/* $XFree86$ */ /* * $XConsortium: iplrrop.c,v 1.8 94/04/17 20:28:59 dpw Exp $ * Copyright (c) 1989 X Consortium Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from the X Consortium. * * Author: Keith Packard, MIT X Consortium */ /* Modified nov 94 by Martin Schaller (Martin_Schaller@maus.r.de) for use with interleaved planes */ /* ipl reduced rasterop computations */ #include "X.h" #include "Xmd.h" #include "Xproto.h" #include "ipl.h" #include "iplmskbits.h" /* A description: * * There are four possible operations on each bit in the destination word, * * 1 2 3 4 * * 0 0 0 1 1 * 1 0 1 0 1 * * On examination of the reduced rop equation (dst = (dst & and) ^ xor), * these four fall to reduced rops as follows: * * and 0 1 1 0 * xor 0 0 1 1 * * or, (if 'and' is expensive) (dst = (dst | or) ^ xor) * * or 1 0 0 1 * xor 1 0 1 0 * * The trouble with using this later equation is that trivial * rasterop reduction is more difficult; some common rasterops * use complicated expressions of xor/and instead of the simple * ones while other common rasterops are not made any simpler: * * GXcopy: *dst = ~xor instead of *dst = xor * GXand: *dst = *dst & ~or instead of *dst = *dst & and * GXor: *dst = *dst | or instead of *dst = *dst | xor * GXxor: *dst = *dst ^ xor instead of *dst = *dst ^ xor * * If you're really set on using this second mechanism, the changes * are pretty simple. * * All that remains is to provide a mechanism for computing and/xor values * based on the raster op and foreground value. * * The 16 rops fall as follows, with the associated reduced * rop and/xor and or/xor values. The values in parenthesis following the * reduced values gives an equation using the source value for * the reduced value, and is one of {0, src, ~src, 1} as appropriate. * * clear and andReverse copy * src 0 1 0 1 0 1 0 1 * dst 0 0 0 0 0 0 0 0 1 0 0 1 * 1 0 0 1 0 1 1 0 0 1 0 1 * * and 0 0 (0) 0 1 (src) 0 1 (src) 0 0 (0) * xor 0 0 (0) 0 0 (0) 0 1 (src) 0 1 (src) * * or 1 1 (1) 1 0 (~src) 1 0 (~src) 1 1 (1) * xor 1 1 (1) 1 0 (~src) 1 1 (1) 1 0 (~src) * * andInverted noop xor or * src 0 1 0 1 0 1 0 1 * dst 0 0 0 0 0 0 0 0 1 0 0 1 * 1 1 0 1 1 1 1 1 0 1 1 1 * * and 1 0 (~src) 1 1 (1) 1 1 (1) 1 0 (~src) * xor 0 0 (0) 0 0 (0) 0 1 (src) 0 1 (src) * * or 0 1 (src) 0 0 (0) 0 0 (0) 0 1 (src) * xor 0 1 (src) 0 0 (0) 0 1 (src) 0 0 (0) * * nor equiv invert orReverse * src 0 1 0 1 0 1 0 1 * dst 0 1 0 0 1 0 0 1 1 0 1 1 * 1 0 0 1 0 1 1 0 0 1 0 1 * * and 1 0 (~src) 1 1 (1) 1 1 (1) 1 0 (~src) * xor 1 0 (~src) 1 0 (~src) 1 1 (1) 1 1 (1) * * or 0 1 (src) 0 0 (0) 0 0 (0) 0 1 (src) * xor 1 1 (1) 1 0 (~src) 1 1 (1) 1 0 (~src) * * copyInverted orInverted nand set * src 0 1 0 1 0 1 0 1 * dst 0 1 0 0 1 0 0 1 1 0 1 1 * 1 1 0 1 1 1 1 1 0 1 1 1 * * and 0 0 (0) 0 1 (src) 0 1 (src) 0 0 (0) * xor 1 0 (~src) 1 0 (~src) 1 1 (1) 1 1 (1) * * or 1 1 (1) 1 0 (~src) 1 0 (~src) 1 1 (1) * xor 0 1 (src) 0 0 (0) 0 1 (src) 0 0 (0) */ iplReduceRasterOp (rop, fg, pm, and, xor) int rop; unsigned long fg, pm; unsigned short *and; unsigned short *xor; { int rrop; switch (rop) { case GXclear: INTER_CLR(and); INTER_CLR(xor); break; case GXand: INTER_PFILL(fg, and); INTER_CLR(xor); break; case GXandReverse: INTER_PFILL(fg, and); INTER_PFILL(fg, xor); break; case GXcopy: INTER_CLR(and); INTER_PFILL(fg, xor); break; case GXandInverted: INTER_PFILL(~fg, xor); INTER_CLR(xor); break; case GXnoop: INTER_SET(and); INTER_CLR(xor); break; case GXxor: INTER_SET(and); INTER_PFILL(fg, xor); break; case GXor: INTER_PFILL(~fg, and); INTER_PFILL(fg, xor); break; case GXnor: INTER_PFILL(~fg, and); INTER_PFILL(~fg, xor); break; case GXequiv: INTER_SET(and); INTER_PFILL(~fg, xor); case GXinvert: INTER_SET(and); INTER_SET(xor); break; case GXorReverse: INTER_PFILL(~fg, and); INTER_SET(xor); break; case GXcopyInverted: INTER_CLR(and); INTER_PFILL(~fg, xor); break; case GXorInverted: INTER_PFILL(fg, and); INTER_PFILL(~fg, xor); break; case GXnand: INTER_PFILL(fg, and); INTER_SET(xor); break; case GXset: INTER_CLR(and); INTER_SET(xor); break; } INTER_ANDXOR_PM(pm, and, xor); if (INTER_IS_CLR(and)) rrop = GXcopy; else if (INTER_IS_SET(and)) rrop = GXxor; else if (INTER_IS_CLR(xor)) rrop = GXand; else if (INTER_IS_XOR_SET(and, xor)) rrop = GXor; else rrop = GXset; return rrop; }