Charging and discharging a capacitor. Introduction

A capacitor is made up of two conductors that store positive and negative charge. When the capacitor is connected to a battery current will flow and the charge on the capacitor will increase until the voltage across the capacitor, determined by the relationship $\mathrm{C}=\mathrm{Q} / \mathrm{V}$, is sufficient to stop current from flowing in the circuit. Figure 1 shows a circuit that can be used to charge and discharge a capacitor.

Equipment

Protoboard with	Capacitors (about $100 \mu \mathrm{~F}$)	Wires	PASCO interface
power supply	Resistors (values of about	Multimeter	PASPortal software
and switch	$50 \mathrm{k} \Omega, 100 \mathrm{k}, 200 \mathrm{k}$)		Voltage sensors

Theory

 (current) becomes smaller and smaller as time goes by. If weFigure 1: Circuit to charge and discharge a capacitor
 take into account the fact that current and charge both vary with time, the equation obtained by applying Kirchhoff's Voltage Rule around the charging circuit becomes:
Equation 1: Kirchhoff's Rule for a charging capacitor

$$
\mathrm{V}_{\text {Batt }}-\mathrm{V}_{\mathrm{R}}-\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\text {Batt }}-\mathrm{I}(\mathrm{t}) \cdot \mathrm{R}-\frac{\mathrm{Q}(\mathrm{t})}{\mathrm{C}}=0
$$

The exponentially decreasing current and increasing charge are describe by:

Equation 2(a): I(t) for the charging capacitor

$$
\mathrm{I}(\mathrm{t})=\frac{\mathrm{V}_{\text {Batt }}}{\mathrm{R}}\left(e^{-\mathrm{t} / \mathrm{RC}}\right)
$$

Equation 2(b): Q(t) for the charging capacitor

$$
\overline{\mathrm{Q}(\mathrm{t})}=\mathrm{CV} \mathrm{~V}_{\text {Batt }}\left(1-e^{-\mathrm{t} / \mathrm{RC}}\right)
$$

The number e (Euler's Number also known as the Natural Logarithm Base) appears in any equation in which the rate of increase or decrease of a quantity depends on the amount of that quantity. In this case the rate at which the capacitor charges depends on the current which decreases as the charge, and hence the voltage on the capacitor, increases. It takes an infinite amount of time for the current to actually decrease to zero or for the capacitor to become fully charged -- this is a property of exponential functions. The exponential behavior is characterized by the time constant, τ :
Definition of time constant:

$$
\tau=\mathrm{RC}
$$

The time constant has units of seconds -- the larger the product RC the longer it will take the capacitor to charge to any fraction of its maximum value. The time required to charge to increase to $\left(1-e^{-1}\right)$ of the maximum value is exactly one time constant, RC. Euler's number, e is equal to
$2.71828182845904523536028747 \cdots$ etc.

Discharging the capacitor

If we wait for until several time constants have passed, the capacitor will becomes nearly fully charged. At that time the current is nearly zero, the voltage on the capacitor is equal to the voltage on the battery, $V_{\text {Batt, }}$ and its charge Q_{0} is given by $\mathrm{Q}_{0}=\mathrm{CV}_{\text {Batt }}$. Now we can change the switch from position S_{1} to S_{2}. The current will flow through the resistor to ground, discharging the capacitor. Around this loop the sum of voltages is now given by
Equation 3: Sum of voltages around the discharging circuit:

$$
\mathrm{V}_{\mathrm{R}}+\mathrm{V}_{\mathrm{C}}=\mathrm{I}(\mathrm{t}) \cdot \mathrm{R}+\frac{\mathrm{Q}(\mathrm{t})}{\mathrm{C}}=0
$$

The voltage on the capacitor acts to "push" the current but as the current flows the capacitor discharges and the current slows down. Thus the rate of discharge slows as time goes by. Both the current and charge decrease exponentially with time:
Equation 4(a): I(t) for discharging capacitor

$$
\mathrm{I}(\mathrm{t})=\frac{V_{C}}{R} e^{-\mathrm{trC}}=\frac{\mathrm{Q}_{0}}{R C} e^{-\mathrm{t} / \mathrm{RC}}
$$

Equation 4(b): Q(t) for discharging capacitor

$$
\mathrm{Q}(\mathrm{t})=\mathrm{Q}_{0} e^{-\mathrm{t} / \mathrm{RC}}=\mathrm{CV}_{\mathrm{Batt}} e^{-\mathrm{t} / \mathrm{RC}}
$$

The same time constant, $\tau=R C$ is used to characterize the discharging cycle but now the time RC describes the time it will take the charge to decrease to $1 / e=e^{-1}=0.367879$ times of its initial value.

Procedure

Use the protoboard with built in power supplies to construct the circuit in Figure 1. You will use capacitance values between 10 and $100 \mu \mathrm{~F}$ and resistance values from $50 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$. Choose the values so that the product of R times C is on the order of several seconds. With the switches set in the "open" position, use the power supply with the voltage of 5 V . By using the switches at the bottom of the protoboard it is possible to switch easily between the two configurations. As you set-
up the circuit use a multimeter set as an Ohmmeter to check continuity in your circuit. Then use it as a Voltmeter and make sure you understand how the circuit works. Ask for help if you need it.
Preparing the data acquisition hardware: Launch PASPortal (in the taskbar bottom right corner of computer), then Launch Data Studio, and choose Voltage sensor. Connect sensor to interface PASCO 750 as shown. Create a graph from the display menu. The voltage will be measured using the PASCO computer interface with the voltage probes connected to input 1. Place the voltage leads across the capacitor, connect the black connector to ground. By measuring the voltage across the capacitor you can measure the charge since $\mathrm{Q}=\mathrm{CV}$.
To collect data you should start with the switch in the grounded position (S_{2} in Figure 1). You can use an extra wire to ground both sides of the capacitor to make sure it is fully discharged before you start.
Click Start on the program. You should see a horizontal line at about zero volts. After a couple of seconds flip the switch to the charging position. You should see the voltage continually increase. If the voltage increase is too fast or too slow stop and re-adjust the time scale by changing the resistor or capacitor. Repeat until you are sure you can make a good data plot.
Optimize the graph: right click on the graph and you see several functions: "scale" will auto-scale the graph, "in/out" zooms, "measure" will create a cross-hair cursor You can select certain graphs and delete, fit... In addition you can click and drag on the number on the axis and can zoom in/out in this way.
Once you have adjusted the time scale and data collection rate you can begin taking data. Start with the switch in the S_{2} position and ground the capacitor to discharge it. Click start on the program and let it run for a while to establish a flat zero volt baseline.
Flip the switch to S_{1}. Let the program run as the voltage rises.
When the voltage reaches the maximum let the program run so that there is a flat line at the maximum voltage --- the charge on the capacitor has now reached its maximum and the current has stopped flowing.
Keep the program running and flip the switch back to S_{2}. Now the capacitor will discharge. Let the program run long enough to again establish a flat zero volt baseline.
If you have recorded data for several cycles, choose the best looking charge/discharge graph (you can delete the other graphs, if you like).
From your graph, you will determine the time constant of the circuit for both the charging and the discharge portions of the curve. From the time constant and the measured value for your resistance, you will derive the capacitance. (See Data Analysis section NOW for detailed instructions)

IMPORTANT: STOP and analyze your data before proceeding to the next section! You will need to have the data visible on the computer in order to analyze it.

Capacitors in parallel and in series

Repeat the data collection for two capacitors in series and for two capacitors in parallel. Demonstrate that the sum of the capacitance conforms to the formula derived in class:

Capacitors in Parallel: $C_{\text {equivalent }}=\sum C_{i}=C_{1}+C_{2}+C_{3}+\ldots$
Capacitors in Series: $\frac{1}{C_{\text {equivalent }}}=\sum \frac{1}{C_{i}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\ldots$

Data Analysis

Be sure and complete your analysis as you complete each part of the lab

Understanding the time constant.

The "time to charge" or the "time to discharge" is actually infinite since it takes an infinite amount of time to fully charge or discharge the capacitor. The charging and discharging times are therefore characterized by a single time $t=R C$, called the time constant, τ. From the equations for voltage as a function of time we can figure out what the voltage actually is at these times.
When the capacitor is charged its charge increases according to Equation 2 and therefore its voltage as a function of time is given by the equation:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{C}}(\mathrm{t})=\frac{\mathrm{Q}(\mathrm{t})}{C}=\mathrm{V}_{\text {Batt }}\left(1-\mathrm{e}^{-\mathrm{t} / \mathrm{RC}}\right) \tag{Charging}
\end{equation*}
$$

The time constant, $\tau=\mathrm{RC}$, is defined as the time when the charge reaches the value given by setting the time t equal to the value RC. At this time the voltage reaches a certain fraction of the battery voltage:

$$
\mathrm{V}(\text { at } t=\mathrm{RC})=\mathrm{V}_{\text {Batt }}\left(1-e^{-1}\right)=0.632 \mathrm{~V}_{\text {Batt }}
$$

(Charging)
To find the time constant from the graph simply find the time it takes the voltage (and hence charge) to increase from zero to ($1-\mathrm{e}^{-1}$) times its final value. You will find this time by analyzing the graph in the following way:

- Right click on graph and select measure. You should see a cross-hair cursor, which gives you the time and voltage (t, V);
- Move cursor to the exact point where the voltage starts to rise. Note the time t_{1}.
- Move the cursor to the point where the voltage is leveled off and maximal. Note $\mathrm{V}_{\max }$.
- Move the curser along the graph to the level where the voltage reads $0.632 \mathrm{~V}_{\text {max }}$. Note the time t_{2}.
- Calculate the time interval $\Delta \mathrm{t}=\mathrm{t}_{2}-\mathrm{t}_{1}$ between $\mathrm{V}=0$ and $0.632 \mathrm{~V}_{\text {max }}$, which is the time constant.

When the capacitor is discharging, the charge decreases according to Equation 4 and therefore its voltage obeys the equation:

$$
\mathrm{V}(t)=\mathrm{V}_{\mathrm{Batt}} e^{-t / \mathrm{RC}}
$$

(Discharging)
The time constant is the time when the charge reaches the value given by this equation. At this time the voltage reaches a certain fraction of the battery voltage:

$$
\mathrm{V}(\text { at } \mathrm{t}=\mathrm{RC})=\mathrm{V}_{\text {Batt }}\left(e^{-1}\right)=0.368 \mathrm{~V}_{\text {Batt. }}
$$

(Discharging)
To find the time constant from the graph simply find the time it takes the voltage to decrease from its maximum value to (e^{-1}) times that value, by using a similar procedure as described above.

Once you have found the time constant, complete the calculations in the data table to compare the measured time constant to the theoretical value. You can use the known value of the resistor to calculate an experimental value for the equivalent capacitance for the capacitors in parallel and series. To calculate the theoretical $\mathrm{C}_{\text {equiv }}$ use the theoretical equations on page 3 for the series and parallel circuits.

For your report

For your report, write a cover page with brief introduction and include data table, graphs and analysis. All graphs should have axis and units labeled. The analysis, which gives you your time constants clearly shown.
Calculations given in the data table should be shown below the graphs or on a separate page. Summarize your experimental results and discuss errors or discrepancies and their possible sources.

Discussion and Questions

Discuss why the time required to charge and discharge changes with capacitance and resistance (How much charge is required to reach the final voltage? At what rate (current) does the charge move? What controls the current?)
How does the time constant change when the capacitors are in parallel? In series? How does the capacitance change.
Analyze the time dependence of the solutions in Equations 2 and 4.
Look at Equation 2(b) and Equation 4(b) for the charge (or voltage since $\mathrm{VC}=\mathrm{Q} / \mathrm{C}$) at time $\mathrm{t}=0$. Substitute $\mathrm{t}=0$ in the equations. Does each equation give the appropriate initial value for a charging or discharging capacitor?
Look at Equations 2(a) and 4(a) and determine what is happening to the current at time $\mathrm{t}=0$.
Look at the same equations at very long time (substitute a very large value or imaging what the value reaches in the limit $\mathrm{t}=$ infinity). Do the equations reach the appropriate limits at very long times?
Write two paragraphs describing in your own words what is happening to the charge on the capacitor, the voltage on the capacitor, and the current in the circuit as the capacitor is 1) charging and 2) discharging. Comment on whether the time dependence shown by the equations agrees with the expected time dependence of the charge and current in the circuit as it charges or discharges.

Calculus Based Questions: Understanding the equations in more detail.

Equations 1 and 3 describe the charging and discharging of a capacitor. The solutions to these equations are Equations 2 and 4, respectively.
Equation 2(b) describes the charge as a function of time as the capacitor is charged.
Find the currents for the charging capacitor by calculating the function $I(t)=d Q / d t$ for this case. (Take the derivative of Equation 2 to find $\mathrm{I}(\mathrm{t})$.) Compare to Equation 2(a).
Substitute the function $\mathrm{Q}(\mathrm{t})$ of Equation 2(b) and the function for $\mathrm{I}(\mathrm{t})$ which you have just found into Equation 1, show that Equation 1 does give zero. This proves that Equations 2(b) is a solution for this circuit.
Equation 4 describes the charge as a function of time as the capacitor is discharged.
Find the currents for the discharging capacitor by calculating the function $I(t)=d Q / d t$ for this case. (Take the derivative of Equation 4(b) to find I(t).)
By substituting the function $\mathrm{Q}(\mathrm{t})$ of Equation 4(b) and the function for $\mathrm{I}(\mathrm{t})$ which you have just found into Equation 3 show that Equation 4 is indeed a solution to the voltage equations for a discharging capacitor. (Show Equation 3 does give zero).

Single Capacitor

Applied Voltage ("Battery"):	$V_{\text {Batt }}$	Resistance R used	Capacitance used

From graphs: be sure and label points on graph and show how your found the time constant

Measured Time Constant (from graph);	Charging	Discharging	Average:

Calculations:

| Calculated Time
 Constant $(\tau=\mathrm{RC}):$ | Percent Diff. (between
 average and calculated) | |
| :--- | :--- | :--- | :--- |

Parallel Capacitors

Applied Voltage ("Battery"):	$\mathrm{V}_{\text {Batt }}$	Resistance used	Capacitances used	C_{1}	C_{2}

From graphs: be sure and label points on graph and show how your found the time constant

Measured Time Constant (from graph);	Charging	Discharging	Average:

Calculations:

Calculation for $\mathrm{C}_{\text {equiv }}$			
Calculated Time		Percent Diff. (between average and calculated)	
Constant $(\tau=\mathrm{RC}$):		Percent Diff. (between experimental and calc. $\mathrm{C}_{\text {equiv }}$)	
Experimental			
$\mathrm{C}_{\text {equiv }}$			
(From $\tau=\mathrm{RC}$)			

Series Capacitors

Applied Voltage ("Battery"):	$\mathrm{V}_{\text {Batt }}$	Resistance used	Capacitances used	C_{1}	C_{2}

From graphs: be sure and label points on graph and show how your found the time constant

Measured Time Constant (from graph);	Charging	Discharging	Average:

Calculations:

