/*********************************************************** Copyright 1987, 1988, 1990 by Digital Equipment Corporation, Maynard All Rights Reserved Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation, and that the name Digital not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission. DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ******************************************************************/ /* Copyright 1987, 1988, 1990, 1998 The Open Group Permission to use, copy, modify, distribute, and sell this software and its documentation for any purpose is hereby granted without fee, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation. The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE OPEN GROUP BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of The Open Group shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from The Open Group. */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include "Xlibint.h" #include #include "Xlcint.h" #ifdef XTHREADS #include "locking.h" #endif #include #include #include #include "Xresinternal.h" #include "Xresource.h" /* These Xrm routines allow very fast lookup of resources in the resource database. Several usage patterns are exploited: (1) Widgets get a lot of resources at one time. Rather than look up each from scratch, we can precompute the prioritized list of database levels once, then search for each resource starting at the beginning of the list. (2) Many database levels don't contain any leaf resource nodes. There is no point in looking for resources on a level that doesn't contain any. This information is kept on a per-level basis. (3) Sometimes the widget instance tree is structured such that you get the same class name repeated on the fully qualified widget name. This can result in the same database level occuring multiple times on the search list. The code below only checks to see if you get two identical search lists in a row, rather than look back through all database levels, but in practice this removes all duplicates I've ever observed. Joel McCormack */ /* The Xrm representation has been completely redesigned to substantially reduce memory and hopefully improve performance. The database is structured into two kinds of tables: LTables that contain only values, and NTables that contain only other tables. Some invariants: The next pointer of the top-level node table points to the top-level leaf table, if any. Within an LTable, for a given name, the tight value always precedes the loose value, and if both are present the loose value is always right after the tight value. Within an NTable, all of the entries for a given name are contiguous, in the order tight NTable, loose NTable, tight LTable, loose LTable. Bob Scheifler */ static XrmQuark XrmQString, XrmQANY; typedef Bool (*DBEnumProc)( XrmDatabase* /* db */, XrmBindingList /* bindings */, XrmQuarkList /* quarks */, XrmRepresentation* /* type */, XrmValue* /* value */, XPointer /* closure */ ); typedef struct _VEntry { struct _VEntry *next; /* next in chain */ XrmQuark name; /* name of this entry */ unsigned int tight:1; /* 1 if it is a tight binding */ unsigned int string:1; /* 1 if type is String */ unsigned int size:30; /* size of value */ } VEntryRec, *VEntry; typedef struct _DEntry { VEntryRec entry; /* entry */ XrmRepresentation type; /* representation type */ } DEntryRec, *DEntry; /* the value is right after the structure */ #define StringValue(ve) (XPointer)((ve) + 1) #define RepType(ve) ((DEntry)(ve))->type /* the value is right after the structure */ #define DataValue(ve) (XPointer)(((DEntry)(ve)) + 1) #define RawValue(ve) (char *)((ve)->string ? StringValue(ve) : DataValue(ve)) typedef struct _NTable { struct _NTable *next; /* next in chain */ XrmQuark name; /* name of this entry */ unsigned int tight:1; /* 1 if it is a tight binding */ unsigned int leaf:1; /* 1 if children are values */ unsigned int hasloose:1; /* 1 if has loose children */ unsigned int hasany:1; /* 1 if has ANY entry */ unsigned int pad:4; /* unused */ unsigned int mask:8; /* hash size - 1 */ unsigned int entries:16; /* number of children */ } NTableRec, *NTable; /* the buckets are right after the structure */ #define NodeBuckets(ne) ((NTable *)((ne) + 1)) #define NodeHash(ne,q) NodeBuckets(ne)[(q) & (ne)->mask] /* leaf tables have an extra level of indirection for the buckets, * so that resizing can be done without invalidating a search list. * This is completely ugly, and wastes some memory, but the Xlib * spec doesn't really specify whether invalidation is OK, and the * old implementation did not invalidate. */ typedef struct _LTable { NTableRec table; VEntry *buckets; } LTableRec, *LTable; #define LeafHash(le,q) (le)->buckets[(q) & (le)->table.mask] /* An XrmDatabase just holds a pointer to the first top-level table. * The type name is no longer descriptive, but better to not change * the Xresource.h header file. This type also gets used to define * XrmSearchList, which is a complete crock, but we'll just leave it * and caste types as required. */ typedef struct _XrmHashBucketRec { NTable table; XPointer mbstate; XrmMethods methods; #ifdef XTHREADS LockInfoRec linfo; #endif } XrmHashBucketRec; /* closure used in get/put resource */ typedef struct _VClosure { XrmRepresentation *type; /* type of value */ XrmValuePtr value; /* value itself */ } VClosureRec, *VClosure; /* closure used in get search list */ typedef struct _SClosure { LTable *list; /* search list */ int idx; /* index of last filled element */ int limit; /* maximum index */ } SClosureRec, *SClosure; /* placed in XrmSearchList to indicate next table is loose only */ #define LOOSESEARCH ((LTable)1) /* closure used in enumerate database */ typedef struct _EClosure { XrmDatabase db; /* the database */ DBEnumProc proc; /* the user proc */ XPointer closure; /* the user closure */ XrmBindingList bindings; /* binding list */ XrmQuarkList quarks; /* quark list */ int mode; /* XrmEnum */ } EClosureRec, *EClosure; /* types for typecasting ETable based functions to NTable based functions */ typedef Bool (*getNTableSProcp)( NTable table, XrmNameList names, XrmClassList classes, SClosure closure); typedef Bool (*getNTableVProcp)( NTable table, XrmNameList names, XrmClassList classes, VClosure closure); typedef Bool (*getNTableEProcp)( NTable table, XrmNameList names, XrmClassList classes, register int level, EClosure closure); /* predicate to determine when to resize a hash table */ #define GrowthPred(n,m) ((unsigned)(n) > (((m) + 1) << 2)) #define GROW(prev) \ if (GrowthPred((*prev)->entries, (*prev)->mask)) \ GrowTable(prev) /* pick a reasonable value for maximum depth of resource database */ #define MAXDBDEPTH 100 /* macro used in get/search functions */ /* find an entry named ename, with leafness given by leaf */ #define NFIND(ename) \ q = ename; \ entry = NodeHash(table, q); \ while (entry && entry->name != q) \ entry = entry->next; \ if (leaf && entry && !entry->leaf) { \ entry = entry->next; \ if (entry && !entry->leaf) \ entry = entry->next; \ if (entry && entry->name != q) \ entry = (NTable)NULL; \ } /* resourceQuarks keeps track of what quarks have been associated with values * in all LTables. If a quark has never been used in an LTable, we don't need * to bother looking for it. */ static unsigned char *resourceQuarks = (unsigned char *)NULL; static XrmQuark maxResourceQuark = -1; /* determines if a quark has been used for a value in any database */ #define IsResourceQuark(q) ((q) > 0 && (q) <= maxResourceQuark && \ resourceQuarks[(q) >> 3] & (1 << ((q) & 7))) typedef unsigned char XrmBits; #define BSLASH ((XrmBits) (1 << 5)) #define NORMAL ((XrmBits) (1 << 4)) #define EOQ ((XrmBits) (1 << 3)) #define SEP ((XrmBits) (1 << 2)) #define ENDOF ((XrmBits) (1 << 1)) #define SPACE (NORMAL|EOQ|SEP|(XrmBits)0) #define RSEP (NORMAL|EOQ|SEP|(XrmBits)1) #define EOS (EOQ|SEP|ENDOF|(XrmBits)0) #define EOL (EOQ|SEP|ENDOF|(XrmBits)1) #define BINDING (NORMAL|EOQ) #define ODIGIT (NORMAL|(XrmBits)1) #define next_char(ch,str) xrmtypes[(unsigned char)((ch) = *(++(str)))] #define next_mbchar(ch,len,str) xrmtypes[(unsigned char)(ch = (*db->methods->mbchar)(db->mbstate, str, &len), str += len, ch)] #define is_space(bits) ((bits) == SPACE) #define is_EOQ(bits) ((bits) & EOQ) #define is_EOF(bits) ((bits) == EOS) #define is_EOL(bits) ((bits) & ENDOF) #define is_binding(bits) ((bits) == BINDING) #define is_odigit(bits) ((bits) == ODIGIT) #define is_separator(bits) ((bits) & SEP) #define is_nonpcs(bits) (!(bits)) #define is_normal(bits) ((bits) & NORMAL) #define is_simple(bits) ((bits) & (NORMAL|BSLASH)) #define is_special(bits) ((bits) & (ENDOF|BSLASH)) /* parsing types */ static XrmBits const xrmtypes[256] = { EOS,0,0,0,0,0,0,0, 0,SPACE,EOL,0,0, #if defined(WIN32) || defined(__UNIXOS2__) EOL, /* treat CR the same as LF, just in case */ #else 0, #endif 0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, SPACE,NORMAL,NORMAL,NORMAL,NORMAL,NORMAL,NORMAL,NORMAL, NORMAL,NORMAL,BINDING,NORMAL,NORMAL,NORMAL,BINDING,NORMAL, ODIGIT,ODIGIT,ODIGIT,ODIGIT,ODIGIT,ODIGIT,ODIGIT,ODIGIT, NORMAL,NORMAL,RSEP,NORMAL,NORMAL,NORMAL,NORMAL,NORMAL, NORMAL,NORMAL,NORMAL,NORMAL,NORMAL,NORMAL,NORMAL,NORMAL, NORMAL,NORMAL,NORMAL,NORMAL,NORMAL,NORMAL,NORMAL,NORMAL, NORMAL,NORMAL,NORMAL,NORMAL,NORMAL,NORMAL,NORMAL,NORMAL, NORMAL,NORMAL,NORMAL,NORMAL,BSLASH,NORMAL,NORMAL,NORMAL, NORMAL,NORMAL,NORMAL,NORMAL,NORMAL,NORMAL,NORMAL,NORMAL, NORMAL,NORMAL,NORMAL,NORMAL,NORMAL,NORMAL,NORMAL,NORMAL, NORMAL,NORMAL,NORMAL,NORMAL,NORMAL,NORMAL,NORMAL,NORMAL, NORMAL,NORMAL,NORMAL,NORMAL,NORMAL,NORMAL,NORMAL,0 /* The rest will be automatically initialized to zero. */ }; void XrmInitialize(void) { XrmQString = XrmPermStringToQuark("String"); XrmQANY = XrmPermStringToQuark("?"); } XrmDatabase XrmGetDatabase( Display *display) { XrmDatabase retval; LockDisplay(display); retval = display->db; UnlockDisplay(display); return retval; } void XrmSetDatabase( Display *display, XrmDatabase database) { LockDisplay(display); /* destroy database if set up imlicitely by XGetDefault() */ if (display->db && (display->flags & XlibDisplayDfltRMDB)) { XrmDestroyDatabase(display->db); display->flags &= ~XlibDisplayDfltRMDB; } display->db = database; UnlockDisplay(display); } void XrmStringToQuarkList( register _Xconst char *name, register XrmQuarkList quarks) /* RETURN */ { register XrmBits bits; register Signature sig = 0; register char ch, *tname; register int i = 0; if ((tname = (char *)name)) { tname--; while (!is_EOF(bits = next_char(ch, tname))) { if (is_binding (bits)) { if (i) { /* Found a complete name */ *quarks++ = _XrmInternalStringToQuark(name,tname - name, sig, False); i = 0; sig = 0; } name = tname+1; } else { sig = (sig << 1) + ch; /* Compute the signature. */ i++; } } *quarks++ = _XrmInternalStringToQuark(name, tname - name, sig, False); } *quarks = NULLQUARK; } void XrmStringToBindingQuarkList( register _Xconst char *name, register XrmBindingList bindings, /* RETURN */ register XrmQuarkList quarks) /* RETURN */ { register XrmBits bits; register Signature sig = 0; register char ch, *tname; register XrmBinding binding; register int i = 0; if ((tname = (char *)name)) { tname--; binding = XrmBindTightly; while (!is_EOF(bits = next_char(ch, tname))) { if (is_binding (bits)) { if (i) { /* Found a complete name */ *bindings++ = binding; *quarks++ = _XrmInternalStringToQuark(name, tname - name, sig, False); i = 0; sig = 0; binding = XrmBindTightly; } name = tname+1; if (ch == '*') binding = XrmBindLoosely; } else { sig = (sig << 1) + ch; /* Compute the signature. */ i++; } } *bindings = binding; *quarks++ = _XrmInternalStringToQuark(name, tname - name, sig, False); } *quarks = NULLQUARK; } #ifdef DEBUG static void PrintQuarkList( XrmQuarkList quarks, FILE *stream) { Bool firstNameSeen; for (firstNameSeen = False; *quarks; quarks++) { if (firstNameSeen) { (void) fprintf(stream, "."); } firstNameSeen = True; (void) fputs(XrmQuarkToString(*quarks), stream); } } /* PrintQuarkList */ #endif /* DEBUG */ /* * Fallback methods for Xrm parsing. * Simulate a C locale. No state needed here. */ static void c_mbnoop( XPointer state) { } static char c_mbchar( XPointer state, const char *str, int *lenp) { *lenp = 1; return *str; } static const char * c_lcname( XPointer state) { return "C"; } static const XrmMethodsRec mb_methods = { c_mbnoop, /* mbinit */ c_mbchar, /* mbchar */ c_mbnoop, /* mbfinish */ c_lcname, /* lcname */ c_mbnoop /* destroy */ }; static XrmDatabase NewDatabase(void) { register XrmDatabase db; db = (XrmDatabase) Xmalloc(sizeof(XrmHashBucketRec)); if (db) { _XCreateMutex(&db->linfo); db->table = (NTable)NULL; db->mbstate = (XPointer)NULL; db->methods = _XrmInitParseInfo(&db->mbstate); if (!db->methods) db->methods = &mb_methods; } return db; } /* move all values from ftable to ttable, and free ftable's buckets. * ttable is quaranteed empty to start with. */ static void MoveValues( LTable ftable, register LTable ttable) { register VEntry fentry, nfentry; register VEntry *prev; register VEntry *bucket; register VEntry tentry; register int i; for (i = ftable->table.mask, bucket = ftable->buckets; i >= 0; i--) { for (fentry = *bucket++; fentry; fentry = nfentry) { prev = &LeafHash(ttable, fentry->name); tentry = *prev; *prev = fentry; /* chain on all with same name, to preserve invariant order */ while ((nfentry = fentry->next) && nfentry->name == fentry->name) fentry = nfentry; fentry->next = tentry; } } Xfree((char *)ftable->buckets); } /* move all tables from ftable to ttable, and free ftable. * ttable is quaranteed empty to start with. */ static void MoveTables( NTable ftable, register NTable ttable) { register NTable fentry, nfentry; register NTable *prev; register NTable *bucket; register NTable tentry; register int i; for (i = ftable->mask, bucket = NodeBuckets(ftable); i >= 0; i--) { for (fentry = *bucket++; fentry; fentry = nfentry) { prev = &NodeHash(ttable, fentry->name); tentry = *prev; *prev = fentry; /* chain on all with same name, to preserve invariant order */ while ((nfentry = fentry->next) && nfentry->name == fentry->name) fentry = nfentry; fentry->next = tentry; } } Xfree((char *)ftable); } /* grow the table, based on current number of entries */ static void GrowTable( NTable *prev) { register NTable table; register int i; table = *prev; i = table->mask; if (i == 255) /* biggest it gets */ return; while (i < 255 && GrowthPred(table->entries, i)) i = (i << 1) + 1; i++; /* i is now the new size */ if (table->leaf) { register LTable ltable; LTableRec otable; ltable = (LTable)table; /* cons up a copy to make MoveValues look symmetric */ otable = *ltable; ltable->buckets = Xcalloc(i, sizeof(VEntry)); if (!ltable->buckets) { ltable->buckets = otable.buckets; return; } ltable->table.mask = i - 1; MoveValues(&otable, ltable); } else { register NTable ntable; ntable = Xcalloc(1, sizeof(NTableRec) + (i * sizeof(NTable))); if (!ntable) return; *ntable = *table; ntable->mask = i - 1; *prev = ntable; MoveTables(table, ntable); } } /* merge values from ftable into *pprev, destroy ftable in the process */ static void MergeValues( LTable ftable, NTable *pprev, Bool override) { register VEntry fentry, tentry; register VEntry *prev; register LTable ttable; VEntry *bucket; int i; register XrmQuark q; ttable = (LTable)*pprev; if (ftable->table.hasloose) ttable->table.hasloose = 1; for (i = ftable->table.mask, bucket = ftable->buckets; i >= 0; i--, bucket++) { for (fentry = *bucket; fentry; ) { q = fentry->name; prev = &LeafHash(ttable, q); tentry = *prev; while (tentry && tentry->name != q) tentry = *(prev = &tentry->next); /* note: test intentionally uses fentry->name instead of q */ /* permits serendipitous inserts */ while (tentry && tentry->name == fentry->name) { /* if tentry is earlier, skip it */ if (!fentry->tight && tentry->tight) { tentry = *(prev = &tentry->next); continue; } if (fentry->tight != tentry->tight) { /* no match, chain in fentry */ *prev = fentry; prev = &fentry->next; fentry = *prev; *prev = tentry; ttable->table.entries++; } else if (override) { /* match, chain in fentry, splice out and free tentry */ *prev = fentry; prev = &fentry->next; fentry = *prev; *prev = tentry->next; /* free the overridden entry */ Xfree((char *)tentry); /* get next tentry */ tentry = *prev; } else { /* match, discard fentry */ prev = &tentry->next; tentry = fentry; /* use as a temp var */ fentry = fentry->next; /* free the overpowered entry */ Xfree((char *)tentry); /* get next tentry */ tentry = *prev; } if (!fentry) break; } /* at this point, tentry cannot match any fentry named q */ /* chain in all bindings together, preserve invariant order */ while (fentry && fentry->name == q) { *prev = fentry; prev = &fentry->next; fentry = *prev; *prev = tentry; ttable->table.entries++; } } } Xfree((char *)ftable->buckets); Xfree((char *)ftable); /* resize if necessary, now that we're all done */ GROW(pprev); } /* merge tables from ftable into *pprev, destroy ftable in the process */ static void MergeTables( NTable ftable, NTable *pprev, Bool override) { register NTable fentry, tentry; NTable nfentry; register NTable *prev; register NTable ttable; NTable *bucket; int i; register XrmQuark q; ttable = *pprev; if (ftable->hasloose) ttable->hasloose = 1; if (ftable->hasany) ttable->hasany = 1; for (i = ftable->mask, bucket = NodeBuckets(ftable); i >= 0; i--, bucket++) { for (fentry = *bucket; fentry; ) { q = fentry->name; prev = &NodeHash(ttable, q); tentry = *prev; while (tentry && tentry->name != q) tentry = *(prev = &tentry->next); /* note: test intentionally uses fentry->name instead of q */ /* permits serendipitous inserts */ while (tentry && tentry->name == fentry->name) { /* if tentry is earlier, skip it */ if ((fentry->leaf && !tentry->leaf) || (!fentry->tight && tentry->tight && (fentry->leaf || !tentry->leaf))) { tentry = *(prev = &tentry->next); continue; } nfentry = fentry->next; if (fentry->leaf != tentry->leaf || fentry->tight != tentry->tight) { /* no match, just chain in */ *prev = fentry; *(prev = &fentry->next) = tentry; ttable->entries++; } else { if (fentry->leaf) MergeValues((LTable)fentry, prev, override); else MergeTables(fentry, prev, override); /* bump to next tentry */ tentry = *(prev = &(*prev)->next); } /* bump to next fentry */ fentry = nfentry; if (!fentry) break; } /* at this point, tentry cannot match any fentry named q */ /* chain in all bindings together, preserve invariant order */ while (fentry && fentry->name == q) { *prev = fentry; prev = &fentry->next; fentry = *prev; *prev = tentry; ttable->entries++; } } } Xfree((char *)ftable); /* resize if necessary, now that we're all done */ GROW(pprev); } void XrmCombineDatabase( XrmDatabase from, XrmDatabase *into, Bool override) { register NTable *prev; register NTable ftable, ttable, nftable; if (!*into) { *into = from; } else if (from) { _XLockMutex(&from->linfo); _XLockMutex(&(*into)->linfo); if ((ftable = from->table)) { prev = &(*into)->table; ttable = *prev; if (!ftable->leaf) { nftable = ftable->next; if (ttable && !ttable->leaf) { /* both have node tables, merge them */ MergeTables(ftable, prev, override); /* bump to into's leaf table, if any */ ttable = *(prev = &(*prev)->next); } else { /* into has no node table, link from's in */ *prev = ftable; *(prev = &ftable->next) = ttable; } /* bump to from's leaf table, if any */ ftable = nftable; } else { /* bump to into's leaf table, if any */ if (ttable && !ttable->leaf) ttable = *(prev = &ttable->next); } if (ftable) { /* if into has a leaf, merge, else insert */ if (ttable) MergeValues((LTable)ftable, prev, override); else *prev = ftable; } } (from->methods->destroy)(from->mbstate); _XUnlockMutex(&from->linfo); _XFreeMutex(&from->linfo); Xfree((char *)from); _XUnlockMutex(&(*into)->linfo); } } void XrmMergeDatabases( XrmDatabase from, XrmDatabase *into) { XrmCombineDatabase(from, into, True); } /* store a value in the database, overriding any existing entry */ static void PutEntry( XrmDatabase db, XrmBindingList bindings, XrmQuarkList quarks, XrmRepresentation type, XrmValuePtr value) { register NTable *pprev, *prev; register NTable table; register XrmQuark q; register VEntry *vprev; register VEntry entry; NTable *nprev, *firstpprev; #define NEWTABLE(q,i) \ table = (NTable)Xmalloc(sizeof(LTableRec)); \ if (!table) \ return; \ table->name = q; \ table->hasloose = 0; \ table->hasany = 0; \ table->mask = 0; \ table->entries = 0; \ if (quarks[i]) { \ table->leaf = 0; \ nprev = NodeBuckets(table); \ } else { \ table->leaf = 1; \ if (!(nprev = (NTable *)Xmalloc(sizeof(VEntry *)))) {\ Xfree(table); \ return; \ } \ ((LTable)table)->buckets = (VEntry *)nprev; \ } \ *nprev = (NTable)NULL; \ table->next = *prev; \ *prev = table if (!db || !*quarks) return; table = *(prev = &db->table); /* if already at leaf, bump to the leaf table */ if (!quarks[1] && table && !table->leaf) table = *(prev = &table->next); pprev = prev; if (!table || (quarks[1] && table->leaf)) { /* no top-level node table, create one and chain it in */ NEWTABLE(NULLQUARK,1); table->tight = 1; /* arbitrary */ prev = nprev; } else { /* search along until we need a value */ while (quarks[1]) { q = *quarks; table = *(prev = &NodeHash(table, q)); while (table && table->name != q) table = *(prev = &table->next); if (!table) break; /* not found */ if (quarks[2]) { if (table->leaf) break; /* not found */ } else { if (!table->leaf) { /* bump to leaf table, if any */ table = *(prev = &table->next); if (!table || table->name != q) break; /* not found */ if (!table->leaf) { /* bump to leaf table, if any */ table = *(prev = &table->next); if (!table || table->name != q) break; /* not found */ } } } if (*bindings == XrmBindTightly) { if (!table->tight) break; /* not found */ } else { if (table->tight) { /* bump to loose table, if any */ table = *(prev = &table->next); if (!table || table->name != q || !quarks[2] != table->leaf) break; /* not found */ } } /* found that one, bump to next quark */ pprev = prev; quarks++; bindings++; } if (!quarks[1]) { /* found all the way to a leaf */ q = *quarks; entry = *(vprev = &LeafHash((LTable)table, q)); while (entry && entry->name != q) entry = *(vprev = &entry->next); /* if want loose and have tight, bump to next entry */ if (entry && *bindings == XrmBindLoosely && entry->tight) entry = *(vprev = &entry->next); if (entry && entry->name == q && (*bindings == XrmBindTightly) == entry->tight) { /* match, need to override */ if ((type == XrmQString) == entry->string && entry->size == value->size) { /* update type if not String, can be different */ if (!entry->string) RepType(entry) = type; /* identical size, just overwrite value */ memcpy(RawValue(entry), (char *)value->addr, value->size); return; } /* splice out and free old entry */ *vprev = entry->next; Xfree((char *)entry); (*pprev)->entries--; } /* this is where to insert */ prev = (NTable *)vprev; } } /* keep the top table, because we may have to grow it */ firstpprev = pprev; /* iterate until we get to the leaf */ while (quarks[1]) { /* build a new table and chain it in */ NEWTABLE(*quarks,2); if (*quarks++ == XrmQANY) (*pprev)->hasany = 1; if (*bindings++ == XrmBindTightly) { table->tight = 1; } else { table->tight = 0; (*pprev)->hasloose = 1; } (*pprev)->entries++; pprev = prev; prev = nprev; } /* now allocate the value entry */ entry = (VEntry)Xmalloc(((type == XrmQString) ? sizeof(VEntryRec) : sizeof(DEntryRec)) + value->size); if (!entry) return; entry->name = q = *quarks; if (*bindings == XrmBindTightly) { entry->tight = 1; } else { entry->tight = 0; (*pprev)->hasloose = 1; } /* chain it in, with a bit of type cast ugliness */ entry->next = *((VEntry *)prev); *((VEntry *)prev) = entry; entry->size = value->size; if (type == XrmQString) { entry->string = 1; } else { entry->string = 0; RepType(entry) = type; } /* save a copy of the value */ memcpy(RawValue(entry), (char *)value->addr, value->size); (*pprev)->entries++; /* this is a new leaf, need to remember it for search lists */ if (q > maxResourceQuark) { unsigned oldsize = (maxResourceQuark + 1) >> 3; unsigned size = ((q | 0x7f) + 1) >> 3; /* reallocate in chunks */ if (resourceQuarks) { unsigned char *prevQuarks = resourceQuarks; resourceQuarks = (unsigned char *)Xrealloc((char *)resourceQuarks, size); if (!resourceQuarks) { Xfree(prevQuarks); } } else resourceQuarks = (unsigned char *)Xmalloc(size); if (resourceQuarks) { bzero((char *)&resourceQuarks[oldsize], size - oldsize); maxResourceQuark = (size << 3) - 1; } else { maxResourceQuark = -1; } } if (q > 0 && resourceQuarks) resourceQuarks[q >> 3] |= 1 << (q & 0x7); GROW(firstpprev); #undef NEWTABLE } void XrmQPutResource( XrmDatabase *pdb, XrmBindingList bindings, XrmQuarkList quarks, XrmRepresentation type, XrmValuePtr value) { if (!*pdb) *pdb = NewDatabase(); _XLockMutex(&(*pdb)->linfo); PutEntry(*pdb, bindings, quarks, type, value); _XUnlockMutex(&(*pdb)->linfo); } void XrmPutResource( XrmDatabase *pdb, _Xconst char *specifier, _Xconst char *type, XrmValuePtr value) { XrmBinding bindings[MAXDBDEPTH+1]; XrmQuark quarks[MAXDBDEPTH+1]; if (!*pdb) *pdb = NewDatabase(); _XLockMutex(&(*pdb)->linfo); XrmStringToBindingQuarkList(specifier, bindings, quarks); PutEntry(*pdb, bindings, quarks, XrmStringToQuark(type), value); _XUnlockMutex(&(*pdb)->linfo); } void XrmQPutStringResource( XrmDatabase *pdb, XrmBindingList bindings, XrmQuarkList quarks, _Xconst char *str) { XrmValue value; if (!*pdb) *pdb = NewDatabase(); value.addr = (XPointer) str; value.size = strlen(str)+1; _XLockMutex(&(*pdb)->linfo); PutEntry(*pdb, bindings, quarks, XrmQString, &value); _XUnlockMutex(&(*pdb)->linfo); } /* Function Name: GetDatabase * Description: Parses a string and stores it as a database. * Arguments: db - the database. * str - a pointer to the string containing the database. * filename - source filename, if any. * doall - whether to do all lines or just one */ /* * This function is highly optimized to inline as much as possible. * Be very careful with modifications, or simplifications, as they * may adversely affect the performance. * * Chris Peterson, MIT X Consortium 5/17/90. */ /* * Xlib spec says max 100 quarks in a lookup, will stop and return if * return if any single production's lhs has more than 100 components. */ #define QLIST_SIZE 100 /* * This should be big enough to handle things like the XKeysymDB or biggish * ~/.Xdefaults or app-defaults files. Anything bigger will be allocated on * the heap. */ #define DEF_BUFF_SIZE 8192 static void GetIncludeFile( XrmDatabase db, _Xconst char *base, _Xconst char *fname, int fnamelen, int depth); static void GetDatabase( XrmDatabase db, _Xconst char *str, _Xconst char *filename, Bool doall, int depth) { char *rhs; char *lhs, lhs_s[DEF_BUFF_SIZE]; XrmQuark quarks[QLIST_SIZE + 1]; /* allow for a terminal NullQuark */ XrmBinding bindings[QLIST_SIZE + 1]; register char *ptr; register XrmBits bits = 0; register char c; register Signature sig; register char *ptr_max; register int num_quarks; register XrmBindingList t_bindings; int len, alloc_chars; unsigned long str_len; XrmValue value; Bool only_pcs; Bool dolines; if (!db) return; /* * if strlen (str) < DEF_BUFF_SIZE allocate buffers on the stack for * speed otherwise malloc the buffer. From a buffer overflow standpoint * we can be sure that neither: a) a component on the lhs, or b) a * value on the rhs, will be longer than the overall length of str, * i.e. strlen(str). * * This should give good performance when parsing "*foo: bar" type * databases as might be passed with -xrm command line options; but * with larger databases, e.g. .Xdefaults, app-defaults, or KeysymDB * files, the size of the buffers will be overly large. One way * around this would be to double-parse each production with a resulting * performance hit. In any event we can be assured that a lhs component * name or a rhs value won't be longer than str itself. */ str_len = strlen (str); if (DEF_BUFF_SIZE > str_len) lhs = lhs_s; else if ((lhs = (char*) Xmalloc (str_len)) == NULL) return; alloc_chars = DEF_BUFF_SIZE < str_len ? str_len : DEF_BUFF_SIZE; if ((rhs = (char*) Xmalloc (alloc_chars)) == NULL) { if (lhs != lhs_s) Xfree (lhs); return; } (*db->methods->mbinit)(db->mbstate); str--; dolines = True; while (!is_EOF(bits) && dolines) { dolines = doall; /* * First: Remove extra whitespace. */ do { bits = next_char(c, str); } while is_space(bits); /* * Ignore empty lines. */ if (is_EOL(bits)) continue; /* start a new line. */ /* * Second: check the first character in a line to see if it is * "!" signifying a comment, or "#" signifying a directive. */ if (c == '!') { /* Comment, spin to next newline */ while (is_simple(bits = next_char(c, str))) {} if (is_EOL(bits)) continue; while (!is_EOL(bits = next_mbchar(c, len, str))) {} str--; continue; /* start a new line. */ } if (c == '#') { /* Directive */ /* remove extra whitespace */ only_pcs = True; while (is_space(bits = next_char(c, str))) {}; /* only "include" directive is currently defined */ if (!strncmp(str, "include", 7)) { str += (7-1); /* remove extra whitespace */ while (is_space(bits = next_char(c, str))) {}; /* must have a starting " */ if (c == '"') { _Xconst char *fname = str+1; len = 0; do { if (only_pcs) { bits = next_char(c, str); if (is_nonpcs(bits)) only_pcs = False; } if (!only_pcs) bits = next_mbchar(c, len, str); } while (c != '"' && !is_EOL(bits)); /* must have an ending " */ if (c == '"') GetIncludeFile(db, filename, fname, str - len - fname, depth); } } /* spin to next newline */ if (only_pcs) { while (is_simple(bits)) bits = next_char(c, str); if (is_EOL(bits)) continue; } while (!is_EOL(bits)) bits = next_mbchar(c, len, str); str--; continue; /* start a new line. */ } /* * Third: loop through the LHS of the resource specification * storing characters and converting this to a Quark. */ num_quarks = 0; t_bindings = bindings; sig = 0; ptr = lhs; *t_bindings = XrmBindTightly; for(;;) { if (!is_binding(bits)) { while (!is_EOQ(bits)) { *ptr++ = c; sig = (sig << 1) + c; /* Compute the signature. */ bits = next_char(c, str); } quarks[num_quarks++] = _XrmInternalStringToQuark(lhs, ptr - lhs, sig, False); if (num_quarks > QLIST_SIZE) { Xfree(rhs); if (lhs != lhs_s) Xfree (lhs); (*db->methods->mbfinish)(db->mbstate); return; } if (is_separator(bits)) { if (!is_space(bits)) break; /* Remove white space */ do { *ptr++ = c; sig = (sig << 1) + c; /* Compute the signature. */ } while (is_space(bits = next_char(c, str))); /* * The spec doesn't permit it, but support spaces * internal to resource name/class */ if (is_separator(bits)) break; num_quarks--; continue; } if (c == '.') *(++t_bindings) = XrmBindTightly; else *(++t_bindings) = XrmBindLoosely; sig = 0; ptr = lhs; } else { /* * Magic unspecified feature #254. * * If two separators appear with no Text between them then * ignore them. * * If anyone of those separators is a '*' then the binding * will be loose, otherwise it will be tight. */ if (c == '*') *t_bindings = XrmBindLoosely; } bits = next_char(c, str); } quarks[num_quarks] = NULLQUARK; /* * Make sure that there is a ':' in this line. */ if (c != ':') { char oldc; /* * A parsing error has occured, toss everything on the line * a new_line can still be escaped with a '\'. */ while (is_normal(bits)) bits = next_char(c, str); if (is_EOL(bits)) continue; bits = next_mbchar(c, len, str); do { oldc = c; bits = next_mbchar(c, len, str); } while (c && (c != '\n' || oldc == '\\')); str--; continue; } /* * I now have a quark and binding list for the entire left hand * side. "c" currently points to the ":" separating the left hand * side for the right hand side. It is time to begin processing * the right hand side. */ /* * Fourth: Remove more whitespace */ for(;;) { if (is_space(bits = next_char(c, str))) continue; if (c != '\\') break; bits = next_char(c, str); if (c == '\n') continue; str--; bits = BSLASH; c = '\\'; break; } /* * Fifth: Process the right hand side. */ ptr = rhs; ptr_max = ptr + alloc_chars - 4; only_pcs = True; len = 1; for(;;) { /* * Tight loop for the normal case: Non backslash, non-end of value * character that will fit into the allocated buffer. */ if (only_pcs) { while (is_normal(bits) && ptr < ptr_max) { *ptr++ = c; bits = next_char(c, str); } if (is_EOL(bits)) break; if (is_nonpcs(bits)) { only_pcs = False; bits = next_mbchar(c, len, str); } } while (!is_special(bits) && ptr + len <= ptr_max) { len = -len; while (len) *ptr++ = str[len++]; if (*str == '\0') { bits = EOS; break; } bits = next_mbchar(c, len, str); } if (is_EOL(bits)) { str--; break; } if (c == '\\') { /* * We need to do some magic after a backslash. */ Bool read_next = True; if (only_pcs) { bits = next_char(c, str); if (is_nonpcs(bits)) only_pcs = False; } if (!only_pcs) bits = next_mbchar(c, len, str); if (is_EOL(bits)) { if (is_EOF(bits)) continue; } else if (c == 'n') { /* * "\n" means insert a newline. */ *ptr++ = '\n'; } else if (c == '\\') { /* * "\\" completes to just one backslash. */ *ptr++ = '\\'; } else { /* * pick up to three octal digits after the '\'. */ char temp[3]; int count = 0; while (is_odigit(bits) && count < 3) { temp[count++] = c; if (only_pcs) { bits = next_char(c, str); if (is_nonpcs(bits)) only_pcs = False; } if (!only_pcs) bits = next_mbchar(c, len, str); } /* * If we found three digits then insert that octal code * into the value string as a character. */ if (count == 3) { *ptr++ = (unsigned char) ((temp[0] - '0') * 0100 + (temp[1] - '0') * 010 + (temp[2] - '0')); } else { int tcount; /* * Otherwise just insert those characters into the * string, since no special processing is needed on * numerics we can skip the special processing. */ for (tcount = 0; tcount < count; tcount++) { *ptr++ = temp[tcount]; /* print them in the correct order */ } } read_next = False; } if (read_next) { if (only_pcs) { bits = next_char(c, str); if (is_nonpcs(bits)) only_pcs = False; } if (!only_pcs) bits = next_mbchar(c, len, str); } } /* * It is important to make sure that there is room for at least * four more characters in the buffer, since I can add that * many characters into the buffer after a backslash has occured. */ if (ptr + len > ptr_max) { char * temp_str; alloc_chars += BUFSIZ/10; temp_str = Xrealloc(rhs, sizeof(char) * alloc_chars); if (!temp_str) { Xfree(rhs); if (lhs != lhs_s) Xfree (lhs); (*db->methods->mbfinish)(db->mbstate); return; } ptr = temp_str + (ptr - rhs); /* reset pointer. */ rhs = temp_str; ptr_max = rhs + alloc_chars - 4; } } /* * Lastly: Terminate the value string, and store this entry * into the database. */ *ptr++ = '\0'; /* Store it in database */ value.size = ptr - rhs; value.addr = (XPointer) rhs; PutEntry(db, bindings, quarks, XrmQString, &value); } if (lhs != lhs_s) Xfree (lhs); Xfree (rhs); (*db->methods->mbfinish)(db->mbstate); } void XrmPutStringResource( XrmDatabase *pdb, _Xconst char*specifier, _Xconst char*str) { XrmValue value; XrmBinding bindings[MAXDBDEPTH+1]; XrmQuark quarks[MAXDBDEPTH+1]; if (!*pdb) *pdb = NewDatabase(); XrmStringToBindingQuarkList(specifier, bindings, quarks); value.addr = (XPointer) str; value.size = strlen(str)+1; _XLockMutex(&(*pdb)->linfo); PutEntry(*pdb, bindings, quarks, XrmQString, &value); _XUnlockMutex(&(*pdb)->linfo); } void XrmPutLineResource( XrmDatabase *pdb, _Xconst char*line) { if (!*pdb) *pdb = NewDatabase(); _XLockMutex(&(*pdb)->linfo); GetDatabase(*pdb, line, (char *)NULL, False, 0); _XUnlockMutex(&(*pdb)->linfo); } XrmDatabase XrmGetStringDatabase( _Xconst char *data) { XrmDatabase db; db = NewDatabase(); _XLockMutex(&db->linfo); GetDatabase(db, data, (char *)NULL, True, 0); _XUnlockMutex(&db->linfo); return db; } /* Function Name: ReadInFile * Description: Reads the file into a buffer. * Arguments: filename - the name of the file. * Returns: An allocated string containing the contents of the file. */ static char * ReadInFile(_Xconst char *filename) { register int fd, size; char * filebuf; #ifdef __UNIXOS2__ filename = __XOS2RedirRoot(filename); #endif /* * MS-Windows and OS/2 note: Default open mode includes O_TEXT */ if ( (fd = _XOpenFile (filename, O_RDONLY)) == -1 ) return (char *)NULL; /* * MS-Windows and OS/2 note: depending on how the sources are * untarred, the newlines in resource files may or may not have * been expanded to CRLF. Either way the size returned by fstat * is sufficient to read the file into because in text-mode any * CRLFs in a file will be converted to newlines (LF) with the * result that the number of bytes actually read with be <= * to the size returned by fstat. */ { struct stat status_buffer; if ( ((fstat(fd, &status_buffer)) == -1 ) || (status_buffer.st_size >= INT_MAX) ) { close (fd); return (char *)NULL; } else size = (int) status_buffer.st_size; } if (!(filebuf = Xmalloc(size + 1))) { /* leave room for '\0' */ close(fd); return (char *)NULL; } size = read (fd, filebuf, size); #ifdef __UNIXOS2__ { /* kill CRLF */ int i,k; for (i=k=0; i= BUFSIZ) return; if (depth >= MAXDBDEPTH) return; if (*fname != '/' && base && (str = strrchr(base, '/'))) { len = str - base + 1; if (len + fnamelen >= BUFSIZ) return; strncpy(realfname, base, len); strncpy(realfname + len, fname, fnamelen); realfname[len + fnamelen] = '\0'; } else { strncpy(realfname, fname, fnamelen); realfname[fnamelen] = '\0'; } if (!(str = ReadInFile(realfname))) return; GetDatabase(db, str, realfname, True, depth + 1); Xfree(str); } XrmDatabase XrmGetFileDatabase( _Xconst char *filename) { XrmDatabase db; char *str; if (!(str = ReadInFile(filename))) return (XrmDatabase)NULL; db = NewDatabase(); _XLockMutex(&db->linfo); GetDatabase(db, str, filename, True, 0); _XUnlockMutex(&db->linfo); Xfree(str); return db; } Status XrmCombineFileDatabase( _Xconst char *filename, XrmDatabase *target, Bool override) { XrmDatabase db; char *str; if (!(str = ReadInFile(filename))) return 0; if (override) { db = *target; if (!db) *target = db = NewDatabase(); } else db = NewDatabase(); _XLockMutex(&db->linfo); GetDatabase(db, str, filename, True, 0); _XUnlockMutex(&db->linfo); Xfree(str); if (!override) XrmCombineDatabase(db, target, False); return 1; } /* call the user proc for every value in the table, arbitrary order. * stop if user proc returns True. level is current depth in database. */ /*ARGSUSED*/ static Bool EnumLTable( LTable table, XrmNameList names, XrmClassList classes, register int level, register EClosure closure) { register VEntry *bucket; register int i; register VEntry entry; XrmValue value; XrmRepresentation type; Bool tightOk; closure->bindings[level] = (table->table.tight ? XrmBindTightly : XrmBindLoosely); closure->quarks[level] = table->table.name; level++; tightOk = !*names; closure->quarks[level + 1] = NULLQUARK; for (i = table->table.mask, bucket = table->buckets; i >= 0; i--, bucket++) { for (entry = *bucket; entry; entry = entry->next) { if (entry->tight && !tightOk) continue; closure->bindings[level] = (entry->tight ? XrmBindTightly : XrmBindLoosely); closure->quarks[level] = entry->name; value.size = entry->size; if (entry->string) { type = XrmQString; value.addr = StringValue(entry); } else { type = RepType(entry); value.addr = DataValue(entry); } if ((*closure->proc)(&closure->db, closure->bindings+1, closure->quarks+1, &type, &value, closure->closure)) return True; } } return False; } static Bool EnumAllNTable( NTable table, register int level, register EClosure closure) { register NTable *bucket; register int i; register NTable entry; XrmQuark empty = NULLQUARK; if (level >= MAXDBDEPTH) return False; for (i = table->mask, bucket = NodeBuckets(table); i >= 0; i--, bucket++) { for (entry = *bucket; entry; entry = entry->next) { if (entry->leaf) { if (EnumLTable((LTable)entry, &empty, &empty, level, closure)) return True; } else { closure->bindings[level] = (entry->tight ? XrmBindTightly : XrmBindLoosely); closure->quarks[level] = entry->name; if (EnumAllNTable(entry, level+1, closure)) return True; } } } return False; } /* recurse on every table in the table, arbitrary order. * stop if user proc returns True. level is current depth in database. */ static Bool EnumNTable( NTable table, XrmNameList names, XrmClassList classes, register int level, register EClosure closure) { register NTable entry; register XrmQuark q; register unsigned int leaf; Bool (*get)( NTable table, XrmNameList names, XrmClassList classes, register int level, EClosure closure); Bool bilevel; /* find entries named ename, leafness leaf, tight or loose, and call get */ #define ITIGHTLOOSE(ename) \ NFIND(ename); \ if (entry) { \ if (leaf == entry->leaf) { \ if (!leaf && !entry->tight && entry->next && \ entry->next->name == q && entry->next->tight && \ (bilevel || entry->next->hasloose) && \ EnumLTable((LTable)entry->next, names+1, classes+1, \ level, closure)) \ return True; \ if ((*get)(entry, names+1, classes+1, level, closure)) \ return True; \ if (entry->tight && (entry = entry->next) && \ entry->name == q && leaf == entry->leaf && \ (*get)(entry, names+1, classes+1, level, closure)) \ return True; \ } else if (entry->leaf) { \ if ((bilevel || entry->hasloose) && \ EnumLTable((LTable)entry, names+1, classes+1, level, closure))\ return True; \ if (entry->tight && (entry = entry->next) && \ entry->name == q && (bilevel || entry->hasloose) && \ EnumLTable((LTable)entry, names+1, classes+1, level, closure))\ return True; \ } \ } /* find entries named ename, leafness leaf, loose only, and call get */ #define ILOOSE(ename) \ NFIND(ename); \ if (entry && entry->tight && (entry = entry->next) && entry->name != q) \ entry = (NTable)NULL; \ if (entry) { \ if (leaf == entry->leaf) { \ if ((*get)(entry, names+1, classes+1, level, closure)) \ return True; \ } else if (entry->leaf && (bilevel || entry->hasloose)) { \ if (EnumLTable((LTable)entry, names+1, classes+1, level, closure))\ return True; \ } \ } if (level >= MAXDBDEPTH) return False; closure->bindings[level] = (table->tight ? XrmBindTightly : XrmBindLoosely); closure->quarks[level] = table->name; level++; if (!*names) { if (EnumAllNTable(table, level, closure)) return True; } else { if (names[1] || closure->mode == XrmEnumAllLevels) { get = EnumNTable; /* recurse */ leaf = 0; bilevel = !names[1]; } else { get = (getNTableEProcp)EnumLTable; /* bottom of recursion */ leaf = 1; bilevel = False; } if (table->hasloose && closure->mode == XrmEnumAllLevels) { NTable *bucket; int i; XrmQuark empty = NULLQUARK; for (i = table->mask, bucket = NodeBuckets(table); i >= 0; i--, bucket++) { q = NULLQUARK; for (entry = *bucket; entry; entry = entry->next) { if (!entry->tight && entry->name != q && entry->name != *names && entry->name != *classes) { q = entry->name; if (entry->leaf) { if (EnumLTable((LTable)entry, &empty, &empty, level, closure)) return True; } else { if (EnumNTable(entry, &empty, &empty, level, closure)) return True; } } } } } ITIGHTLOOSE(*names); /* do name, tight and loose */ ITIGHTLOOSE(*classes); /* do class, tight and loose */ if (table->hasany) { ITIGHTLOOSE(XrmQANY); /* do ANY, tight and loose */ } if (table->hasloose) { while (1) { names++; classes++; if (!*names) break; if (!names[1] && closure->mode != XrmEnumAllLevels) { get = (getNTableEProcp)EnumLTable; /* bottom of recursion */ leaf = 1; } ILOOSE(*names); /* loose names */ ILOOSE(*classes); /* loose classes */ if (table->hasany) { ILOOSE(XrmQANY); /* loose ANY */ } } names--; classes--; } } /* now look for matching leaf nodes */ entry = table->next; if (!entry) return False; if (entry->leaf) { if (entry->tight && !table->tight) entry = entry->next; } else { entry = entry->next; if (!entry || !entry->tight) return False; } if (!entry || entry->name != table->name) return False; /* found one */ level--; if ((!*names || entry->hasloose) && EnumLTable((LTable)entry, names, classes, level, closure)) return True; if (entry->tight && entry == table->next && (entry = entry->next) && entry->name == table->name && (!*names || entry->hasloose)) return EnumLTable((LTable)entry, names, classes, level, closure); return False; #undef ITIGHTLOOSE #undef ILOOSE } /* call the proc for every value in the database, arbitrary order. * stop if the proc returns True. */ Bool XrmEnumerateDatabase( XrmDatabase db, XrmNameList names, XrmClassList classes, int mode, DBEnumProc proc, XPointer closure) { XrmBinding bindings[MAXDBDEPTH+2]; XrmQuark quarks[MAXDBDEPTH+2]; register NTable table; EClosureRec eclosure; Bool retval = False; if (!db) return False; _XLockMutex(&db->linfo); eclosure.db = db; eclosure.proc = proc; eclosure.closure = closure; eclosure.bindings = bindings; eclosure.quarks = quarks; eclosure.mode = mode; table = db->table; if (table && !table->leaf && !*names && mode == XrmEnumOneLevel) table = table->next; if (table) { if (!table->leaf) retval = EnumNTable(table, names, classes, 0, &eclosure); else retval = EnumLTable((LTable)table, names, classes, 0, &eclosure); } _XUnlockMutex(&db->linfo); return retval; } static void PrintBindingQuarkList( XrmBindingList bindings, XrmQuarkList quarks, FILE *stream) { Bool firstNameSeen; for (firstNameSeen = False; *quarks; bindings++, quarks++) { if (*bindings == XrmBindLoosely) { (void) fprintf(stream, "*"); } else if (firstNameSeen) { (void) fprintf(stream, "."); } firstNameSeen = True; (void) fputs(XrmQuarkToString(*quarks), stream); } } /* output out the entry in correct file syntax */ /*ARGSUSED*/ static Bool DumpEntry( XrmDatabase *db, XrmBindingList bindings, XrmQuarkList quarks, XrmRepresentation *type, XrmValuePtr value, XPointer data) { FILE *stream = (FILE *)data; register unsigned int i; register char *s; register char c; if (*type != XrmQString) (void) putc('!', stream); PrintBindingQuarkList(bindings, quarks, stream); s = value->addr; i = value->size; if (*type == XrmQString) { (void) fputs(":\t", stream); if (i) i--; } else (void) fprintf(stream, "=%s:\t", XrmRepresentationToString(*type)); if (i && (*s == ' ' || *s == '\t')) (void) putc('\\', stream); /* preserve leading whitespace */ while (i--) { c = *s++; if (c == '\n') { if (i) (void) fputs("\\n\\\n", stream); else (void) fputs("\\n", stream); } else if (c == '\\') (void) fputs("\\\\", stream); else if ((c < ' ' && c != '\t') || ((unsigned char)c >= 0x7f && (unsigned char)c < 0xa0)) (void) fprintf(stream, "\\%03o", (unsigned char)c); else (void) putc(c, stream); } (void) putc('\n', stream); return ferror(stream) != 0; } #ifdef DEBUG void PrintTable( NTable table, FILE *file) { XrmBinding bindings[MAXDBDEPTH+1]; XrmQuark quarks[MAXDBDEPTH+1]; EClosureRec closure; XrmQuark empty = NULLQUARK; closure.db = (XrmDatabase)NULL; closure.proc = DumpEntry; closure.closure = (XPointer)file; closure.bindings = bindings; closure.quarks = quarks; closure.mode = XrmEnumAllLevels; if (table->leaf) EnumLTable((LTable)table, &empty, &empty, 0, &closure); else EnumNTable(table, &empty, &empty, 0, &closure); } #endif /* DEBUG */ void XrmPutFileDatabase( XrmDatabase db, _Xconst char *fileName) { FILE *file; XrmQuark empty = NULLQUARK; if (!db) return; if (!(file = fopen(fileName, "w"))) return; if (XrmEnumerateDatabase(db, &empty, &empty, XrmEnumAllLevels, DumpEntry, (XPointer) file)) unlink((char *)fileName); fclose(file); } /* macros used in get/search functions */ /* find entries named ename, leafness leaf, tight or loose, and call get */ #define GTIGHTLOOSE(ename,looseleaf) \ NFIND(ename); \ if (entry) { \ if (leaf == entry->leaf) { \ if (!leaf && !entry->tight && entry->next && \ entry->next->name == q && entry->next->tight && \ entry->next->hasloose && \ looseleaf((LTable)entry->next, names+1, classes+1, closure)) \ return True; \ if ((*get)(entry, names+1, classes+1, closure)) \ return True; \ if (entry->tight && (entry = entry->next) && \ entry->name == q && leaf == entry->leaf && \ (*get)(entry, names+1, classes+1, closure)) \ return True; \ } else if (entry->leaf) { \ if (entry->hasloose && \ looseleaf((LTable)entry, names+1, classes+1, closure)) \ return True; \ if (entry->tight && (entry = entry->next) && \ entry->name == q && entry->hasloose && \ looseleaf((LTable)entry, names+1, classes+1, closure)) \ return True; \ } \ } /* find entries named ename, leafness leaf, loose only, and call get */ #define GLOOSE(ename,looseleaf) \ NFIND(ename); \ if (entry && entry->tight && (entry = entry->next) && entry->name != q) \ entry = (NTable)NULL; \ if (entry) { \ if (leaf == entry->leaf) { \ if ((*get)(entry, names+1, classes+1, closure)) \ return True; \ } else if (entry->leaf && entry->hasloose) { \ if (looseleaf((LTable)entry, names+1, classes+1, closure)) \ return True; \ } \ } /* add tight/loose entry to the search list, return True if list is full */ /*ARGSUSED*/ static Bool AppendLEntry( LTable table, XrmNameList names, XrmClassList classes, register SClosure closure) { /* check for duplicate */ if (closure->idx >= 0 && closure->list[closure->idx] == table) return False; if (closure->idx == closure->limit) return True; /* append it */ closure->idx++; closure->list[closure->idx] = table; return False; } /* add loose entry to the search list, return True if list is full */ /*ARGSUSED*/ static Bool AppendLooseLEntry( LTable table, XrmNameList names, XrmClassList classes, register SClosure closure) { /* check for duplicate */ if (closure->idx >= 0 && closure->list[closure->idx] == table) return False; if (closure->idx >= closure->limit - 1) return True; /* append it */ closure->idx++; closure->list[closure->idx] = LOOSESEARCH; closure->idx++; closure->list[closure->idx] = table; return False; } /* search for a leaf table */ static Bool SearchNEntry( NTable table, XrmNameList names, XrmClassList classes, SClosure closure) { register NTable entry; register XrmQuark q; register unsigned int leaf; Bool (*get)( NTable table, XrmNameList names, XrmClassList classes, SClosure closure); if (names[1]) { get = SearchNEntry; /* recurse */ leaf = 0; } else { get = (getNTableSProcp)AppendLEntry; /* bottom of recursion */ leaf = 1; } GTIGHTLOOSE(*names, AppendLooseLEntry); /* do name, tight and loose */ GTIGHTLOOSE(*classes, AppendLooseLEntry); /* do class, tight and loose */ if (table->hasany) { GTIGHTLOOSE(XrmQANY, AppendLooseLEntry); /* do ANY, tight and loose */ } if (table->hasloose) { while (1) { names++; classes++; if (!*names) break; if (!names[1]) { get = (getNTableSProcp)AppendLEntry; /* bottom of recursion */ leaf = 1; } GLOOSE(*names, AppendLooseLEntry); /* loose names */ GLOOSE(*classes, AppendLooseLEntry); /* loose classes */ if (table->hasany) { GLOOSE(XrmQANY, AppendLooseLEntry); /* loose ANY */ } } } /* now look for matching leaf nodes */ entry = table->next; if (!entry) return False; if (entry->leaf) { if (entry->tight && !table->tight) entry = entry->next; } else { entry = entry->next; if (!entry || !entry->tight) return False; } if (!entry || entry->name != table->name) return False; /* found one */ if (entry->hasloose && AppendLooseLEntry((LTable)entry, names, classes, closure)) return True; if (entry->tight && entry == table->next && (entry = entry->next) && entry->name == table->name && entry->hasloose) return AppendLooseLEntry((LTable)entry, names, classes, closure); return False; } Bool XrmQGetSearchList( XrmDatabase db, XrmNameList names, XrmClassList classes, XrmSearchList searchList, /* RETURN */ int listLength) { register NTable table; SClosureRec closure; if (listLength <= 0) return False; closure.list = (LTable *)searchList; closure.idx = -1; closure.limit = listLength - 2; if (db) { _XLockMutex(&db->linfo); table = db->table; if (*names) { if (table && !table->leaf) { if (SearchNEntry(table, names, classes, &closure)) { _XUnlockMutex(&db->linfo); return False; } } else if (table && table->hasloose && AppendLooseLEntry((LTable)table, names, classes, &closure)) { _XUnlockMutex(&db->linfo); return False; } } else { if (table && !table->leaf) table = table->next; if (table && AppendLEntry((LTable)table, names, classes, &closure)) { _XUnlockMutex(&db->linfo); return False; } } _XUnlockMutex(&db->linfo); } closure.list[closure.idx + 1] = (LTable)NULL; return True; } Bool XrmQGetSearchResource( XrmSearchList searchList, register XrmName name, register XrmClass class, XrmRepresentation *pType, /* RETURN */ XrmValue *pValue) /* RETURN */ { register LTable *list; register LTable table; register VEntry entry = NULL; int flags; /* find tight or loose entry */ #define VTIGHTLOOSE(q) \ entry = LeafHash(table, q); \ while (entry && entry->name != q) \ entry = entry->next; \ if (entry) \ break /* find loose entry */ #define VLOOSE(q) \ entry = LeafHash(table, q); \ while (entry && entry->name != q) \ entry = entry->next; \ if (entry) { \ if (!entry->tight) \ break; \ if ((entry = entry->next) && entry->name == q) \ break; \ } list = (LTable *)searchList; /* figure out which combination of name and class we need to search for */ flags = 0; if (IsResourceQuark(name)) flags = 2; if (IsResourceQuark(class)) flags |= 1; if (!flags) { /* neither name nor class has ever been used to name a resource */ table = (LTable)NULL; } else if (flags == 3) { /* both name and class */ while ((table = *list++)) { if (table != LOOSESEARCH) { VTIGHTLOOSE(name); /* do name, tight and loose */ VTIGHTLOOSE(class); /* do class, tight and loose */ } else { table = *list++; VLOOSE(name); /* do name, loose only */ VLOOSE(class); /* do class, loose only */ } } } else { /* just one of name or class */ if (flags == 1) name = class; while ((table = *list++)) { if (table != LOOSESEARCH) { VTIGHTLOOSE(name); /* tight and loose */ } else { table = *list++; VLOOSE(name); /* loose only */ } } } if (table) { /* found a match */ if (entry->string) { *pType = XrmQString; pValue->addr = StringValue(entry); } else { *pType = RepType(entry); pValue->addr = DataValue(entry); } pValue->size = entry->size; return True; } *pType = NULLQUARK; pValue->addr = (XPointer)NULL; pValue->size = 0; return False; #undef VTIGHTLOOSE #undef VLOOSE } /* look for a tight/loose value */ static Bool GetVEntry( LTable table, XrmNameList names, XrmClassList classes, VClosure closure) { register VEntry entry; register XrmQuark q; /* try name first */ q = *names; entry = LeafHash(table, q); while (entry && entry->name != q) entry = entry->next; if (!entry) { /* not found, try class */ q = *classes; entry = LeafHash(table, q); while (entry && entry->name != q) entry = entry->next; if (!entry) return False; } if (entry->string) { *closure->type = XrmQString; closure->value->addr = StringValue(entry); } else { *closure->type = RepType(entry); closure->value->addr = DataValue(entry); } closure->value->size = entry->size; return True; } /* look for a loose value */ static Bool GetLooseVEntry( LTable table, XrmNameList names, XrmClassList classes, VClosure closure) { register VEntry entry; register XrmQuark q; #define VLOOSE(ename) \ q = ename; \ entry = LeafHash(table, q); \ while (entry && entry->name != q) \ entry = entry->next; \ if (entry && entry->tight && (entry = entry->next) && entry->name != q) \ entry = (VEntry)NULL; /* bump to last component */ while (names[1]) { names++; classes++; } VLOOSE(*names); /* do name, loose only */ if (!entry) { VLOOSE(*classes); /* do class, loose only */ if (!entry) return False; } if (entry->string) { *closure->type = XrmQString; closure->value->addr = StringValue(entry); } else { *closure->type = RepType(entry); closure->value->addr = DataValue(entry); } closure->value->size = entry->size; return True; #undef VLOOSE } /* recursive search for a value */ static Bool GetNEntry( NTable table, XrmNameList names, XrmClassList classes, VClosure closure) { register NTable entry; register XrmQuark q; register unsigned int leaf; Bool (*get)( NTable table, XrmNameList names, XrmClassList classes, VClosure closure); NTable otable; if (names[2]) { get = GetNEntry; /* recurse */ leaf = 0; } else { get = (getNTableVProcp)GetVEntry; /* bottom of recursion */ leaf = 1; } GTIGHTLOOSE(*names, GetLooseVEntry); /* do name, tight and loose */ GTIGHTLOOSE(*classes, GetLooseVEntry); /* do class, tight and loose */ if (table->hasany) { GTIGHTLOOSE(XrmQANY, GetLooseVEntry); /* do ANY, tight and loose */ } if (table->hasloose) { while (1) { names++; classes++; if (!names[1]) break; if (!names[2]) { get = (getNTableVProcp)GetVEntry; /* bottom of recursion */ leaf = 1; } GLOOSE(*names, GetLooseVEntry); /* do name, loose only */ GLOOSE(*classes, GetLooseVEntry); /* do class, loose only */ if (table->hasany) { GLOOSE(XrmQANY, GetLooseVEntry); /* do ANY, loose only */ } } } /* look for matching leaf tables */ otable = table; table = table->next; if (!table) return False; if (table->leaf) { if (table->tight && !otable->tight) table = table->next; } else { table = table->next; if (!table || !table->tight) return False; } if (!table || table->name != otable->name) return False; /* found one */ if (table->hasloose && GetLooseVEntry((LTable)table, names, classes, closure)) return True; if (table->tight && table == otable->next) { table = table->next; if (table && table->name == otable->name && table->hasloose) return GetLooseVEntry((LTable)table, names, classes, closure); } return False; } Bool XrmQGetResource( XrmDatabase db, XrmNameList names, XrmClassList classes, XrmRepresentation *pType, /* RETURN */ XrmValuePtr pValue) /* RETURN */ { register NTable table; VClosureRec closure; if (db && *names) { _XLockMutex(&db->linfo); closure.type = pType; closure.value = pValue; table = db->table; if (names[1]) { if (table && !table->leaf) { if (GetNEntry(table, names, classes, &closure)) { _XUnlockMutex(&db->linfo); return True; } } else if (table && table->hasloose && GetLooseVEntry((LTable)table, names, classes, &closure)) { _XUnlockMutex (&db->linfo); return True; } } else { if (table && !table->leaf) table = table->next; if (table && GetVEntry((LTable)table, names, classes, &closure)) { _XUnlockMutex(&db->linfo); return True; } } _XUnlockMutex(&db->linfo); } *pType = NULLQUARK; pValue->addr = (XPointer)NULL; pValue->size = 0; return False; } Bool XrmGetResource(XrmDatabase db, _Xconst char *name_str, _Xconst char *class_str, XrmString *pType_str, XrmValuePtr pValue) { XrmName names[MAXDBDEPTH+1]; XrmClass classes[MAXDBDEPTH+1]; XrmRepresentation fromType; Bool result; XrmStringToNameList(name_str, names); XrmStringToClassList(class_str, classes); result = XrmQGetResource(db, names, classes, &fromType, pValue); (*pType_str) = XrmQuarkToString(fromType); return result; } /* destroy all values, plus table itself */ static void DestroyLTable( LTable table) { register int i; register VEntry *buckets; register VEntry entry, next; buckets = table->buckets; for (i = table->table.mask; i >= 0; i--, buckets++) { for (next = *buckets; (entry = next); ) { next = entry->next; Xfree((char *)entry); } } Xfree((char *)table->buckets); Xfree((char *)table); } /* destroy all contained tables, plus table itself */ static void DestroyNTable( NTable table) { register int i; register NTable *buckets; register NTable entry, next; buckets = NodeBuckets(table); for (i = table->mask; i >= 0; i--, buckets++) { for (next = *buckets; (entry = next); ) { next = entry->next; if (entry->leaf) DestroyLTable((LTable)entry); else DestroyNTable(entry); } } Xfree((char *)table); } const char * XrmLocaleOfDatabase( XrmDatabase db) { const char* retval; _XLockMutex(&db->linfo); retval = (*db->methods->lcname)(db->mbstate); _XUnlockMutex(&db->linfo); return retval; } void XrmDestroyDatabase( XrmDatabase db) { register NTable table, next; if (db) { _XLockMutex(&db->linfo); for (next = db->table; (table = next); ) { next = table->next; if (table->leaf) DestroyLTable((LTable)table); else DestroyNTable(table); } _XUnlockMutex(&db->linfo); _XFreeMutex(&db->linfo); (*db->methods->destroy)(db->mbstate); Xfree((char *)db); } }