wo32(disp->mem, hash + 0x0c, 0x00000001 | (i << 27) | ((dmao + 0x20) << 9)); nv_wo32(disp->mem, dmao + 0x40, 0x00000009); nv_wo32(disp->mem, dmao + 0x44, 0x00000000); nv_wo32(disp->mem, dmao + 0x48, (pfb->ram.size - 1) >> 8); nv_wo32(disp->mem, dmao + 0x4c, 0x00000000); nv_wo32(disp->mem, dmao + 0x50, 0x00000000); nv_wo32(disp->mem, dmao + 0x54, 0x00000000); nv_wo32(disp->mem, hash + 0x10, NvEvoVRAM_LP); nv_wo32(disp->mem, hash + 0x14, 0x00000001 | (i << 27) | ((dmao + 0x40) << 9)); nv_wo32(disp->mem, dmao + 0x60, 0x0fe00009); nv_wo32(disp->mem, dmao + 0x64, 0x00000000); nv_wo32(disp->mem, dmao + 0x68, (pfb->ram.size - 1) >> 8); nv_wo32(disp->mem, dmao + 0x6c, 0x00000000); nv_wo32(disp->mem, dmao + 0x70, 0x00000000); nv_wo32(disp->mem, dmao + 0x74, 0x00000000); nv_wo32(disp->mem, hash + 0x18, NvEvoFB32); nv_wo32(disp->mem, hash + 0x1c, 0x00000001 | (i << 27) | ((dmao + 0x60) << 9)); } bar->flush(bar); out: if (ret) nvd0_display_destroy(dev); return ret; }