/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Tiago Vignatti */ /** @file prime_mmap_coherency.c * * TODO: need to show the need for prime_sync_end(). */ #include "igt.h" IGT_TEST_DESCRIPTION("Test dma-buf mmap on !llc platforms mostly and provoke" " coherency bugs so we know for sure where we need the sync ioctls."); int fd; static drm_intel_bufmgr *bufmgr; struct intel_batchbuffer *batch; static int width = 1024, height = 1024; /* * Exercises the need for read flush: * 1. create a BO and write '0's, in GTT domain. * 2. read BO using the dma-buf CPU mmap. * 3. write '1's, in GTT domain. * 4. read again through the mapped dma-buf. */ static int test_read_flush(void) { drm_intel_bo *bo_1; drm_intel_bo *bo_2; uint32_t *ptr_cpu; uint32_t *ptr_gtt; int dma_buf_fd, i; int stale = 0; bo_1 = drm_intel_bo_alloc(bufmgr, "BO 1", width * height * 4, 4096); /* STEP #1: put the BO 1 in GTT domain. We use the blitter to copy and fill * zeros to BO 1, so commands will be submitted and likely to place BO 1 in * the GTT domain. */ bo_2 = drm_intel_bo_alloc(bufmgr, "BO 2", width * height * 4, 4096); intel_copy_bo(batch, bo_1, bo_2, width * height); drm_intel_bo_unreference(bo_2); /* STEP #2: read BO 1 using the dma-buf CPU mmap. This dirties the CPU caches. */ dma_buf_fd = prime_handle_to_fd_for_mmap(fd, bo_1->handle); /* STEP #3: write 0x11 into BO 1. */ bo_2 = drm_intel_bo_alloc(bufmgr, "BO 2", width * height * 4, 4096); ptr_gtt = gem_mmap__gtt(fd, bo_2->handle, width * height, PROT_READ | PROT_WRITE); gem_set_domain(fd, bo_2->handle, I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT); memset(ptr_gtt, 0xc5, width * height); munmap(ptr_gtt, width * height); ptr_cpu = mmap(NULL, width * height, PROT_READ, MAP_SHARED, dma_buf_fd, 0); igt_assert(ptr_cpu != MAP_FAILED); prime_sync_start(dma_buf_fd, false); for (i = 0; i < (width * height) / 4; i++) igt_assert_eq(ptr_cpu[i], 0); prime_sync_end(dma_buf_fd, false); intel_copy_bo(batch, bo_1, bo_2, width * height); drm_intel_bo_unreference(bo_2); /* STEP #4: read again using the CPU mmap. Doing #1 before #3 makes sure we * don't do a full CPU cache flush in step #3 again. That makes sure all the * stale cachelines from step #2 survive (mostly, a few will be evicted) * until we try to read them again in step #4. This behavior could be fixed * by flush CPU read right before accessing the CPU pointer */ prime_sync_start(dma_buf_fd, false); for (i = 0; i < (width * height) / 4; i++) if (ptr_cpu[i] != 0xc5c5c5c5) stale++; prime_sync_end(dma_buf_fd, false); drm_intel_bo_unreference(bo_1); munmap(ptr_cpu, width * height); close(dma_buf_fd); return stale; } /* * Exercises the need for write flush: * 1. create BO 1 and write '0's, in GTT domain. * 2. write '1's into BO 1 using the dma-buf CPU mmap. * 3. copy BO 1 to new BO 2, in GTT domain. * 4. read via dma-buf mmap BO 2. */ static int test_write_flush(void) { drm_intel_bo *bo_1; drm_intel_bo *bo_2; uint32_t *ptr_cpu; uint32_t *ptr2_cpu; int dma_buf_fd, dma_buf2_fd, i; int stale = 0; bo_1 = drm_intel_bo_alloc(bufmgr, "BO 1", width * height * 4, 4096); /* STEP #1: Put the BO 1 in GTT domain. We use the blitter to copy and fill * zeros to BO 1, so commands will be submitted and likely to place BO 1 in * the GTT domain. */ bo_2 = drm_intel_bo_alloc(bufmgr, "BO 2", width * height * 4, 4096); intel_copy_bo(batch, bo_1, bo_2, width * height); drm_intel_bo_unreference(bo_2); /* STEP #2: Write '1's into BO 1 using the dma-buf CPU mmap. */ dma_buf_fd = prime_handle_to_fd_for_mmap(fd, bo_1->handle); igt_skip_on(errno == EINVAL); ptr_cpu = mmap(NULL, width * height, PROT_READ | PROT_WRITE, MAP_SHARED, dma_buf_fd, 0); igt_assert(ptr_cpu != MAP_FAILED); /* This is the main point of this test: !llc hw requires a cache write * flush right here (explained in step #4). */ prime_sync_start(dma_buf_fd, true); memset(ptr_cpu, 0x11, width * height); prime_sync_end(dma_buf_fd, true); /* STEP #3: Copy BO 1 into BO 2, using blitter. */ bo_2 = drm_intel_bo_alloc(bufmgr, "BO 2", width * height * 4, 4096); intel_copy_bo(batch, bo_2, bo_1, width * height); /* STEP #4: compare BO 2 against written BO 1. In !llc hardware, there * should be some cache lines that didn't get flushed out and are still 0, * requiring cache flush before the write in step 2. */ dma_buf2_fd = prime_handle_to_fd_for_mmap(fd, bo_2->handle); igt_skip_on(errno == EINVAL); ptr2_cpu = mmap(NULL, width * height, PROT_READ | PROT_WRITE, MAP_SHARED, dma_buf2_fd, 0); igt_assert(ptr2_cpu != MAP_FAILED); prime_sync_start(dma_buf2_fd, false); for (i = 0; i < (width * height) / 4; i++) if (ptr2_cpu[i] != 0x11111111) stale++; prime_sync_end(dma_buf2_fd, false); drm_intel_bo_unreference(bo_1); drm_intel_bo_unreference(bo_2); munmap(ptr_cpu, width * height); close(dma_buf2_fd); close(dma_buf_fd); return stale; } static void blit_and_cmp(void) { drm_intel_bo *bo_1; drm_intel_bo *bo_2; uint32_t *ptr_cpu; uint32_t *ptr2_cpu; int dma_buf_fd, dma_buf2_fd, i; int local_fd; drm_intel_bufmgr *local_bufmgr; struct intel_batchbuffer *local_batch; /* recreate process local variables */ local_fd = drm_open_driver(DRIVER_INTEL); local_bufmgr = drm_intel_bufmgr_gem_init(local_fd, 4096); igt_assert(local_bufmgr); local_batch = intel_batchbuffer_alloc(local_bufmgr, intel_get_drm_devid(local_fd)); igt_assert(local_batch); bo_1 = drm_intel_bo_alloc(local_bufmgr, "BO 1", width * height * 4, 4096); dma_buf_fd = prime_handle_to_fd_for_mmap(local_fd, bo_1->handle); igt_skip_on(errno == EINVAL); ptr_cpu = mmap(NULL, width * height, PROT_READ | PROT_WRITE, MAP_SHARED, dma_buf_fd, 0); igt_assert(ptr_cpu != MAP_FAILED); bo_2 = drm_intel_bo_alloc(local_bufmgr, "BO 2", width * height * 4, 4096); dma_buf2_fd = prime_handle_to_fd_for_mmap(local_fd, bo_2->handle); ptr2_cpu = mmap(NULL, width * height, PROT_READ | PROT_WRITE, MAP_SHARED, dma_buf2_fd, 0); igt_assert(ptr2_cpu != MAP_FAILED); /* Fill up BO 1 with '1's and BO 2 with '0's */ prime_sync_start(dma_buf_fd, true); memset(ptr_cpu, 0x11, width * height); prime_sync_end(dma_buf_fd, true); prime_sync_start(dma_buf2_fd, true); memset(ptr2_cpu, 0x00, width * height); prime_sync_end(dma_buf2_fd, true); /* Copy BO 1 into BO 2, using blitter. */ intel_copy_bo(local_batch, bo_2, bo_1, width * height); usleep(0); /* let someone else claim the mutex */ /* Compare BOs. If prime_sync_* were executed properly, the caches * should be synced. */ prime_sync_start(dma_buf2_fd, false); for (i = 0; i < (width * height) / 4; i++) igt_fail_on_f(ptr2_cpu[i] != 0x11111111, "Found 0x%08x at offset 0x%08x\n", ptr2_cpu[i], i); prime_sync_end(dma_buf2_fd, false); drm_intel_bo_unreference(bo_1); drm_intel_bo_unreference(bo_2); munmap(ptr_cpu, width * height); munmap(ptr2_cpu, width * height); close(dma_buf_fd); close(dma_buf2_fd); intel_batchbuffer_free(local_batch); drm_intel_bufmgr_destroy(local_bufmgr); close(local_fd); } /* * Constantly interrupt concurrent blits to stress out prime_sync_* and make * sure these ioctl errors are handled accordingly. * * Important to note that in case of failure (e.g. in a case where the ioctl * wouldn't try again in a return error) this test does not reliably catch the * problem with 100% of accuracy. */ static void test_ioctl_errors(void) { int ncpus = sysconf(_SC_NPROCESSORS_ONLN); /* Ensure we can do at least one child */ intel_require_memory(2, width*height*4, CHECK_RAM); for (int num_children = 1; num_children <= 8 *ncpus; num_children <<= 1) { uint64_t required, total; igt_info("Spawing %d interruptible children\n", num_children); if (!__intel_check_memory(2*num_children, width*height*4, CHECK_RAM, &required, &total)) { igt_debug("Estimated that we need %'lluMiB for test, but only have %'lluMiB\n", (long long)(required >> 20), (long long)(total >> 20)); break; } igt_fork(child, num_children) igt_while_interruptible(true) blit_and_cmp(); igt_waitchildren(); } } igt_main { igt_fixture { fd = drm_open_driver(DRIVER_INTEL); igt_require_gem(fd); bufmgr = drm_intel_bufmgr_gem_init(fd, 4096); batch = intel_batchbuffer_alloc(bufmgr, intel_get_drm_devid(fd)); } /* Cache coherency and the eviction are pretty much unpredictable, so * reproducing boils down to trial and error to hit different scenarios. * TODO: We may want to improve tests a bit by picking random subranges. */ igt_subtest("read") { igt_until_timeout(5) { int stale = test_read_flush(); igt_fail_on_f(stale, "num of stale cache lines %d\n", stale); } } igt_subtest("write") { igt_until_timeout(5) { int stale = test_write_flush(); igt_fail_on_f(stale, "num of stale cache lines %d\n", stale); } } igt_subtest("ioctl-errors") { igt_info("exercising concurrent blit to get ioctl errors\n"); test_ioctl_errors(); } igt_fixture { intel_batchbuffer_free(batch); drm_intel_bufmgr_destroy(bufmgr); close(fd); } }