/* * Copyright © 2006 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Eric Anholt * */ #include #include #include #include #include #include #include #include #include #include #include #include #include "igt_aux.h" #include "intel_io.h" #include "intel_chipset.h" #include "drmtest.h" /* kernel types for intel_vbt_defs.h */ typedef uint8_t u8; typedef uint16_t u16; typedef uint32_t u32; typedef uint64_t u64; #define __packed __attribute__ ((packed)) #define _INTEL_BIOS_PRIVATE #include "intel_vbt_defs.h" /* no bother to include "edid.h" */ #define _H_ACTIVE(x) (x[2] + ((x[4] & 0xF0) << 4)) #define _H_SYNC_OFF(x) (x[8] + ((x[11] & 0xC0) << 2)) #define _H_SYNC_WIDTH(x) (x[9] + ((x[11] & 0x30) << 4)) #define _H_BLANK(x) (x[3] + ((x[4] & 0x0F) << 8)) #define _V_ACTIVE(x) (x[5] + ((x[7] & 0xF0) << 4)) #define _V_SYNC_OFF(x) ((x[10] >> 4) + ((x[11] & 0x0C) << 2)) #define _V_SYNC_WIDTH(x) ((x[10] & 0x0F) + ((x[11] & 0x03) << 4)) #define _V_BLANK(x) (x[6] + ((x[7] & 0x0F) << 8)) #define _PIXEL_CLOCK(x) (x[0] + (x[1] << 8)) * 10000 #define YESNO(val) ((val) ? "yes" : "no") /* This is not for mapping to memory layout. */ struct bdb_block { uint8_t id; uint32_t size; uint8_t data[]; }; struct context { const struct vbt_header *vbt; const struct bdb_header *bdb; int size; uint32_t devid; int panel_type, panel_type2; bool dump_all_panel_types; bool hexdump; }; struct edid { uint8_t header[8]; struct lvds_pnp_id pnpid; /* ... */ } __packed; static bool dump_panel(const struct context *context, int panel_type) { return panel_type == context->panel_type || panel_type == context->panel_type2 || context->dump_all_panel_types; } static const char *panel_str(const struct context *context, int panel_type) { if (panel_type == context->panel_type && panel_type == context->panel_type2) return " (1)(2)"; if (panel_type == context->panel_type) return " (1)"; if (panel_type == context->panel_type2) return " (2)"; return ""; } /* Get BDB block size given a pointer to Block ID. */ static uint32_t _get_blocksize(const uint8_t *block_base) { /* The MIPI Sequence Block v3+ has a separate size field. */ if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3) return *((const uint32_t *)(block_base + 4)); else return *((const uint16_t *)(block_base + 1)); } /* Get BDB block size give a pointer to data after Block ID and Block Size. */ static u32 get_blocksize(const void *block_data) { return _get_blocksize(block_data - 3); } static const void *find_raw_section(const struct context *context, int section_id) { const struct bdb_header *bdb = context->bdb; int length = context->size; const uint8_t *base = (const uint8_t *)bdb; int index = 0; uint32_t total, current_size; unsigned char current_id; /* skip to first section */ index += bdb->header_size; total = bdb->bdb_size; if (total > length) total = length; /* walk the sections looking for section_id */ while (index + 3 < total) { current_id = *(base + index); current_size = _get_blocksize(base + index); index += 3; if (index + current_size > total) return NULL; if (current_id == section_id) return base + index; index += current_size; } return NULL; } /* * Offset from the start of BDB to the start of the * block data (just past the block header). */ static u32 raw_block_offset(const struct context *context, enum bdb_block_id section_id) { const void *block; block = find_raw_section(context, section_id); if (!block) return 0; return block - (const void *)context->bdb; } static const void *block_data(const struct bdb_block *block) { return block->data + 3; } static struct bdb_block *find_section(const struct context *context, int section_id); static size_t lfp_data_min_size(const struct context *context) { const struct bdb_lvds_lfp_data_ptrs *ptrs; struct bdb_block *ptrs_block; size_t size; ptrs_block = find_section(context, BDB_LVDS_LFP_DATA_PTRS); if (!ptrs_block) return 0; ptrs = block_data(ptrs_block); size = sizeof(struct bdb_lvds_lfp_data); if (ptrs->panel_name.table_size) size = max(size, ptrs->panel_name.offset + sizeof(struct bdb_lvds_lfp_data_tail)); free(ptrs_block); return size; } static int make_lvds_data_ptr(struct lvds_lfp_data_ptr_table *table, int table_size, int total_size) { if (total_size < table_size) return total_size; table->table_size = table_size; table->offset = total_size - table_size; return total_size - table_size; } static void next_lvds_data_ptr(struct lvds_lfp_data_ptr_table *next, const struct lvds_lfp_data_ptr_table *prev, int size) { next->table_size = prev->table_size; next->offset = prev->offset + size; } static void *generate_lvds_data_ptrs(const struct context *context) { int size, table_size, block_size, offset, fp_timing_size; const void *block; struct bdb_lvds_lfp_data_ptrs *ptrs; void *ptrs_block; /* * The hardcoded fp_timing_size is only valid for * modernish VBTs. All older VBTs definitely should * include block 41 and thus we don't need to * generate one. */ if (context->bdb->version < 155) return NULL; fp_timing_size = 38; block = find_raw_section(context, BDB_LVDS_LFP_DATA); if (!block) return NULL; block_size = get_blocksize(block); size = block_size; size = fp_timing_size + sizeof(struct lvds_dvo_timing) + sizeof(struct lvds_pnp_id); if (size * 16 > block_size) return NULL; ptrs_block = calloc(1, sizeof(*ptrs) + 3); if (!ptrs_block) return NULL; *(uint8_t *)(ptrs_block + 0) = BDB_LVDS_LFP_DATA_PTRS; *(uint16_t *)(ptrs_block + 1) = sizeof(*ptrs); ptrs = ptrs_block + 3; table_size = sizeof(struct lvds_pnp_id); size = make_lvds_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size); table_size = sizeof(struct lvds_dvo_timing); size = make_lvds_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size); table_size = fp_timing_size; size = make_lvds_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size); if (ptrs->ptr[0].fp_timing.table_size) ptrs->lvds_entries++; if (ptrs->ptr[0].dvo_timing.table_size) ptrs->lvds_entries++; if (ptrs->ptr[0].panel_pnp_id.table_size) ptrs->lvds_entries++; if (size != 0 || ptrs->lvds_entries != 3) return NULL; size = fp_timing_size + sizeof(struct lvds_dvo_timing) + sizeof(struct lvds_pnp_id); for (int i = 1; i < 16; i++) { next_lvds_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size); next_lvds_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size); next_lvds_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size); } table_size = sizeof(struct lvds_lfp_panel_name); if (16 * (size + table_size) <= block_size) { ptrs->panel_name.table_size = table_size; ptrs->panel_name.offset = size * 16; } offset = block - (const void *)context->bdb; for (int i = 0; i < 16; i++) { ptrs->ptr[i].fp_timing.offset += offset; ptrs->ptr[i].dvo_timing.offset += offset; ptrs->ptr[i].panel_pnp_id.offset += offset; } if (ptrs->panel_name.offset) ptrs->panel_name.offset += offset; return ptrs_block; } static size_t block_min_size(const struct context *context, int section_id) { switch (section_id) { case BDB_GENERAL_FEATURES: return sizeof(struct bdb_general_features); case BDB_GENERAL_DEFINITIONS: return sizeof(struct bdb_general_definitions); case BDB_PSR: return sizeof(struct bdb_psr); case BDB_CHILD_DEVICE_TABLE: return sizeof(struct bdb_legacy_child_devices); case BDB_DRIVER_FEATURES: return sizeof(struct bdb_driver_features); case BDB_SDVO_LVDS_OPTIONS: return sizeof(struct bdb_sdvo_lvds_options); case BDB_SDVO_PANEL_DTDS: /* FIXME? */ return 0; case BDB_EDP: return sizeof(struct bdb_edp); case BDB_LVDS_OPTIONS: return sizeof(struct bdb_lvds_options); case BDB_LVDS_LFP_DATA_PTRS: return sizeof(struct bdb_lvds_lfp_data_ptrs); case BDB_LVDS_LFP_DATA: return lfp_data_min_size(context); case BDB_LVDS_BACKLIGHT: return sizeof(struct bdb_lfp_backlight_data); case BDB_LFP_POWER: return sizeof(struct bdb_lfp_power); case BDB_MIPI_CONFIG: return sizeof(struct bdb_mipi_config); case BDB_MIPI_SEQUENCE: return sizeof(struct bdb_mipi_sequence); case BDB_COMPRESSION_PARAMETERS: return sizeof(struct bdb_compression_parameters); case BDB_GENERIC_DTD: /* FIXME check spec */ return sizeof(struct bdb_generic_dtd); default: return 0; } } static bool validate_lfp_data_ptrs(const struct context *context, const struct bdb_lvds_lfp_data_ptrs *ptrs) { int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size; int data_block_size, lfp_data_size; const void *block; int i; block = find_raw_section(context, BDB_LVDS_LFP_DATA); if (!block) return false; data_block_size = get_blocksize(block); if (data_block_size == 0) return false; /* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */ if (ptrs->lvds_entries != 3) return false; fp_timing_size = ptrs->ptr[0].fp_timing.table_size; dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size; panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size; panel_name_size = ptrs->panel_name.table_size; /* fp_timing has variable size */ if (fp_timing_size < 32 || dvo_timing_size != sizeof(struct lvds_dvo_timing) || panel_pnp_id_size != sizeof(struct lvds_pnp_id)) return false; /* panel_name is not present in old VBTs */ if (panel_name_size != 0 && panel_name_size != sizeof(struct lvds_lfp_panel_name)) return false; lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset; if (16 * lfp_data_size > data_block_size) return false; /* make sure the table entries have uniform size */ for (i = 1; i < 16; i++) { if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size || ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size || ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size) return false; if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size || ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size || ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size) return false; } /* * Except for vlv/chv machines all real VBTs seem to have 6 * unaccounted bytes in the fp_timing table. And it doesn't * appear to be a really intentional hole as the fp_timing * 0xffff terminator is always within those 6 missing bytes. */ if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size) fp_timing_size += 6; if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size) return false; if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset || ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset || ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size) return false; /* make sure the tables fit inside the data block */ for (i = 0; i < 16; i++) { if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size || ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size || ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size) return false; } if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size) return false; /* make sure fp_timing terminators are present at expected locations */ for (i = 0; i < 16; i++) { const u16 *t = block + ptrs->ptr[i].fp_timing.offset + fp_timing_size - 2; if (*t != 0xffff) return false; } return true; } /* make the data table offsets relative to the data block */ static bool fixup_lfp_data_ptrs(const struct context *context, void *ptrs_block) { struct bdb_lvds_lfp_data_ptrs *ptrs = ptrs_block; u32 offset; int i; offset = raw_block_offset(context, BDB_LVDS_LFP_DATA); for (i = 0; i < 16; i++) { if (ptrs->ptr[i].fp_timing.offset < offset || ptrs->ptr[i].dvo_timing.offset < offset || ptrs->ptr[i].panel_pnp_id.offset < offset) return false; ptrs->ptr[i].fp_timing.offset -= offset; ptrs->ptr[i].dvo_timing.offset -= offset; ptrs->ptr[i].panel_pnp_id.offset -= offset; } if (ptrs->panel_name.table_size) { if (ptrs->panel_name.offset < offset) return false; ptrs->panel_name.offset -= offset; } return validate_lfp_data_ptrs(context, ptrs); } static struct bdb_block *find_section(const struct context *context, int section_id) { size_t min_size = block_min_size(context, section_id); struct bdb_block *block; void *temp_block = NULL; const void *data; size_t size; data = find_raw_section(context, section_id); if (!data && section_id == BDB_LVDS_LFP_DATA_PTRS) { fprintf(stderr, "Generating LVDS data table pointers\n"); temp_block = generate_lvds_data_ptrs(context); if (temp_block) data = temp_block + 3; } if (!data) return NULL; size = get_blocksize(data); /* * Version number and new block size are considered * part of the header for MIPI sequenece block v3+. */ if (section_id == BDB_MIPI_SEQUENCE && *(const u8*)data >= 3) size += 5; /* expect to have the full definition for each block with modern VBTs */ if (min_size && size > min_size && section_id != BDB_CHILD_DEVICE_TABLE && section_id != BDB_SDVO_LVDS_OPTIONS && section_id != BDB_GENERAL_DEFINITIONS && context->bdb->version >= 155) fprintf(stderr, "Block %d min size %zu less than block size %zu\n", section_id, min_size, size); block = calloc(1, sizeof(*block) + 3 + max(size, min_size)); if (!block) { free(temp_block); return NULL; } block->id = section_id; block->size = size; memcpy(block->data, data - 3, 3 + size); free(temp_block); if (section_id == BDB_LVDS_LFP_DATA_PTRS && !fixup_lfp_data_ptrs(context, 3 + block->data)) { fprintf(stderr, "VBT has malformed LFP data table pointers\n"); free(block); return NULL; } return block; } static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits) { return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1); } static bool panel_bool(unsigned int value, int panel_type) { return panel_bits(value, panel_type, 1); } static int decode_ssc_freq(struct context *context, bool alternate) { switch (intel_gen(context->devid)) { case 2: return alternate ? 66 : 48; case 3: case 4: return alternate ? 100 : 96; default: return alternate ? 100 : 120; } } static const char * const panel_fitting[] = { [0] = "disabled", [1] = "text only", [2] = "graphics only", [3] = "text & graphics", }; static void dump_general_features(struct context *context, const struct bdb_block *block) { const struct bdb_general_features *features = block_data(block); printf("\tPanel fitting: %s (0x%x)\n", panel_fitting[features->panel_fitting], features->panel_fitting); printf("\tFlexaim: %s\n", YESNO(features->flexaim)); printf("\tMessage: %s\n", YESNO(features->msg_enable)); printf("\tClear screen: %d\n", features->clear_screen); printf("\tDVO color flip required: %s\n", YESNO(features->color_flip)); printf("\tExternal VBT: %s\n", YESNO(features->download_ext_vbt)); printf("\tLVDS SSC Enable: %s\n", YESNO(features->enable_ssc)); printf("\tLVDS SSC frequency: %d MHz (0x%x)\n", decode_ssc_freq(context, features->ssc_freq), features->ssc_freq); printf("\tLFP on override: %s\n", YESNO(features->enable_lfp_on_override)); printf("\tDisable SSC on clone: %s\n", YESNO(features->disable_ssc_ddt)); printf("\tUnderscan support for VGA timings: %s\n", YESNO(features->underscan_vga_timings)); if (context->bdb->version >= 183) printf("\tDynamic CD clock: %s\n", YESNO(features->display_clock_mode)); printf("\tHotplug support in VBIOS: %s\n", YESNO(features->vbios_hotplug_support)); printf("\tDisable smooth vision: %s\n", YESNO(features->disable_smooth_vision)); printf("\tSingle DVI for CRT/DVI: %s\n", YESNO(features->single_dvi)); if (context->bdb->version >= 181) printf("\tEnable 180 degree rotation: %s\n", YESNO(features->rotate_180)); printf("\tInverted FDI Rx polarity: %s\n", YESNO(features->fdi_rx_polarity_inverted)); if (context->bdb->version >= 160) { printf("\tExtended VBIOS mode: %s\n", YESNO(features->vbios_extended_mode)); printf("\tCopy iLFP DTD to SDVO LVDS DTD: %s\n", YESNO(features->copy_ilfp_dtd_to_sdvo_lvds_dtd)); printf("\tBest fit panel timing algorithm: %s\n", YESNO(features->panel_best_fit_timing)); printf("\tIgnore strap state: %s\n", YESNO(features->ignore_strap_state)); } printf("\tLegacy monitor detect: %s\n", YESNO(features->legacy_monitor_detect)); printf("\tIntegrated CRT: %s\n", YESNO(features->int_crt_support)); printf("\tIntegrated TV: %s\n", YESNO(features->int_tv_support)); printf("\tIntegrated EFP: %s\n", YESNO(features->int_efp_support)); printf("\tDP SSC enable: %s\n", YESNO(features->dp_ssc_enable)); printf("\tDP SSC frequency: %d MHz (0x%x)\n", decode_ssc_freq(context, features->dp_ssc_freq), features->dp_ssc_freq); printf("\tDP SSC dongle supported: %s\n", YESNO(features->dp_ssc_dongle_supported)); } static const char *inverter_type(u8 type) { switch (type) { case 0: return "none/external"; case 1: return "I2C"; case 2: return "PWM"; default: return ""; } } static const char *i2c_speed(u8 i2c_speed) { switch (i2c_speed) { case 0: return "100 kHz"; case 1: return "50 kHz"; case 2: return "400 kHz"; case 3: return "1 MHz"; default: return ""; } } static void dump_backlight_info(struct context *context, const struct bdb_block *block) { const struct bdb_lfp_backlight_data *backlight = block_data(block); const struct lfp_backlight_data_entry *blc; const struct lfp_backlight_control_method *control; int i; if (sizeof(*blc) != backlight->entry_size) { printf("\tBacklight struct sizes don't match (expected %zu, got %u), skipping\n", sizeof(*blc), backlight->entry_size); return; } printf("\tEntry size: %u\n", backlight->entry_size); for (i = 0; i < ARRAY_SIZE(backlight->data); i++) { if (!dump_panel(context, i)) continue; printf("\tPanel %d%s\n", i, panel_str(context, i)); blc = &backlight->data[i]; printf("\t\tInverter type: %s (%u)\n", inverter_type(blc->type), blc->type); printf("\t\tActive low: %s\n", YESNO(blc->active_low_pwm)); printf("\t\tPWM freq: %u\n", blc->pwm_freq_hz); printf("\t\tMinimum brightness: %u\n", blc->min_brightness); if (blc->type == 1) { printf("\t\tI2C pin: 0x%02x\n", blc->i2c_pin); printf("\t\tI2C speed: %s (0x%02x)\n", i2c_speed(blc->i2c_speed), blc->i2c_speed); printf("\t\tI2C address: 0x%02x\n", blc->i2c_address); printf("\t\tI2C command: 0x%02x\n", blc->i2c_command); } if (context->bdb->version < 162) continue; printf("\t\tLevel: %u\n", backlight->level[i]); if (context->bdb->version < 191) continue; control = &backlight->backlight_control[i]; printf("\t\tControl type: %u\n", control->type); printf("\t\tController: %u\n", control->controller); if (context->bdb->version < 234) continue; printf("\t\tBrightness level: %u\n", backlight->brightness_level[i].level); printf("\t\tBrightness min level: %u\n", backlight->brightness_min_level[i].level); if (context->bdb->version < 236) continue; printf("\t\tBrigthness precision bits: %u\n", backlight->brightness_precision_bits[i]); if (context->bdb->version < 239) continue; printf("\t\tHDR DPCD refresh timeout: %.2f ms\n", backlight->hdr_dpcd_refresh_timeout[i] / 100.0); } } static const struct { unsigned short type; const char *name; } child_device_types[] = { { DEVICE_TYPE_NONE, "none" }, { DEVICE_TYPE_CRT, "CRT" }, { DEVICE_TYPE_TV, "TV" }, { DEVICE_TYPE_EFP, "EFP" }, { DEVICE_TYPE_LFP, "LFP" }, { DEVICE_TYPE_CRT_DPMS, "CRT" }, { DEVICE_TYPE_CRT_DPMS_HOTPLUG, "CRT" }, { DEVICE_TYPE_TV_COMPOSITE, "TV composite" }, { DEVICE_TYPE_TV_MACROVISION, "TV" }, { DEVICE_TYPE_TV_RF_COMPOSITE, "TV" }, { DEVICE_TYPE_TV_SVIDEO_COMPOSITE, "TV S-Video" }, { DEVICE_TYPE_TV_SCART, "TV SCART" }, { DEVICE_TYPE_TV_CODEC_HOTPLUG_PWR, "TV" }, { DEVICE_TYPE_EFP_HOTPLUG_PWR, "EFP" }, { DEVICE_TYPE_EFP_DVI_HOTPLUG_PWR, "DVI" }, { DEVICE_TYPE_EFP_DVI_I, "DVI-I" }, { DEVICE_TYPE_EFP_DVI_D_DUAL, "DL-DVI-D" }, { DEVICE_TYPE_EFP_DVI_D_HDCP, "DVI-D" }, { DEVICE_TYPE_OPENLDI_HOTPLUG_PWR, "OpenLDI" }, { DEVICE_TYPE_OPENLDI_DUALPIX, "OpenLDI" }, { DEVICE_TYPE_LFP_PANELLINK, "PanelLink" }, { DEVICE_TYPE_LFP_CMOS_PWR, "CMOS LFP" }, { DEVICE_TYPE_LFP_LVDS_PWR, "LVDS" }, { DEVICE_TYPE_LFP_LVDS_DUAL, "LVDS" }, { DEVICE_TYPE_LFP_LVDS_DUAL_HDCP, "LVDS" }, { DEVICE_TYPE_INT_LFP, "LFP" }, { DEVICE_TYPE_INT_TV, "TV" }, { DEVICE_TYPE_DP, "DisplayPort" }, { DEVICE_TYPE_DP_DUAL_MODE, "DisplayPort/HDMI/DVI" }, { DEVICE_TYPE_DP_DVI, "DisplayPort/DVI" }, { DEVICE_TYPE_HDMI, "HDMI/DVI" }, { DEVICE_TYPE_DVI, "DVI" }, { DEVICE_TYPE_eDP, "eDP" }, { DEVICE_TYPE_MIPI, "MIPI" }, }; static const int num_child_device_types = sizeof(child_device_types) / sizeof(child_device_types[0]); static const char *child_device_type(unsigned short type) { int i; for (i = 0; i < num_child_device_types; i++) if (child_device_types[i].type == type) return child_device_types[i].name; return "unknown"; } static const struct { unsigned short mask; const char *name; } child_device_type_bits[] = { { DEVICE_TYPE_CLASS_EXTENSION, "Class extension" }, { DEVICE_TYPE_POWER_MANAGEMENT, "Power management" }, { DEVICE_TYPE_HOTPLUG_SIGNALING, "Hotplug signaling" }, { DEVICE_TYPE_INTERNAL_CONNECTOR, "Internal connector" }, { DEVICE_TYPE_NOT_HDMI_OUTPUT, "HDMI output" }, /* decoded as inverse */ { DEVICE_TYPE_MIPI_OUTPUT, "MIPI output" }, { DEVICE_TYPE_COMPOSITE_OUTPUT, "Composite output" }, { DEVICE_TYPE_DUAL_CHANNEL, "Dual channel" }, { 1 << 7, "Content protection" }, { DEVICE_TYPE_HIGH_SPEED_LINK, "High speed link" }, { DEVICE_TYPE_LVDS_SIGNALING, "LVDS signaling" }, { DEVICE_TYPE_TMDS_DVI_SIGNALING, "TMDS/DVI signaling" }, { DEVICE_TYPE_VIDEO_SIGNALING, "Video signaling" }, { DEVICE_TYPE_DISPLAYPORT_OUTPUT, "DisplayPort output" }, { DEVICE_TYPE_DIGITAL_OUTPUT, "Digital output" }, { DEVICE_TYPE_ANALOG_OUTPUT, "Analog output" }, }; static void dump_child_device_type_bits(uint16_t type) { int i; type ^= DEVICE_TYPE_NOT_HDMI_OUTPUT; for (i = 0; i < ARRAY_SIZE(child_device_type_bits); i++) { if (child_device_type_bits[i].mask & type) printf("\t\t\t%s\n", child_device_type_bits[i].name); } } static const struct { unsigned char handle; const char *name; } child_device_handles[] = { { DEVICE_HANDLE_CRT, "CRT" }, { DEVICE_HANDLE_EFP1, "EFP 1 (HDMI/DVI/DP)" }, { DEVICE_HANDLE_EFP2, "EFP 2 (HDMI/DVI/DP)" }, { DEVICE_HANDLE_EFP3, "EFP 3 (HDMI/DVI/DP)" }, { DEVICE_HANDLE_EFP4, "EFP 4 (HDMI/DVI/DP)" }, { DEVICE_HANDLE_LFP1, "LFP 1 (eDP)" }, { DEVICE_HANDLE_LFP2, "LFP 2 (eDP)" }, }; static const int num_child_device_handles = sizeof(child_device_handles) / sizeof(child_device_handles[0]); static const char *child_device_handle(unsigned char handle) { int i; for (i = 0; i < num_child_device_handles; i++) if (child_device_handles[i].handle == handle) return child_device_handles[i].name; return "unknown"; } static const char *dvo_port_names[] = { [DVO_PORT_HDMIA] = "HDMI-A", [DVO_PORT_HDMIB] = "HDMI-B", [DVO_PORT_HDMIC] = "HDMI-C", [DVO_PORT_HDMID] = "HDMI-D", [DVO_PORT_HDMIE] = "HDMI-E", [DVO_PORT_HDMIF] = "HDMI-F", [DVO_PORT_HDMIG] = "HDMI-G", [DVO_PORT_HDMIH] = "HDMI-H", [DVO_PORT_HDMII] = "HDMI-I", [DVO_PORT_LVDS] = "LVDS", [DVO_PORT_TV] = "TV", [DVO_PORT_CRT] = "CRT", [DVO_PORT_DPB] = "DP-B", [DVO_PORT_DPC] = "DP-C", [DVO_PORT_DPD] = "DP-D", [DVO_PORT_DPA] = "DP-A", [DVO_PORT_DPE] = "DP-E", [DVO_PORT_DPF] = "DP-F", [DVO_PORT_DPG] = "DP-G", [DVO_PORT_DPH] = "DP-H", [DVO_PORT_DPI] = "DP-I", [DVO_PORT_MIPIA] = "MIPI-A", [DVO_PORT_MIPIB] = "MIPI-B", [DVO_PORT_MIPIC] = "MIPI-C", [DVO_PORT_MIPID] = "MIPI-D", }; static const char *dvo_port(uint8_t type) { if (type < ARRAY_SIZE(dvo_port_names) && dvo_port_names[type]) return dvo_port_names[type]; else return "unknown"; } static const char *aux_ch_names[] = { [0] = "none", [DP_AUX_A >> 4] = "AUX-A", [DP_AUX_B >> 4] = "AUX-B", [DP_AUX_C >> 4] = "AUX-C", [DP_AUX_D >> 4] = "AUX-D", [DP_AUX_E >> 4] = "AUX-E", [DP_AUX_F >> 4] = "AUX-F", [DP_AUX_G >> 4] = "AUX-G", [DP_AUX_H >> 4] = "AUX-H", [DP_AUX_I >> 4] = "AUX-I", }; static const char *aux_ch(uint8_t aux_ch) { aux_ch >>= 4; if (aux_ch < ARRAY_SIZE(aux_ch_names) && aux_ch_names[aux_ch]) return aux_ch_names[aux_ch]; else return "unknown"; } static const char *mipi_bridge_type(uint8_t type) { switch (type) { case 1: return "ASUS"; case 2: return "Toshiba"; case 3: return "Renesas"; default: return "unknown"; } } static void dump_hmdi_max_data_rate(uint8_t hdmi_max_data_rate) { static const uint16_t max_data_rate[] = { [HDMI_MAX_DATA_RATE_PLATFORM] = 0, [HDMI_MAX_DATA_RATE_297] = 297, [HDMI_MAX_DATA_RATE_165] = 165, [HDMI_MAX_DATA_RATE_594] = 594, [HDMI_MAX_DATA_RATE_340] = 340, [HDMI_MAX_DATA_RATE_300] = 300, }; if (hdmi_max_data_rate >= ARRAY_SIZE(max_data_rate)) printf("\t\tHDMI max data rate: (0x%02x)\n", hdmi_max_data_rate); else if (hdmi_max_data_rate == HDMI_MAX_DATA_RATE_PLATFORM) printf("\t\tHDMI max data rate: (0x%02x)\n", hdmi_max_data_rate); else printf("\t\tHDMI max data rate: %d MHz (0x%02x)\n", max_data_rate[hdmi_max_data_rate], hdmi_max_data_rate); } static int parse_dp_max_link_rate_216(uint8_t dp_max_link_rate) { static const uint16_t max_link_rate[] = { [BDB_216_VBT_DP_MAX_LINK_RATE_HBR3] = 810, [BDB_216_VBT_DP_MAX_LINK_RATE_HBR2] = 540, [BDB_216_VBT_DP_MAX_LINK_RATE_HBR] = 270, [BDB_216_VBT_DP_MAX_LINK_RATE_LBR] = 162, }; return max_link_rate[dp_max_link_rate & 0x3]; } static int parse_dp_max_link_rate_230(uint8_t dp_max_link_rate) { static const uint16_t max_link_rate[] = { [BDB_230_VBT_DP_MAX_LINK_RATE_DEF] = 0, [BDB_230_VBT_DP_MAX_LINK_RATE_LBR] = 162, [BDB_230_VBT_DP_MAX_LINK_RATE_HBR] = 270, [BDB_230_VBT_DP_MAX_LINK_RATE_HBR2] = 540, [BDB_230_VBT_DP_MAX_LINK_RATE_HBR3] = 810, [BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10] = 1000, [BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5] = 1350, [BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20] = 2000, }; return max_link_rate[dp_max_link_rate]; } static void dump_dp_max_link_rate(uint16_t version, uint8_t dp_max_link_rate) { int link_rate; if (version >= 230) link_rate = parse_dp_max_link_rate_230(dp_max_link_rate); else link_rate = parse_dp_max_link_rate_216(dp_max_link_rate); if (link_rate == 0) printf("\t\tDP max link rate: (0x%02x)\n", dp_max_link_rate); else printf("\t\tDP max link rate: %g Gbps (0x%02x)\n", link_rate / 100.0f, dp_max_link_rate); } static const char *dp_vswing(u8 vswing) { switch (vswing) { case 0: return "0.4V"; case 1: return "0.6V"; case 2: return "0.8V"; case 3: return "1.2V"; default: return ""; } } static const char *dp_preemph(u8 preemph) { switch (preemph) { case 0: return "0dB"; case 1: return "3.5dB"; case 2: return "6dB"; case 3: return "9.5dB"; default: return ""; } } static const char *hdmi_frl_rate(u8 frl_rate) { switch (frl_rate) { case 0: return "FRL not supported"; case 1: return "3 GT/s"; case 2: return "6 GT/s"; case 3: return "8 GT/s"; case 4: return "10 GT/s"; case 5: return "12 GT/s"; default: return ""; } } static void dump_child_device(struct context *context, const struct child_device_config *child) { if (!child->device_type) return; printf("\tChild device info:\n"); printf("\t\tDevice handle: 0x%04x (%s)\n", child->handle, child_device_handle(child->handle)); printf("\t\tDevice type: 0x%04x (%s)\n", child->device_type, child_device_type(child->device_type)); dump_child_device_type_bits(child->device_type); if (context->bdb->version < 152) { printf("\t\tSignature: %.*s\n", (int)sizeof(child->device_id), child->device_id); } else { printf("\t\tI2C speed: %s (0x%02x)\n", i2c_speed(child->i2c_speed), child->i2c_speed); if (context->bdb->version >= 158) { printf("\t\tDP onboard redriver:\n"); printf("\t\t\tpresent: %s\n", YESNO((child->dp_onboard_redriver_present))); printf("\t\t\tvswing: %s (0x%x)\n", dp_vswing(child->dp_onboard_redriver_vswing), child->dp_onboard_redriver_vswing); printf("\t\t\tpre-emphasis: %s (0x%x)\n", dp_preemph(child->dp_onboard_redriver_preemph), child->dp_onboard_redriver_preemph); printf("\t\tDP ondock redriver:\n"); printf("\t\t\tpresent: %s\n", YESNO((child->dp_ondock_redriver_present))); printf("\t\t\tvswing: %s (0x%x)\n", dp_vswing(child->dp_ondock_redriver_vswing), child->dp_ondock_redriver_vswing); printf("\t\t\tpre-emphasis: %s (0x%x)\n", dp_preemph(child->dp_ondock_redriver_preemph), child->dp_ondock_redriver_preemph); } if (context->bdb->version >= 204) dump_hmdi_max_data_rate(child->hdmi_max_data_rate); if (context->bdb->version >= 169) printf("\t\tHDMI level shifter value: 0x%02x\n", child->hdmi_level_shifter_value); if (context->bdb->version >= 161) printf("\t\tOffset to DTD buffer for edidless CHILD: 0x%02x\n", child->dtd_buf_ptr); if (context->bdb->version >= 251) printf("\t\tDisable compression for external DP/HDMI: %s\n", YESNO(child->disable_compression_for_ext_disp)); if (context->bdb->version >= 235) printf("\t\tLTTPR Mode: %stransparent\n", child->lttpr_non_transparent ? "non-" : ""); if (context->bdb->version >= 202) printf("\t\tDual pipe ganged eDP: %s\n", YESNO(child->ganged_edp)); if (context->bdb->version >= 198) { printf("\t\tCompression method CPS: %s\n", YESNO(child->compression_method_cps)); printf("\t\tCompression enable: %s\n", YESNO(child->compression_enable)); } if (context->bdb->version >= 161) printf("\t\tEdidless EFP: %s\n", YESNO(child->edidless_efp)); if (context->bdb->version >= 198) printf("\t\tCompression structure index: %d\n", child->compression_structure_index); if (context->bdb->version >= 237) { printf("\t\tHDMI Max FRL rate valid: %s\n", YESNO(child->hdmi_max_frl_rate_valid)); printf("\t\tHDMI Max FRL rate: %s (0x%x)\n", hdmi_frl_rate(child->hdmi_max_frl_rate), child->hdmi_max_frl_rate); } } printf("\t\tAIM offset: %d\n", child->addin_offset); printf("\t\tDVO Port: %s (0x%02x)\n", dvo_port(child->dvo_port), child->dvo_port); printf("\t\tAIM I2C pin: 0x%02x\n", child->i2c_pin); printf("\t\tAIM Slave address: 0x%02x\n", child->slave_addr); printf("\t\tDDC pin: 0x%02x\n", child->ddc_pin); printf("\t\tEDID buffer ptr: 0x%02x\n", child->edid_ptr); printf("\t\tDVO config: 0x%02x\n", child->dvo_cfg); if (context->bdb->version < 155) { printf("\t\tDVO2 Port: 0x%02x (%s)\n", child->dvo2_port, dvo_port(child->dvo2_port)); printf("\t\tI2C2 pin: 0x%02x\n", child->i2c2_pin); printf("\t\tSlave2 address: 0x%02x\n", child->slave2_addr); printf("\t\tDDC2 pin: 0x%02x\n", child->ddc2_pin); } else { if (context->bdb->version >= 244) printf("\t\teDP/DP max lane count: X%d\n", child->dp_max_lane_count + 1); if (context->bdb->version >= 218) printf("\t\tUse VBT vswing/premph table: %s\n", YESNO(child->use_vbt_vswing)); if (context->bdb->version >= 196) { printf("\t\tHPD sense invert: %s\n", YESNO(child->hpd_invert)); printf("\t\tIboost enable: %s\n", YESNO(child->iboost)); } if (context->bdb->version >= 192) printf("\t\tOnboard LSPCON: %s\n", YESNO(child->lspcon)); if (context->bdb->version >= 184) printf("\t\tLane reversal: %s\n", YESNO(child->lane_reversal)); if (context->bdb->version >= 158) printf("\t\tEFP routed through dock: %s\n", YESNO(child->efp_routed)); if (context->bdb->version >= 158) { printf("\t\tTMDS compatible? %s\n", YESNO(child->tmds_support)); printf("\t\tDP compatible? %s\n", YESNO(child->dp_support)); printf("\t\tHDMI compatible? %s\n", YESNO(child->hdmi_support)); } printf("\t\tAux channel: %s (0x%02x)\n", aux_ch(child->aux_channel), child->aux_channel); printf("\t\tDongle detect: 0x%02x\n", child->dongle_detect); } printf("\t\tIntegrated encoder instead of SDVO: %s\n", YESNO(child->integrated_encoder)); printf("\t\tHotplug connect status: 0x%02x\n", child->hpd_status); printf("\t\tSDVO stall signal available: %s\n", YESNO(child->sdvo_stall)); printf("\t\tPipe capabilities: 0x%02x\n", child->pipe_cap); printf("\t\tDVO wiring: 0x%02x\n", child->dvo_wiring); if (context->bdb->version < 171) { printf("\t\tDVO2 wiring: 0x%02x\n", child->dvo2_wiring); } else { printf("\t\tMIPI bridge type: %02x (%s)\n", child->mipi_bridge_type, mipi_bridge_type(child->mipi_bridge_type)); } printf("\t\tDevice class extension: 0x%02x\n", child->extended_type); printf("\t\tDVO function: 0x%02x\n", child->dvo_function); if (context->bdb->version >= 209) { printf("\t\tDP port trace length: 0x%x\n", child->dp_port_trace_length); printf("\t\tThunderbolt port: %s\n", YESNO(child->tbt)); } if (context->bdb->version >= 195) printf("\t\tDP USB type C support: %s\n", YESNO(child->dp_usb_type_c)); if (context->bdb->version >= 195) { printf("\t\t2X DP GPIO index: 0x%02x\n", child->dp_gpio_index); printf("\t\t2X DP GPIO pin number: 0x%02x\n", child->dp_gpio_pin_num); } if (context->bdb->version >= 196) { printf("\t\tIBoost level for DP/eDP: 0x%02x\n", child->dp_iboost_level); printf("\t\tIBoost level for HDMI: 0x%02x\n", child->hdmi_iboost_level); } if (context->bdb->version >= 216) dump_dp_max_link_rate(context->bdb->version, child->dp_max_link_rate); if (context->bdb->version >= 256) printf("\t\tEFP panel index: %d\n", child->efp_index); } static void dump_child_devices(struct context *context, const uint8_t *devices, uint8_t child_dev_num, uint8_t child_dev_size) { struct child_device_config *child; int i; /* * Use a temp buffer so dump_child_device() doesn't have to worry about * accessing the struct beyond child_dev_size. The tail, if any, remains * initialized to zero. */ child = calloc(1, sizeof(*child)); igt_assert(child); for (i = 0; i < child_dev_num; i++) { memcpy(child, devices + i * child_dev_size, min_t(child_dev_size, sizeof(*child), child_dev_size)); dump_child_device(context, child); } free(child); } static void dump_general_definitions(struct context *context, const struct bdb_block *block) { const struct bdb_general_definitions *defs = block_data(block); int child_dev_num; printf("\tCRT DDC GMBUS addr: 0x%02x\n", defs->crt_ddc_gmbus_pin); printf("\tUse DPMS on AIM devices: %s\n", YESNO(defs->dpms_aim)); printf("\tSkip CRT detect at boot: %s\n", YESNO(defs->skip_boot_crt_detect)); printf("\tUse Non ACPI DPMS CRT power states: %s\n", YESNO(defs->dpms_non_acpi)); printf("\tBoot display type: 0x%02x%02x\n", defs->boot_display[1], defs->boot_display[0]); printf("\tChild device size: %d\n", defs->child_dev_size); if (!defs->child_dev_size) return; child_dev_num = (block->size - sizeof(*defs)) / defs->child_dev_size; printf("\tChild device count: %d\n", child_dev_num); dump_child_devices(context, defs->devices, child_dev_num, defs->child_dev_size); } static void dump_legacy_child_devices(struct context *context, const struct bdb_block *block) { const struct bdb_legacy_child_devices *defs = block_data(block); int child_dev_num; printf("\tChild device size: %d\n", defs->child_dev_size); if (!defs->child_dev_size) return; child_dev_num = (block->size - sizeof(*defs)) / defs->child_dev_size; printf("\tChild device count: %d\n", child_dev_num); dump_child_devices(context, defs->devices, child_dev_num, defs->child_dev_size); } static const char * const channel_type[] = { [0] = "automatic", [1] = "single", [2] = "dual", [3] = "reserved", }; static const char * const dps_type[] = { [0] = "static DRRS", [1] = "D2PO", [2] = "seamless DRRS", [3] = "reserved", }; static const char * const blt_type[] = { [0] = "default", [1] = "CCFL", [2] = "LED", [3] = "reserved", }; static const char * const pos_type[] = { [0] = "inside shell", [1] = "outside shell", [2] = "reserved", [3] = "reserved", }; static void dump_lvds_options(struct context *context, const struct bdb_block *block) { const struct bdb_lvds_options *options = block_data(block); printf("\tPanel type: %d\n", options->panel_type); if (context->bdb->version >= 212) printf("\tPanel type 2: %d\n", options->panel_type2); printf("\tLVDS EDID available: %s\n", YESNO(options->lvds_edid)); printf("\tPixel dither: %s\n", YESNO(options->pixel_dither)); printf("\tPFIT auto ratio: %s\n", YESNO(options->pfit_ratio_auto)); printf("\tPFIT enhanced graphics mode: %s\n", YESNO(options->pfit_gfx_mode_enhanced)); printf("\tPFIT enhanced text mode: %s\n", YESNO(options->pfit_text_mode_enhanced)); printf("\tPFIT mode: %d\n", options->pfit_mode); if (block->size < 14) return; for (int i = 0; i < 16; i++) { unsigned int val; if (!dump_panel(context, i)) continue; printf("\tPanel %d%s\n", i, panel_str(context, i)); val = panel_bits(options->lvds_panel_channel_bits, i, 2); printf("\t\tChannel type: %s (0x%x)\n", channel_type[val], val); printf("\t\tSSC: %s\n", YESNO(panel_bool(options->ssc_bits, i))); val = panel_bool(options->ssc_freq, i); printf("\t\tSSC frequency: %d MHz (0x%x)\n", decode_ssc_freq(context, val), val); printf("\t\tDisable SSC in dual display twin: %s\n", YESNO(panel_bool(options->ssc_ddt, i))); if (block->size < 16) continue; val = panel_bool(options->panel_color_depth, i); printf("\t\tPanel color depth: %d (0x%x)\n", val ? 24 : 18, val); if (block->size < 24) continue; val = panel_bits(options->dps_panel_type_bits, i, 2); printf("\t\tDPS type: %s (0x%x)\n", dps_type[val], val); val = panel_bits(options->blt_control_type_bits, i, 2); printf("\t\tBacklight type: %s (0x%x)\n", blt_type[val], val); if (context->bdb->version < 200) continue; printf("\t\tLCDVCC on during S0 state: %s\n", YESNO(panel_bool(options->lcdvcc_s0_enable, i))); if (context->bdb->version < 228) continue; val = panel_bits((options->rotation), i, 2); printf("\t\tPanel rotation: %d degrees (0x%x)\n", val * 90, val); if (context->bdb->version < 240) continue; val = panel_bits((options->position), i, 2); printf("\t\tPanel position: %s (0x%x)\n", pos_type[val], val); } } static void dump_lvds_ptr_data(struct context *context, const struct bdb_block *block) { const struct bdb_lvds_lfp_data_ptrs *ptrs = block_data(block); printf("\tNumber of entries: %d\n", ptrs->lvds_entries); for (int i = 0; i < 16; i++) { if (!dump_panel(context, i)) continue; printf("\tPanel %d%s\n", i, panel_str(context, i)); if (ptrs->lvds_entries >= 1) { printf("\t\tFP timing offset: %d\n", ptrs->ptr[i].fp_timing.offset); printf("\t\tFP timing table size: %d\n", ptrs->ptr[i].fp_timing.table_size); } if (ptrs->lvds_entries >= 2) { printf("\t\tDVO timing offset: %d\n", ptrs->ptr[i].dvo_timing.offset); printf("\t\tDVO timing table size: %d\n", ptrs->ptr[i].dvo_timing.table_size); } if (ptrs->lvds_entries >= 3) { printf("\t\tPanel PnP ID offset: %d\n", ptrs->ptr[i].panel_pnp_id.offset); printf("\t\tPanel PnP ID table size: %d\n", ptrs->ptr[i].panel_pnp_id.table_size); } } if (ptrs->panel_name.table_size) { printf("\tPanel name offset: %d\n", ptrs->panel_name.offset); printf("\tPanel name table size: %d\n", ptrs->panel_name.table_size); } } static char *decode_pnp_id(u16 mfg_name, char str[4]) { mfg_name = ntohs(mfg_name); str[0] = '@' + ((mfg_name >> 10) & 0x1f); str[1] = '@' + ((mfg_name >> 5) & 0x1f); str[2] = '@' + ((mfg_name >> 0) & 0x1f); str[3] = '\0'; return str; } static void dump_lvds_data(struct context *context, const struct bdb_block *block) { struct bdb_block *ptrs_block; const struct bdb_lvds_lfp_data_ptrs *ptrs; int i; int hdisplay, hsyncstart, hsyncend, htotal; int vdisplay, vsyncstart, vsyncend, vtotal; float clock; ptrs_block = find_section(context, BDB_LVDS_LFP_DATA_PTRS); if (!ptrs_block) return; ptrs = block_data(ptrs_block); for (i = 0; i < 16; i++) { const struct lvds_fp_timing *fp_timing = block_data(block) + ptrs->ptr[i].fp_timing.offset; const uint8_t *timing_data = block_data(block) + ptrs->ptr[i].dvo_timing.offset; const struct lvds_pnp_id *pnp_id = block_data(block) + ptrs->ptr[i].panel_pnp_id.offset; const struct bdb_lvds_lfp_data_tail *tail = block_data(block) + ptrs->panel_name.offset; char mfg[4]; if (!dump_panel(context, i)) continue; hdisplay = _H_ACTIVE(timing_data); hsyncstart = hdisplay + _H_SYNC_OFF(timing_data); hsyncend = hsyncstart + _H_SYNC_WIDTH(timing_data); htotal = hdisplay + _H_BLANK(timing_data); vdisplay = _V_ACTIVE(timing_data); vsyncstart = vdisplay + _V_SYNC_OFF(timing_data); vsyncend = vsyncstart + _V_SYNC_WIDTH(timing_data); vtotal = vdisplay + _V_BLANK(timing_data); clock = _PIXEL_CLOCK(timing_data) / 1000; printf("\tPanel %d%s\n", i, panel_str(context, i)); printf("\t\t%dx%d clock %d\n", fp_timing->x_res, fp_timing->y_res, _PIXEL_CLOCK(timing_data)); printf("\t\tinfo:\n"); printf("\t\t LVDS: 0x%08lx\n", (unsigned long)fp_timing->lvds_reg_val); printf("\t\t PP_ON_DELAYS: 0x%08lx\n", (unsigned long)fp_timing->pp_on_reg_val); printf("\t\t PP_OFF_DELAYS: 0x%08lx\n", (unsigned long)fp_timing->pp_off_reg_val); printf("\t\t PP_DIVISOR: 0x%08lx\n", (unsigned long)fp_timing->pp_cycle_reg_val); printf("\t\t PFIT: 0x%08lx\n", (unsigned long)fp_timing->pfit_reg_val); printf("\t\ttimings: %d %d %d %d %d %d %d %d %.2f (%s)\n", hdisplay, hsyncstart, hsyncend, htotal, vdisplay, vsyncstart, vsyncend, vtotal, clock, (hsyncend > htotal || vsyncend > vtotal) ? "BAD!" : "good"); printf("\t\tPnP ID:\n"); printf("\t\t Mfg name: %s (0x%x)\n", decode_pnp_id(pnp_id->mfg_name, mfg), pnp_id->mfg_name); printf("\t\t Product code: %u\n", pnp_id->product_code); printf("\t\t Serial: %u\n", pnp_id->serial); printf("\t\t Mfg week: %d\n", pnp_id->mfg_week); printf("\t\t Mfg year: %d\n", 1990 + pnp_id->mfg_year); if (!ptrs->panel_name.table_size) continue; printf("\t\tPanel name: %.*s\n", (int)sizeof(tail->panel_name[0].name), tail->panel_name[i].name); if (context->bdb->version < 187) continue; printf("\t\tScaling enable: %s\n", YESNO(panel_bool(tail->scaling_enable, i))); if (context->bdb->version < 188) continue; printf("\t\tSeamless DRRS min refresh rate: %d\n", tail->seamless_drrs_min_refresh_rate[i]); if (context->bdb->version < 208) continue; printf("\t\tPixel overlap count: %d\n", tail->pixel_overlap_count[i]); if (context->bdb->version < 227) continue; printf("\t\tBlack border:\n"); printf("\t\t Top: %d\n", tail->black_border[i].top); printf("\t\t Bottom: %d\n", tail->black_border[i].top); printf("\t\t Left: %d\n", tail->black_border[i].left); printf("\t\t Right: %d\n", tail->black_border[i].right); if (context->bdb->version < 231) continue; printf("\t\tDual LFP port sync enable: %s\n", YESNO(panel_bool(tail->dual_lfp_port_sync_enable, i))); if (context->bdb->version < 245) continue; printf("\t\tGPU dithering for banding artifacts: %s\n", YESNO(panel_bool(tail->gpu_dithering_for_banding_artifacts, i))); } free(ptrs_block); } static const char * const lvds_config[] = { [BDB_DRIVER_NO_LVDS] = "No LVDS", [BDB_DRIVER_INT_LVDS] = "Integrated LVDS", [BDB_DRIVER_SDVO_LVDS] = "SDVO LVDS", [BDB_DRIVER_EDP] = "Embedded DisplayPort", }; static const char *default_algorithm(bool algorithm) { return algorithm ? "driver default" : "OS default"; } static void dump_driver_feature(struct context *context, const struct bdb_block *block) { const struct bdb_driver_features *feature = block_data(block); printf("\tUse 00000110h ID for Primary LFP: %s\n", YESNO(feature->primary_lfp_id)); printf("\tEnable Sprite in Clone Mode: %s\n", YESNO(feature->sprite_in_clone)); printf("\tDriver INT 15h hook: %s\n", YESNO(feature->int15h_hook)); printf("\tDual View Zoom: %s\n", YESNO(feature->dual_view_zoom)); printf("\tHot Plug DVO: %s\n", YESNO(feature->hotplug_dvo)); printf("\tAllow display switching when in Full Screen DOS: %s\n", YESNO(feature->allow_display_switch_dos)); printf("\tAllow display switching when DVD active: %s\n", YESNO(feature->allow_display_switch_dvd)); printf("\tBoot Device Algorithm: %s\n", default_algorithm(feature->boot_dev_algorithm)); printf("\tBoot Mode X: %u\n", feature->boot_mode_x); printf("\tBoot Mode Y: %u\n", feature->boot_mode_y); printf("\tBoot Mode Bpp: %u\n", feature->boot_mode_bpp); printf("\tBoot Mode Refresh: %u\n", feature->boot_mode_refresh); printf("\tEnable LFP as primary: %s\n", YESNO(feature->enable_lfp_primary)); printf("\tSelective Mode Pruning: %s\n", YESNO(feature->selective_mode_pruning)); printf("\tDual-Frequency Graphics Technology: %s\n", YESNO(feature->dual_frequency)); printf("\tDefault Render Clock Frequency: %s\n", feature->render_clock_freq ? "low" : "high"); printf("\tNT 4.0 Dual Display Clone Support: %s\n", YESNO(feature->nt_clone_support)); printf("\tDefault Power Scheme user interface: %s\n", feature->power_scheme_ui ? "3rd party" : "CUI"); printf("\tSprite Display Assignment when Overlay is Active in Clone Mode: %s\n", feature->sprite_display_assign ? "primary" : "secondary"); printf("\tDisplay Maintain Aspect Scaling via CUI: %s\n", YESNO(feature->cui_aspect_scaling)); printf("\tPreserve Aspect Ratio: %s\n", YESNO(feature->preserve_aspect_ratio)); printf("\tEnable SDVO device power down: %s\n", YESNO(feature->sdvo_device_power_down)); printf("\tCRT hotplug: %s\n", YESNO(feature->crt_hotplug)); printf("\tLVDS config: %s (0x%x)\n", lvds_config[feature->lvds_config], feature->lvds_config); printf("\tTV hotplug: %s\n", YESNO(feature->tv_hotplug)); printf("\tDisplay subsystem enable: %s\n", YESNO(feature->display_subsystem_enable)); printf("\tEmbedded platform: %s\n", YESNO(feature->embedded_platform)); printf("\tDefine Display statically: %s\n", YESNO(feature->static_display)); printf("\tLegacy CRT max X: %d\n", feature->legacy_crt_max_x); printf("\tLegacy CRT max Y: %d\n", feature->legacy_crt_max_y); printf("\tLegacy CRT max refresh: %d\n", feature->legacy_crt_max_refresh); printf("\tInternal source termination for HDMI: %s\n", YESNO(feature->hdmi_termination)); printf("\tCEA 861-D HDMI support: %s\n", YESNO(feature->cea861d_hdmi_support)); printf("\tSelf refresh enable: %s\n", YESNO(feature->self_refresh_enable)); printf("\tCustom VBT number: 0x%x\n", feature->custom_vbt_version); printf("\tPC Features field validity: %s\n", YESNO(feature->pc_feature_valid)); printf("\t\tHpd Wake: %s\n", YESNO(feature->hpd_wake)); printf("\t\tAssertive Display Technology (ADT): %s\n", YESNO(feature->adt_enabled)); printf("\tDynamic Media Refresh Rate Switching (DMRRS): %s\n", YESNO(feature->dmrrs_enabled)); printf("\tDynamic Frames Per Second (DFPS): %s\n", YESNO(feature->dfps_enabled)); printf("\tIntermediate Pixel Storage (IPS): %s\n", YESNO(feature->ips_enabled)); printf("\tPanel Self Refresh (PSR): %s\n", YESNO(feature->psr_enabled)); printf("\tTurbo Boost Technology: %s\n", YESNO(feature->tbt_enabled)); printf("\tGraphics Power Management (GPMT): %s\n", YESNO(feature->gpmt_enabled)); printf("\tGraphics Render Standby (RS): %s\n", YESNO(feature->grs_enabled)); printf("\tDynamic Refresh Rate Switching (DRRS): %s\n", YESNO(feature->drrs_enabled)); printf("\tAutomatic Display Brightness (ADB): %s\n", YESNO(feature->adb_enabled)); printf("\tDxgkDDI Backlight Control (DxgkDdiBLC): %s\n", YESNO(feature->bltclt_enabled)); printf("\tDisplay Power Saving Technology (DPST): %s\n", YESNO(feature->dpst_enabled)); printf("\tSmart 2D Display Technology (S2DDT): %s\n", YESNO(feature->s2ddt_enabled)); printf("\tRapid Memory Power Management (RMPM): %s\n", YESNO(feature->rmpm_enabled)); } static void dump_edp(struct context *context, const struct bdb_block *block) { const struct bdb_edp *edp = block_data(block); int bpp, msa; int i; for (i = 0; i < 16; i++) { if (!dump_panel(context, i)) continue; printf("\tPanel %d%s\n", i, panel_str(context, i)); printf("\t\tPower Sequence: T3 %d T7 %d T9 %d T10 %d T12 %d\n", edp->power_seqs[i].t3, edp->power_seqs[i].t7, edp->power_seqs[i].t9, edp->power_seqs[i].t10, edp->power_seqs[i].t12); bpp = panel_bits(edp->color_depth, i, 2); printf("\t\tPanel color depth: "); switch (bpp) { case EDP_18BPP: printf("18 bpp\n"); break; case EDP_24BPP: printf("24 bpp\n"); break; case EDP_30BPP: printf("30 bpp\n"); break; default: printf("(unknown value %d)\n", bpp); break; } msa = panel_bits(edp->sdrrs_msa_timing_delay, i, 2); printf("\t\teDP sDRRS MSA Delay: Lane %d\n", msa + 1); printf("\t\tFast link params:\n"); printf("\t\t\trate: "); switch (edp->fast_link_params[i].rate) { case EDP_RATE_1_62: printf("1.62Gbps\n"); break; case EDP_RATE_2_7: printf("2.7Gbpc\n"); break; case EDP_RATE_5_4: printf("5.4Gbps\n"); break; default: printf("(unknonn value %d)\n", edp->fast_link_params[i].rate); break; } printf("\t\t\tlanes: X%d", edp->fast_link_params[i].lanes + 1); printf("\t\t\tpre-emphasis: %s (0x%x)\n", dp_preemph(edp->fast_link_params[i].preemphasis), edp->fast_link_params[i].preemphasis); printf("\t\t\tvswing: %s (0x%x)\n", dp_vswing(edp->fast_link_params[i].vswing), edp->fast_link_params[i].vswing); if (context->bdb->version >= 162) printf("\t\tStereo 3D feature: %s\n", YESNO(panel_bool(edp->edp_s3d_feature, i))); if (context->bdb->version >= 165) printf("\t\tT3 optimization: %s\n", YESNO(panel_bool(edp->edp_t3_optimization, i))); if (context->bdb->version >= 173) { int val = (edp->edp_vswing_preemph >> (i * 4)) & 0xf; printf("\t\tVswing/preemphasis table selection: "); switch (val) { case 0: printf("Low power (200 mV)\n"); break; case 1: printf("Default (400 mV)\n"); break; default: printf("(unknown value %d)\n", val); break; } } if (context->bdb->version >= 182) printf("\t\tFast link training: %s\n", YESNO(panel_bool(edp->fast_link_training, i))); if (context->bdb->version >= 185) printf("\t\tDPCD 600h write required: %s\n", YESNO(panel_bool(edp->dpcd_600h_write_required, i))); if (context->bdb->version >= 186) printf("\t\tPWM delays:\n" "\t\t\tPWM on to backlight enable: %d\n" "\t\t\tBacklight disable to PWM off: %d\n", edp->pwm_delays[i].pwm_on_to_backlight_enable, edp->pwm_delays[i].backlight_disable_to_pwm_off); if (context->bdb->version >= 199) { printf("\t\tFull link params provided: %s\n", YESNO(panel_bool(edp->full_link_params_provided, i))); printf("\t\tFull link params:\n"); printf("\t\t\tpre-emphasis: %s (0x%x)\n", dp_preemph(edp->full_link_params[i].preemphasis), edp->full_link_params[i].preemphasis); printf("\t\t\tvswing: %s (0x%x)\n", dp_vswing(edp->full_link_params[i].vswing), edp->full_link_params[i].vswing); } if (context->bdb->version >= 224) { u16 rate = edp->edp_fast_link_training_rate[i]; printf("\t\teDP fast link training data rate: %g Gbps (0x%02x)\n", rate / 5000.0f, rate); } if (context->bdb->version >= 244) { u16 rate = edp->edp_max_port_link_rate[i]; printf("\t\teDP max port link rate: %g Gbps (0x%02x)\n", rate / 5000.0f, rate); } } } static void dump_psr(struct context *context, const struct bdb_block *block) { const struct bdb_psr *psr_block = block_data(block); int i; uint32_t psr2_tp_time; /* The same block ID was used for something else before? */ if (context->bdb->version < 165) return; psr2_tp_time = psr_block->psr2_tp2_tp3_wakeup_time; for (i = 0; i < 16; i++) { const struct psr_table *psr = &psr_block->psr_table[i]; if (!dump_panel(context, i)) continue; printf("\tPanel %d%s\n", i, panel_str(context, i)); printf("\t\tFull link: %s\n", YESNO(psr->full_link)); printf("\t\tRequire AUX to wakeup: %s\n", YESNO(psr->require_aux_to_wakeup)); switch (psr->lines_to_wait) { case 0: case 1: printf("\t\tLines to wait before link standby: %d\n", psr->lines_to_wait); break; case 2: case 3: printf("\t\tLines to wait before link standby: %d\n", 1 << psr->lines_to_wait); break; default: printf("\t\tLines to wait before link standby: (unknown) (0x%x)\n", psr->lines_to_wait); break; } printf("\t\tIdle frames to for PSR enable: %d\n", psr->idle_frames); printf("\t\tTP1 wakeup time: %d usec (0x%x)\n", psr->tp1_wakeup_time * 100, psr->tp1_wakeup_time); printf("\t\tTP2/TP3 wakeup time: %d usec (0x%x)\n", psr->tp2_tp3_wakeup_time * 100, psr->tp2_tp3_wakeup_time); if (context->bdb->version >= 226) { int index; static const uint16_t psr2_tp_times[] = {500, 100, 2500, 5}; index = panel_bits(psr2_tp_time, i, 2); printf("\t\tPSR2 TP2/TP3 wakeup time: %d usec (0x%x)\n", psr2_tp_times[index], index); } } } static void dump_lfp_power(struct context *context, const struct bdb_block *block) { const struct bdb_lfp_power *lfp_block = block_data(block); int i; printf("\tALS enable: %s\n", YESNO(lfp_block->features.als_enable)); printf("\tDisplay LACE support: %s\n", YESNO(lfp_block->features.lace_support)); printf("\tDefault Display LACE enabled status: %s\n", YESNO(lfp_block->features.lace_enabled_status)); printf("\tPower conservation preference level: %d\n", lfp_block->features.power_conservation_pref); printf("\tDPST support: %s\n", YESNO(lfp_block->features.dpst_support)); for (i = 0; i < 5; i++) { printf("\tALS backlight adjust: %d\n", lfp_block->als[i].backlight_adjust); printf("\tALS Lux: %d\n", lfp_block->als[i].lux); } if (context->bdb->version < 210) return; printf("\tDisplay LACE aggressiveness profile: %d\n", lfp_block->lace_aggressiveness_profile); if (context->bdb->version < 228) return; for (i = 0; i < 16; i++) { if (!dump_panel(context, i)) continue; printf("\tPanel %d%s\n", i, panel_str(context, i)); printf("\t\tDisplay Power Saving Technology (DPST): %s\n", YESNO(panel_bool(lfp_block->dpst, i))); printf("\t\tPanel Self Refresh (PSR): %s\n", YESNO(panel_bool(lfp_block->psr, i))); printf("\t\tDynamic Refresh Rate Switching (DRRS): %s\n", YESNO(panel_bool(lfp_block->drrs, i))); printf("\t\tDisplay LACE support: %s\n", YESNO(panel_bool(lfp_block->lace_support, i))); printf("\t\tAssertive Display Technology (ADT): %s\n", YESNO(panel_bool(lfp_block->adt, i))); printf("\t\tDynamic Media Refresh Rate Switching (DMRRS): %s\n", YESNO(panel_bool(lfp_block->dmrrs, i))); printf("\t\tAutomatic Display Brightness (ADB): %s\n", YESNO(panel_bool(lfp_block->adb, i))); printf("\t\tDefault Display LACE enabled: %s\n", YESNO(panel_bool(lfp_block->lace_enabled_status, i))); printf("\t\tLACE Aggressiveness: %d\n", lfp_block->aggressiveness[i].lace_aggressiveness); printf("\t\tDPST Aggressiveness: %d\n", lfp_block->aggressiveness[i].dpst_aggressiveness); if (context->bdb->version < 232) continue; printf("\t\tEDP 4k/2k HOBL feature: %s\n", YESNO(panel_bool(lfp_block->hobl, i))); if (context->bdb->version < 233) continue; printf("\t\tVariable Refresh Rate (VRR): %s\n", YESNO(panel_bool(lfp_block->vrr_feature_enabled, i))); if (context->bdb->version < 247) continue; printf("\t\tELP: %s\n", YESNO(panel_bool(lfp_block->elp, i))); printf("\t\tOPST: %s\n", YESNO(panel_bool(lfp_block->opst, i))); printf("\t\tELP Aggressiveness: %d\n", lfp_block->aggressiveness2[i].elp_aggressiveness); printf("\t\tOPST Aggrgessiveness: %d\n", lfp_block->aggressiveness2[i].opst_aggressiveness); } } static void print_detail_timing_data(const struct lvds_dvo_timing *dvo_timing) { int display, sync_start, sync_end, total; display = (dvo_timing->hactive_hi << 8) | dvo_timing->hactive_lo; sync_start = display + ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo); sync_end = sync_start + ((dvo_timing->hsync_pulse_width_hi << 8) | dvo_timing->hsync_pulse_width_lo); total = display + ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo); printf("\thdisplay: %d\n", display); printf("\thsync [%d, %d] %s\n", sync_start, sync_end, dvo_timing->hsync_positive ? "+sync" : "-sync"); printf("\thtotal: %d\n", total); display = (dvo_timing->vactive_hi << 8) | dvo_timing->vactive_lo; sync_start = display + ((dvo_timing->vsync_off_hi << 8) | dvo_timing->vsync_off_lo); sync_end = sync_start + ((dvo_timing->vsync_pulse_width_hi << 8) | dvo_timing->vsync_pulse_width_lo); total = display + ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo); printf("\tvdisplay: %d\n", display); printf("\tvsync [%d, %d] %s\n", sync_start, sync_end, dvo_timing->vsync_positive ? "+sync" : "-sync"); printf("\tvtotal: %d\n", total); printf("\tclock: %d\n", dvo_timing->clock * 10); } static void dump_sdvo_panel_dtds(struct context *context, const struct bdb_block *block) { const struct lvds_dvo_timing *dvo_timing = block_data(block); int n, count; count = block->size / sizeof(struct lvds_dvo_timing); for (n = 0; n < count; n++) { printf("%d:\n", n); print_detail_timing_data(dvo_timing++); } } static void dump_sdvo_lvds_options(struct context *context, const struct bdb_block *block) { const struct bdb_sdvo_lvds_options *options = block_data(block); printf("\tbacklight: %d\n", options->panel_backlight); printf("\th40 type: %d\n", options->h40_set_panel_type); printf("\ttype: %d\n", options->panel_type); printf("\tssc_clk_freq: %d\n", options->ssc_clk_freq); printf("\tals_low_trip: %d\n", options->als_low_trip); printf("\tals_high_trip: %d\n", options->als_high_trip); /* u8 sclalarcoeff_tab_row_num; u8 sclalarcoeff_tab_row_size; u8 coefficient[8]; */ printf("\tmisc[0]: %x\n", options->panel_misc_bits_1); printf("\tmisc[1]: %x\n", options->panel_misc_bits_2); printf("\tmisc[2]: %x\n", options->panel_misc_bits_3); printf("\tmisc[3]: %x\n", options->panel_misc_bits_4); } static void dump_mipi_config(struct context *context, const struct bdb_block *block) { const struct bdb_mipi_config *start = block_data(block); for (int i = 0; i < ARRAY_SIZE(start->config); i++) { const struct mipi_config *config = &start->config[context->panel_type]; const struct mipi_pps_data *pps = &start->pps[context->panel_type]; const struct edp_pwm_delays *pwm_delays = &start->pwm_delays[context->panel_type]; if (!dump_panel(context, i)) continue; printf("\tPanel %d%s\n", i, panel_str(context, i)); printf("\t\tGeneral Param\n"); printf("\t\t\t BTA disable: %s\n", config->bta ? "Disabled" : "Enabled"); printf("\t\t\t Panel Rotation: %d degrees\n", config->rotation * 90); printf("\t\t\t Video Mode Color Format: "); if (config->videomode_color_format == 0) printf("Not supported\n"); else if (config->videomode_color_format == 1) printf("RGB565\n"); else if (config->videomode_color_format == 2) printf("RGB666\n"); else if (config->videomode_color_format == 3) printf("RGB666 Loosely Packed\n"); else if (config->videomode_color_format == 4) printf("RGB888\n"); printf("\t\t\t PPS GPIO Pins: %s \n", config->pwm_blc ? "Using SOC" : "Using PMIC"); printf("\t\t\t CABC Support: %s\n", config->cabc ? "supported" : "not supported"); printf("\t\t\t Mode: %s\n", config->cmd_mode ? "COMMAND" : "VIDEO"); printf("\t\t\t Video transfer mode: %s (0x%x)\n", config->vtm == 1 ? "non-burst with sync pulse" : config->vtm == 2 ? "non-burst with sync events" : config->vtm == 3 ? "burst" : "", config->vtm); printf("\t\t\t Dithering: %s\n", config->dithering ? "done in Display Controller" : "done in Panel Controller"); printf("\t\tPort Desc\n"); printf("\t\t\t Pixel overlap: %d\n", config->pixel_overlap); printf("\t\t\t Lane Count: %d\n", config->lane_cnt + 1); printf("\t\t\t Dual Link Support: "); if (config->dual_link == 0) printf("not supported\n"); else if (config->dual_link == 1) printf("Front Back mode\n"); else printf("Pixel Alternative Mode\n"); printf("\t\tDphy Flags\n"); printf("\t\t\t Clock Stop: %s\n", config->clk_stop ? "ENABLED" : "DISABLED"); printf("\t\t\t EOT disabled: %s\n\n", config->eot_disabled ? "EOT not to be sent" : "EOT to be sent"); printf("\t\tHSTxTimeOut: 0x%x\n", config->hs_tx_timeout); printf("\t\tLPRXTimeOut: 0x%x\n", config->lp_rx_timeout); printf("\t\tTurnAroundTimeOut: 0x%x\n", config->turn_around_timeout); printf("\t\tDeviceResetTimer: 0x%x\n", config->device_reset_timer); printf("\t\tMasterinitTimer: 0x%x\n", config->master_init_timer); printf("\t\tDBIBandwidthTimer: 0x%x\n", config->dbi_bw_timer); printf("\t\tLpByteClkValue: 0x%x\n\n", config->lp_byte_clk_val); printf("\t\tDphy Params\n"); printf("\t\t\tExit to zero Count: 0x%x\n", config->exit_zero_cnt); printf("\t\t\tTrail Count: 0x%X\n", config->trail_cnt); printf("\t\t\tClk zero count: 0x%x\n", config->clk_zero_cnt); printf("\t\t\tPrepare count:0x%x\n\n", config->prepare_cnt); printf("\t\tClockLaneSwitchingCount: 0x%x\n", config->clk_lane_switch_cnt); printf("\t\tHighToLowSwitchingCount: 0x%x\n\n", config->hl_switch_cnt); printf("\t\tTimings based on Dphy spec\n"); printf("\t\t\tTClkMiss: 0x%x\n", config->tclk_miss); printf("\t\t\tTClkPost: 0x%x\n", config->tclk_post); printf("\t\t\tTClkPre: 0x%x\n", config->tclk_pre); printf("\t\t\tTClkPrepare: 0x%x\n", config->tclk_prepare); printf("\t\t\tTClkSettle: 0x%x\n", config->tclk_settle); printf("\t\t\tTClkTermEnable: 0x%x\n\n", config->tclk_term_enable); printf("\t\tTClkTrail: 0x%x\n", config->tclk_trail); printf("\t\tTClkPrepareTClkZero: 0x%x\n", config->tclk_prepare_clkzero); printf("\t\tTHSExit: 0x%x\n", config->ths_exit); printf("\t\tTHsPrepare: 0x%x\n", config->ths_prepare); printf("\t\tTHsPrepareTHsZero: 0x%x\n", config->ths_prepare_hszero); printf("\t\tTHSSettle: 0x%x\n", config->ths_settle); printf("\t\tTHSSkip: 0x%x\n", config->ths_skip); printf("\t\tTHsTrail: 0x%x\n", config->ths_trail); printf("\t\tTInit: 0x%x\n", config->tinit); printf("\t\tTLPX: 0x%x\n", config->tlpx); printf("\t\tMIPI PPS\n"); printf("\t\t\tPanel power ON delay: %d\n", pps->panel_on_delay); printf("\t\t\tPanel power on to Backlight enable delay: %d\n", pps->bl_enable_delay); printf("\t\t\tBacklight disable to Panel power OFF delay: %d\n", pps->bl_disable_delay); printf("\t\t\tPanel power OFF delay: %d\n", pps->panel_off_delay); printf("\t\t\tPanel power cycle delay: %d\n", pps->panel_power_cycle_delay); if (context->bdb->version >= 186) printf("\t\tMIPI PWM delays:\n" "\t\t\tPWM on to backlight enable: %d\n" "\t\t\tBacklight disable to PWM off: %d\n", pwm_delays->pwm_on_to_backlight_enable, pwm_delays->backlight_disable_to_pwm_off); if (context->bdb->version >= 190) printf("\t\tMIPI PMIC I2C Bus Number: %d\n", start->pmic_i2c_bus_number[i]); } } static const uint8_t *mipi_dump_send_packet(const uint8_t *data, uint8_t seq_version) { uint8_t flags, type; uint16_t len, i; flags = *data++; type = *data++; len = *((const uint16_t *) data); data += 2; printf("\t\t\tSend DCS: Port %s, VC %d, %s, Type %02x, Length %u, Data", (flags >> 3) & 1 ? "C" : "A", (flags >> 1) & 3, flags & 1 ? "HS" : "LP", type, len); for (i = 0; i < len; i++) printf(" %02x", *data++); printf("\n"); return data; } static const uint8_t *mipi_dump_delay(const uint8_t *data, uint8_t seq_version) { printf("\t\t\tDelay: %u us\n", *((const uint32_t *)data)); return data + 4; } static const uint8_t *mipi_dump_gpio(const uint8_t *data, uint8_t seq_version) { uint8_t index, number, flags; if (seq_version >= 3) { index = *data++; number = *data++; flags = *data++; if (seq_version >= 4) printf("\t\t\tGPIO index %u, number %u, native %d, set %d (0x%02x)\n", index, number, !(flags & 2), flags & 1, flags); else printf("\t\t\tGPIO index %u, number %u, set %d (0x%02x)\n", index, number, flags & 1, flags); } else { index = *data++; flags = *data++; printf("\t\t\tGPIO index %u, source %d, set %d (0x%02x)\n", index, (flags >> 1) & 3, flags & 1, flags); } return data; } static const uint8_t *mipi_dump_i2c(const uint8_t *data, uint8_t seq_version) { uint8_t flags, index, bus, offset, len, i; uint16_t address; flags = *data++; index = *data++; bus = *data++; address = *((const uint16_t *) data); data += 2; offset = *data++; len = *data++; printf("\t\t\tSend I2C: Flags %02x, Index %02x, Bus %02x, Address %04x, Offset %02x, Length %u, Data", flags, index, bus, address, offset, len); for (i = 0; i < len; i++) printf(" %02x", *data++); printf("\n"); return data; } typedef const uint8_t * (*fn_mipi_elem_dump)(const uint8_t *data, uint8_t seq_version); static const fn_mipi_elem_dump dump_elem[] = { [MIPI_SEQ_ELEM_SEND_PKT] = mipi_dump_send_packet, [MIPI_SEQ_ELEM_DELAY] = mipi_dump_delay, [MIPI_SEQ_ELEM_GPIO] = mipi_dump_gpio, [MIPI_SEQ_ELEM_I2C] = mipi_dump_i2c, }; static const char * const seq_name[] = { [MIPI_SEQ_ASSERT_RESET] = "MIPI_SEQ_ASSERT_RESET", [MIPI_SEQ_INIT_OTP] = "MIPI_SEQ_INIT_OTP", [MIPI_SEQ_DISPLAY_ON] = "MIPI_SEQ_DISPLAY_ON", [MIPI_SEQ_DISPLAY_OFF] = "MIPI_SEQ_DISPLAY_OFF", [MIPI_SEQ_DEASSERT_RESET] = "MIPI_SEQ_DEASSERT_RESET", [MIPI_SEQ_BACKLIGHT_ON] = "MIPI_SEQ_BACKLIGHT_ON", [MIPI_SEQ_BACKLIGHT_OFF] = "MIPI_SEQ_BACKLIGHT_OFF", [MIPI_SEQ_TEAR_ON] = "MIPI_SEQ_TEAR_ON", [MIPI_SEQ_TEAR_OFF] = "MIPI_SEQ_TEAR_OFF", [MIPI_SEQ_POWER_ON] = "MIPI_SEQ_POWER_ON", [MIPI_SEQ_POWER_OFF] = "MIPI_SEQ_POWER_OFF", }; static const char *sequence_name(enum mipi_seq seq_id) { if (seq_id < ARRAY_SIZE(seq_name) && seq_name[seq_id]) return seq_name[seq_id]; else return "(unknown)"; } static const uint8_t *dump_sequence(const uint8_t *data, uint8_t seq_version) { fn_mipi_elem_dump mipi_elem_dump; printf("\t\tSequence %u - %s\n", *data, sequence_name(*data)); /* Skip Sequence Byte. */ data++; /* Skip Size of Sequence. */ if (seq_version >= 3) data += 4; while (1) { uint8_t operation_byte = *data++; uint8_t operation_size = 0; if (operation_byte == MIPI_SEQ_ELEM_END) break; if (operation_byte < ARRAY_SIZE(dump_elem)) mipi_elem_dump = dump_elem[operation_byte]; else mipi_elem_dump = NULL; /* Size of Operation. */ if (seq_version >= 3) operation_size = *data++; if (mipi_elem_dump) { const uint8_t *next = data + operation_size; data = mipi_elem_dump(data, seq_version); if (operation_size && next != data) printf("Error: Inconsistent operation size: %d\n", operation_size); } else if (operation_size) { /* We have size, skip. */ data += operation_size; } else { /* No size, can't skip without parsing. */ printf("Error: Unsupported MIPI element %u\n", operation_byte); return NULL; } } return data; } /* Find the sequence block and size for the given panel. */ static const uint8_t * find_panel_sequence_block(const struct bdb_mipi_sequence *sequence, uint16_t panel_id, uint32_t total, uint32_t *seq_size) { const uint8_t *data = &sequence->data[0]; uint8_t current_id; uint32_t current_size; int header_size = sequence->version >= 3 ? 5 : 3; int index = 0; int i; /* skip new block size */ if (sequence->version >= 3) data += 4; for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) { if (index + header_size > total) { fprintf(stderr, "Invalid sequence block (header)\n"); return NULL; } current_id = *(data + index); if (sequence->version >= 3) current_size = *((const uint32_t *)(data + index + 1)); else current_size = *((const uint16_t *)(data + index + 1)); index += header_size; if (index + current_size > total) { fprintf(stderr, "Invalid sequence block\n"); return NULL; } if (current_id == panel_id) { *seq_size = current_size; return data + index; } index += current_size; } fprintf(stderr, "Sequence block detected but no valid configuration\n"); return NULL; } static int goto_next_sequence(const uint8_t *data, int index, int total) { uint16_t len; /* Skip Sequence Byte. */ for (index = index + 1; index < total; index += len) { uint8_t operation_byte = *(data + index); index++; switch (operation_byte) { case MIPI_SEQ_ELEM_END: return index; case MIPI_SEQ_ELEM_SEND_PKT: if (index + 4 > total) return 0; len = *((const uint16_t *)(data + index + 2)) + 4; break; case MIPI_SEQ_ELEM_DELAY: len = 4; break; case MIPI_SEQ_ELEM_GPIO: len = 2; break; case MIPI_SEQ_ELEM_I2C: if (index + 7 > total) return 0; len = *(data + index + 6) + 7; break; default: fprintf(stderr, "Unknown operation byte\n"); return 0; } } return 0; } static int goto_next_sequence_v3(const uint8_t *data, int index, int total) { int seq_end; uint16_t len; uint32_t size_of_sequence; /* * Could skip sequence based on Size of Sequence alone, but also do some * checking on the structure. */ if (total < 5) { fprintf(stderr, "Too small sequence size\n"); return 0; } /* Skip Sequence Byte. */ index++; /* * Size of Sequence. Excludes the Sequence Byte and the size itself, * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END * byte. */ size_of_sequence = *((const uint32_t *)(data + index)); index += 4; seq_end = index + size_of_sequence; if (seq_end > total) { fprintf(stderr, "Invalid sequence size\n"); return 0; } for (; index < total; index += len) { uint8_t operation_byte = *(data + index); index++; if (operation_byte == MIPI_SEQ_ELEM_END) { if (index != seq_end) { fprintf(stderr, "Invalid element structure\n"); return 0; } return index; } len = *(data + index); index++; /* * FIXME: Would be nice to check elements like for v1/v2 in * goto_next_sequence() above. */ switch (operation_byte) { case MIPI_SEQ_ELEM_SEND_PKT: case MIPI_SEQ_ELEM_DELAY: case MIPI_SEQ_ELEM_GPIO: case MIPI_SEQ_ELEM_I2C: case MIPI_SEQ_ELEM_SPI: case MIPI_SEQ_ELEM_PMIC: break; default: fprintf(stderr, "Unknown operation byte %u\n", operation_byte); break; } } return 0; } static void dump_mipi_sequence(struct context *context, const struct bdb_block *block) { const struct bdb_mipi_sequence *sequence = block_data(block); /* Check if we have sequence block as well */ if (!sequence) { printf("No MIPI Sequence found\n"); return; } printf("\tSequence block version v%u\n", sequence->version); /* Fail gracefully for forward incompatible sequence block. */ if (sequence->version >= 4) { fprintf(stderr, "Unable to parse MIPI Sequence Block v%u\n", sequence->version); return; } for (int i = 0; i < MAX_MIPI_CONFIGURATIONS; i++) { const uint8_t *sequence_ptrs[MIPI_SEQ_MAX] = {}; const uint8_t *data; uint32_t seq_size; int index = 0; if (!dump_panel(context, i)) continue; data = find_panel_sequence_block(sequence, i, block->size, &seq_size); if (!data) return; printf("\tPanel %d%s\n", i, panel_str(context, i)); /* Parse the sequences. Corresponds to VBT parsing in the kernel. */ for (;;) { uint8_t seq_id = *(data + index); if (seq_id == MIPI_SEQ_END) break; if (seq_id >= MIPI_SEQ_MAX) { fprintf(stderr, "Unknown sequence %u\n", seq_id); return; } sequence_ptrs[seq_id] = data + index; if (sequence->version >= 3) index = goto_next_sequence_v3(data, index, seq_size); else index = goto_next_sequence(data, index, seq_size); if (!index) { fprintf(stderr, "Invalid sequence %u\n", seq_id); return; } dump_sequence(sequence_ptrs[seq_id], sequence->version); } } } #define KB(x) ((x) * 1024) static int dsc_buffer_block_size(u8 buffer_block_size) { switch (buffer_block_size) { case VBT_RC_BUFFER_BLOCK_SIZE_1KB: return KB(1); break; case VBT_RC_BUFFER_BLOCK_SIZE_4KB: return KB(4); break; case VBT_RC_BUFFER_BLOCK_SIZE_16KB: return KB(16); break; case VBT_RC_BUFFER_BLOCK_SIZE_64KB: return KB(64); break; default: return 0; } } static int actual_buffer_size(u8 buffer_block_size, u8 rc_buffer_size) { return dsc_buffer_block_size(buffer_block_size) * (rc_buffer_size + 1); } static const char *dsc_max_bpp(u8 value) { switch (value) { case 0: return "6"; case 1: return "8"; case 2: return "10"; case 3: return "12"; default: return ""; } } static void dump_compression_parameters(struct context *context, const struct bdb_block *block) { const struct bdb_compression_parameters *dsc = block_data(block); const struct dsc_compression_parameters_entry *data; int i; for (i = 0; i < ARRAY_SIZE(dsc->data); i++) { /* FIXME: need to handle sizeof(*data) != dsc->entry_size */ data = &dsc->data[i]; if (!dump_panel(context, i)) continue; printf("\tDSC block %d%s\n", i, panel_str(context, i)); printf("\t\tDSC version: %u.%u\n", data->version_major, data->version_minor); printf("\t\tActual buffer size: %d\n", actual_buffer_size(data->rc_buffer_block_size, data->rc_buffer_size)); printf("\t\t\tRC buffer block size: %d (%u)\n", dsc_buffer_block_size(data->rc_buffer_block_size), data->rc_buffer_block_size); printf("\t\t\tRC buffer size: %u\n", data->rc_buffer_size); printf("\t\tSlices per line: 0x%02x\n", data->slices_per_line); printf("\t\tLine buffer depth: %u bits (%u)\n", data->line_buffer_depth + 8, data->line_buffer_depth); printf("\t\tBlock prediction enable: %u\n", data->block_prediction_enable); printf("\t\tMax bpp: %s bpp (%u)\n", dsc_max_bpp(data->max_bpp), data->max_bpp); printf("\t\tSupport 8 bpc: %u\n", data->support_8bpc); printf("\t\tSupport 10 bpc: %u\n", data->support_10bpc); printf("\t\tSupport 12 bpc: %u\n", data->support_12bpc); printf("\t\tSlice height: %u\n", data->slice_height); } } static int get_panel_type_pnpid(const struct context *context, const char *edid_file) { struct bdb_block *ptrs_block, *data_block; const struct bdb_lvds_lfp_data *data; const struct bdb_lvds_lfp_data_ptrs *ptrs; struct lvds_pnp_id edid_id, edid_id_nodate; const struct edid *edid; int fd, best = -1; fd = open(edid_file, O_RDONLY); if (fd < 0) { fprintf(stderr, "Unable to open EDID file %s\n", edid_file); return -1; } edid = mmap(NULL, sizeof(*edid), PROT_READ, MAP_SHARED, fd, 0); close(fd); if (edid == MAP_FAILED) { fprintf(stderr, "Unable to read EDID file %s\n", edid_file); return -1; } edid_id = edid->pnpid; munmap((void*)edid, sizeof(*edid)); edid_id_nodate = edid_id; edid_id_nodate.mfg_week = 0; edid_id_nodate.mfg_year = 0; ptrs_block = find_section(context, BDB_LVDS_LFP_DATA_PTRS); if (!ptrs_block) return -1; data_block = find_section(context, BDB_LVDS_LFP_DATA); if (!data_block) return -1; ptrs = block_data(ptrs_block); data = block_data(data_block); for (int i = 0; i < 16; i++) { const struct lvds_pnp_id *vbt_id = (const void*)data + ptrs->ptr[i].panel_pnp_id.offset; /* full match? */ if (!memcmp(vbt_id, &edid_id, sizeof(*vbt_id))) return i; /* * Accept a match w/o date if no full match is found, * and the VBT entry does not specify a date. */ if (best < 0 && !memcmp(vbt_id, &edid_id_nodate, sizeof(*vbt_id))) best = i; } return best; } /* get panel type from lvds options block, or -1 if block not found */ static int get_panel_type(struct context *context, bool is_panel_type2) { struct bdb_block *block; const struct bdb_lvds_options *options; int panel_type = -1; block = find_section(context, BDB_LVDS_OPTIONS); if (!block) return -1; options = block_data(block); if (!is_panel_type2) panel_type = options->panel_type; else if (context->bdb->version >= 212) panel_type = options->panel_type2; free(block); return panel_type; } static int get_device_id(unsigned char *bios, int size) { int device; int offset = (bios[0x19] << 8) + bios[0x18]; if (offset + 7 >= size) return -1; if (bios[offset] != 'P' || bios[offset+1] != 'C' || bios[offset+2] != 'I' || bios[offset+3] != 'R') return -1; device = (bios[offset+7] << 8) + bios[offset+6]; return device; } struct dumper { uint8_t id; const char *name; void (*dump)(struct context *context, const struct bdb_block *block); }; struct dumper dumpers[] = { { .id = BDB_GENERAL_FEATURES, .name = "General features block", .dump = dump_general_features, }, { .id = BDB_GENERAL_DEFINITIONS, .name = "General definitions block", .dump = dump_general_definitions, }, { .id = BDB_CHILD_DEVICE_TABLE, .name = "Legacy child devices block", .dump = dump_legacy_child_devices, }, { .id = BDB_LVDS_OPTIONS, .name = "LVDS options block", .dump = dump_lvds_options, }, { .id = BDB_LVDS_LFP_DATA_PTRS, .name = "LVDS timing pointer data", .dump = dump_lvds_ptr_data, }, { .id = BDB_LVDS_LFP_DATA, .name = "LVDS panel data block", .dump = dump_lvds_data, }, { .id = BDB_LVDS_BACKLIGHT, .name = "Backlight info block", .dump = dump_backlight_info, }, { .id = BDB_LFP_POWER, .name = "LFP power conservation features block", .dump = dump_lfp_power, }, { .id = BDB_SDVO_LVDS_OPTIONS, .name = "SDVO LVDS options block", .dump = dump_sdvo_lvds_options, }, { .id = BDB_SDVO_PANEL_DTDS, .name = "SDVO panel dtds", .dump = dump_sdvo_panel_dtds, }, { .id = BDB_DRIVER_FEATURES, .name = "Driver feature data block", .dump = dump_driver_feature, }, { .id = BDB_EDP, .name = "eDP block", .dump = dump_edp, }, { .id = BDB_PSR, .name = "PSR block", .dump = dump_psr, }, { .id = BDB_MIPI_CONFIG, .name = "MIPI configuration block", .dump = dump_mipi_config, }, { .id = BDB_MIPI_SEQUENCE, .name = "MIPI sequence block", .dump = dump_mipi_sequence, }, { .id = BDB_COMPRESSION_PARAMETERS, .name = "Compression parameters block", .dump = dump_compression_parameters, }, }; static void hex_dump(const void *data, uint32_t size) { int i; const uint8_t *p = data; for (i = 0; i < size; i++) { if (i % 16 == 0) printf("\t%04x: ", i); printf("%02x", p[i]); if (i % 16 == 15) { if (i + 1 < size) printf("\n"); } else if (i % 8 == 7) { printf(" "); } else { printf(" "); } } printf("\n\n"); } static void hex_dump_block(const struct bdb_block *block) { hex_dump(block->data, 3 + block->size); } static bool dump_section(struct context *context, int section_id) { struct dumper *dumper = NULL; struct bdb_block *block; int i; block = find_section(context, section_id); if (!block) return false; for (i = 0; i < ARRAY_SIZE(dumpers); i++) { if (block->id == dumpers[i].id) { dumper = &dumpers[i]; break; } } printf("BDB block %d (%d bytes, min %zu bytes) - %s%s:\n", block->id, block->size, block_min_size(context, block->id), dumper ? dumper->name : "Unknown", dumper && !dumper->dump ? ", no decoding available" : ""); if (context->hexdump) hex_dump_block(block); if (dumper && dumper->dump) dumper->dump(context, block); printf("\n"); free(block); return true; } /* print a description of the VBT of the form - */ static void print_description(struct context *context) { const struct vbt_header *vbt = context->vbt; const struct bdb_header *bdb = context->bdb; char *desc = strndup((char *)vbt->signature, sizeof(vbt->signature)); char *p; for (p = desc + strlen(desc) - 1; p >= desc && isspace(*p); p--) *p = '\0'; for (p = desc; *p; p++) { if (!isalnum(*p)) *p = '-'; else *p = tolower(*p); } p = desc; if (strncmp(p, "-vbt-", 5) == 0) p += 5; printf("%d-%s\n", bdb->version, p); free (desc); } static void dump_headers(struct context *context) { const struct vbt_header *vbt = context->vbt; const struct bdb_header *bdb = context->bdb; int i, j = 0; printf("VBT header:\n"); if (context->hexdump) hex_dump(vbt, vbt->header_size); printf("\tVBT signature:\t\t\"%.*s\"\n", (int)sizeof(vbt->signature), vbt->signature); printf("\tVBT version:\t\t0x%04x (%d.%d)\n", vbt->version, vbt->version / 100, vbt->version % 100); printf("\tVBT header size:\t0x%04x (%u)\n", vbt->header_size, vbt->header_size); printf("\tVBT size:\t\t0x%04x (%u)\n", vbt->vbt_size, vbt->vbt_size); printf("\tVBT checksum:\t\t0x%02x\n", vbt->vbt_checksum); printf("\tBDB offset:\t\t0x%08x (%u)\n", vbt->bdb_offset, vbt->bdb_offset); for (i = 0; i < ARRAY_SIZE(vbt->aim_offset); i++) printf("\tAIM #%d offset:\t\t0x%08x (%u)\n", i+1, vbt->aim_offset[i], vbt->aim_offset[i]); printf("\n"); printf("BDB header:\n"); if (context->hexdump) hex_dump(bdb, bdb->header_size); printf("\tBDB signature:\t\t\"%.*s\"\n", (int)sizeof(bdb->signature), bdb->signature); printf("\tBDB version:\t\t%d\n", bdb->version); printf("\tBDB header size:\t0x%04x (%u)\n", bdb->header_size, bdb->header_size); printf("\tBDB size:\t\t0x%04x (%u)\n", bdb->bdb_size, bdb->bdb_size); printf("\n"); printf("BDB blocks present:"); for (i = 0; i < 256; i++) { struct bdb_block *block; block = find_section(context, i); if (!block) continue; if (j++ % 16) printf(" %3d", i); else printf("\n\t%3d", i); free(block); } printf("\n\n"); } enum opt { OPT_UNKNOWN = '?', OPT_END = -1, OPT_FILE, OPT_DEVID, OPT_PANEL_TYPE, OPT_PANEL_TYPE2, OPT_PANEL_EDID, OPT_PANEL_EDID2, OPT_ALL_PANELS, OPT_HEXDUMP, OPT_BLOCK, OPT_USAGE, OPT_HEADER, OPT_DESCRIBE, }; static void usage(const char *toolname) { fprintf(stderr, "usage: %s", toolname); fprintf(stderr, " --file=" " [--devid=]" " [--panel-type=]" " [--panel-type2=]" " [--panel-edid=]" " [--panel-edid2=]" " [--all-panels]" " [--hexdump]" " [--block=]" " [--header]" " [--describe]" " [--help]\n"); } int main(int argc, char **argv) { uint8_t *VBIOS; int index; enum opt opt; int fd; struct vbt_header *vbt = NULL; int vbt_off, bdb_off, i; const char *filename = NULL; const char *toolname = argv[0]; struct stat finfo; int size; struct context context = { .panel_type = -1, .panel_type2 = -1, }; const char *panel_edid = NULL, *panel_edid2 = NULL; char *endp; int block_number = -1; bool header_only = false, describe = false; static struct option options[] = { { "file", required_argument, NULL, OPT_FILE }, { "devid", required_argument, NULL, OPT_DEVID }, { "panel-type", required_argument, NULL, OPT_PANEL_TYPE }, { "panel-edid", required_argument, NULL, OPT_PANEL_EDID }, { "panel-type2", required_argument, NULL, OPT_PANEL_TYPE2 }, { "panel-edid2", required_argument, NULL, OPT_PANEL_EDID2 }, { "all-panels", no_argument, NULL, OPT_ALL_PANELS }, { "hexdump", no_argument, NULL, OPT_HEXDUMP }, { "block", required_argument, NULL, OPT_BLOCK }, { "header", no_argument, NULL, OPT_HEADER }, { "describe", no_argument, NULL, OPT_DESCRIBE }, { "help", no_argument, NULL, OPT_USAGE }, { 0 } }; for (opt = 0; opt != OPT_END; ) { opt = getopt_long(argc, argv, "", options, &index); switch (opt) { case OPT_FILE: filename = optarg; break; case OPT_DEVID: context.devid = strtoul(optarg, &endp, 16); if (!context.devid || *endp) { fprintf(stderr, "invalid devid '%s'\n", optarg); return EXIT_FAILURE; } break; case OPT_PANEL_TYPE: context.panel_type = strtoul(optarg, &endp, 0); if (*endp || context.panel_type > 15) { fprintf(stderr, "invalid panel type '%s'\n", optarg); return EXIT_FAILURE; } break; case OPT_PANEL_TYPE2: context.panel_type2 = strtoul(optarg, &endp, 0); if (*endp || context.panel_type2 > 15) { fprintf(stderr, "invalid panel type2 '%s'\n", optarg); return EXIT_FAILURE; } break; case OPT_PANEL_EDID: panel_edid = optarg; break; case OPT_PANEL_EDID2: panel_edid2 = optarg; break; case OPT_ALL_PANELS: context.dump_all_panel_types = true; break; case OPT_HEXDUMP: context.hexdump = true; break; case OPT_BLOCK: block_number = strtoul(optarg, &endp, 0); if (*endp) { fprintf(stderr, "invalid block number '%s'\n", optarg); return EXIT_FAILURE; } break; case OPT_HEADER: header_only = true; break; case OPT_DESCRIBE: describe = true; break; case OPT_END: break; case OPT_USAGE: /* fall-through */ case OPT_UNKNOWN: usage(toolname); return EXIT_FAILURE; } } argc -= optind; argv += optind; if (!filename) { if (argc == 1) { /* for backwards compatibility */ filename = argv[0]; } else { usage(toolname); return EXIT_FAILURE; } } fd = open(filename, O_RDONLY); if (fd == -1) { fprintf(stderr, "Couldn't open \"%s\": %s\n", filename, strerror(errno)); return EXIT_FAILURE; } if (stat(filename, &finfo)) { fprintf(stderr, "Failed to stat \"%s\": %s\n", filename, strerror(errno)); return EXIT_FAILURE; } size = finfo.st_size; if (size == 0) { int len = 0, ret; size = 8192; VBIOS = malloc (size); while ((ret = read(fd, VBIOS + len, size - len))) { if (ret < 0) { fprintf(stderr, "Failed to read \"%s\": %s\n", filename, strerror(errno)); return EXIT_FAILURE; } len += ret; if (len == size) { size *= 2; VBIOS = realloc(VBIOS, size); } } } else { VBIOS = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, 0); if (VBIOS == MAP_FAILED) { fprintf(stderr, "Failed to map \"%s\": %s\n", filename, strerror(errno)); return EXIT_FAILURE; } } /* Scour memory looking for the VBT signature */ for (i = 0; i + 4 < size; i++) { if (!memcmp(VBIOS + i, "$VBT", 4)) { vbt_off = i; vbt = (struct vbt_header *)(VBIOS + i); break; } } if (!vbt) { fprintf(stderr, "VBT signature missing\n"); return EXIT_FAILURE; } bdb_off = vbt_off + vbt->bdb_offset; if (bdb_off >= size - sizeof(struct bdb_header)) { fprintf(stderr, "Invalid VBT found, BDB points beyond end of data block\n"); return EXIT_FAILURE; } context.vbt = vbt; context.bdb = (const struct bdb_header *)(VBIOS + bdb_off); context.size = size; if (!context.devid) { const char *devid_string = getenv("DEVICE"); if (devid_string) context.devid = strtoul(devid_string, NULL, 16); } if (!context.devid) context.devid = get_device_id(VBIOS, size); if (!context.devid) fprintf(stderr, "Warning: could not find PCI device ID!\n"); if (context.panel_type == -1) context.panel_type = get_panel_type(&context, false); if (context.panel_type == 255 && !panel_edid) { fprintf(stderr, "Warning: panel type depends on EDID (use --panel-edid), ignoring\n"); context.panel_type = -1; } else if (context.panel_type == 255) { context.panel_type = get_panel_type_pnpid(&context, panel_edid); } if (context.panel_type == -1) { fprintf(stderr, "Warning: panel type not set, using 0\n"); context.panel_type = 0; } if (context.panel_type2 == -1) context.panel_type2 = get_panel_type(&context, true); if (context.panel_type2 == 255 && !panel_edid2) { fprintf(stderr, "Warning: panel type2 depends on EDID (use --panel-edid2), ignoring\n"); context.panel_type2 = -1; } else if (context.panel_type2 == 255) { context.panel_type2 = get_panel_type_pnpid(&context, panel_edid2); } if (context.panel_type2 != -1 && context.bdb->version < 212) { fprintf(stderr, "Warning: panel type2 not valid for BDB version %d\n", context.bdb->version); context.panel_type2 = -1; } if (describe) { print_description(&context); } else if (header_only) { dump_headers(&context); } else if (block_number != -1) { /* dump specific section only */ if (!dump_section(&context, block_number)) { fprintf(stderr, "Block %d not found\n", block_number); return EXIT_FAILURE; } } else { dump_headers(&context); /* dump all sections */ for (i = 0; i < 256; i++) dump_section(&context, i); } return 0; }