summaryrefslogtreecommitdiff
path: root/Software/Beignet/howto
diff options
context:
space:
mode:
Diffstat (limited to 'Software/Beignet/howto')
-rw-r--r--Software/Beignet/howto/video-motion-estimation-howto.mdwn73
1 files changed, 73 insertions, 0 deletions
diff --git a/Software/Beignet/howto/video-motion-estimation-howto.mdwn b/Software/Beignet/howto/video-motion-estimation-howto.mdwn
new file mode 100644
index 00000000..8174dbb5
--- /dev/null
+++ b/Software/Beignet/howto/video-motion-estimation-howto.mdwn
@@ -0,0 +1,73 @@
+Video Motion Vector HowTo
+==========================
+
+Beignet now supports cl_intel_accelerator and cl_intel_motion_estimation, which are
+Khronos official extensions. It provides a hardware acceleration of video motion
+vector to users.
+
+Supported hardware platform
+---------------------------
+
+Only 3rd Generation Intel Core Processors is supported for vme now. We will consider
+to support more platforms if necessary.
+
+Steps
+-----
+
+In order to use video motion estimation provided by Beignet in your program, please follow
+the steps as below:
+
+- Create a cl_accelerator_intel object using extension API clCreateAcceleratorINTEL, like
+ this:
+
+ _accelerator_type_intel accelerator_type = CL_ACCELERATOR_TYPE_MOTION_ESTIMATION_INTEL;
+ cl_motion_estimation_desc_intel vmedesc = {CL_ME_MB_TYPE_16x16_INTEL,
+ CL_ME_SUBPIXEL_MODE_INTEGER_INTEL,
+ CL_ME_SAD_ADJUST_MODE_NONE_INTEL,
+ CL_ME_SEARCH_PATH_RADIUS_16_12_INTEL
+ };
+
+- Invoke clCreateProgramWithBuiltInKernels to create a program object with built-in kernels
+ information, and invoke clCreateKernel to create a kernel object whose kernel name is
+ block_motion_estimate_intel.
+
+- The prototype of built-in kernel block_motion_estimate_intel is as following:
+
+ _kernel void
+ block_motion_estimate_intel
+ (
+ accelerator_intel_t accelerator,
+ __read_only image2d_t src_image,
+ __read_only image2d_t ref_image,
+ __global short2 * prediction_motion_vector_buffer,
+ __global short2 * motion_vector_buffer,
+ __global ushort * residuals
+ );
+ So you should create related objects and setup these kernel arguments by clSetKernelArg.
+ Create source and reference image object, on which you want to do video motion estimation.
+ The image_channel_order should be CL_R and image_channel_data_type should be CL_UNORM_INT8.
+ Create a buffer object to get the motion vector result. This motion vector buffer representing
+ a vector field of pixel block motion vectors, stored linearly in row-major order. The elements
+ (pixels) of this image contain a motion vector for the corresponding pixel block, with its x/y
+ components packed as two 16-bit integer values. Each component is encoded as a S13.2 fixed
+ point value(two's complement).
+
+- Use clEnqueueNDRangeKernel to enqueue this kernel. The only thing you need to setup is global_work_size:
+ global_work_size[0] equal to width of source image, global_work_size[1] equal to height of source
+ image.
+
+- Use clEnqueueReadBuffer or clEnqueueMapBuffer to get motion vector result.
+
+
+Sample code
+-----------
+
+We have developed an utest case of using video motion vector in utests/builtin_kernel_block_motion_estimate_intel.cpp.
+Please go through it for details.
+
+More references
+---------------
+
+<https://www.khronos.org/registry/cl/extensions/intel/cl_intel_accelerator.txt>
+<https://www.khronos.org/registry/cl/extensions/intel/cl_intel_motion_estimation.txt>
+<https://software.intel.com/en-us/articles/intro-to-motion-estimation-extension-for-opencl>