//======================================================================== // // JPXStream.cc // // Copyright 2002-2003 Glyph & Cog, LLC // //======================================================================== #include #include #ifdef USE_GCC_PRAGMAS #pragma implementation #endif #include "goo/gmem.h" #include "Error.h" #include "JArithmeticDecoder.h" #include "JPXStream.h" //~ to do: // - precincts // - ROI // - progression order changes // - packed packet headers // - support for palettes, channel maps, etc. // - make sure all needed JP2/JPX subboxes are parsed (readBoxes) // - can we assume that QCC segments must come after the QCD segment? // - skip EPH markers (readTilePartData) // - handle tilePartToEOC in readTilePartData // - deal with multiple codeword segments (readTilePartData, // readCodeBlockData) // - progression orders 2, 3, and 4 // - in coefficient decoding (readCodeBlockData): // - termination pattern: terminate after every coding pass // - error resilience segmentation symbol // - selective arithmetic coding bypass // - vertically causal context formation // - coeffs longer than 31 bits (should just ignore the extra bits?) // - handle boxes larger than 2^32 bytes // - the fixed-point arithmetic won't handle 16-bit pixels //------------------------------------------------------------------------ // number of contexts for the arithmetic decoder #define jpxNContexts 19 #define jpxContextSigProp 0 // 0 - 8: significance prop and cleanup #define jpxContextSign 9 // 9 - 13: sign #define jpxContextMagRef 14 // 14 -16: magnitude refinement #define jpxContextRunLength 17 // cleanup: run length #define jpxContextUniform 18 // cleanup: first signif coeff //------------------------------------------------------------------------ #define jpxPassSigProp 0 #define jpxPassMagRef 1 #define jpxPassCleanup 2 //------------------------------------------------------------------------ // arithmetic decoder context for the significance propagation and // cleanup passes: // [horiz][vert][diag][subband] // where subband = 0 for HL // = 1 for LH and LL // = 2 for HH static Guint sigPropContext[3][3][5][3] = { {{{ 0, 0, 0 }, // horiz=0, vert=0, diag=0 { 1, 1, 3 }, // horiz=0, vert=0, diag=1 { 2, 2, 6 }, // horiz=0, vert=0, diag=2 { 2, 2, 8 }, // horiz=0, vert=0, diag=3 { 2, 2, 8 }}, // horiz=0, vert=0, diag=4 {{ 5, 3, 1 }, // horiz=0, vert=1, diag=0 { 6, 3, 4 }, // horiz=0, vert=1, diag=1 { 6, 3, 7 }, // horiz=0, vert=1, diag=2 { 6, 3, 8 }, // horiz=0, vert=1, diag=3 { 6, 3, 8 }}, // horiz=0, vert=1, diag=4 {{ 8, 4, 2 }, // horiz=0, vert=2, diag=0 { 8, 4, 5 }, // horiz=0, vert=2, diag=1 { 8, 4, 7 }, // horiz=0, vert=2, diag=2 { 8, 4, 8 }, // horiz=0, vert=2, diag=3 { 8, 4, 8 }}}, // horiz=0, vert=2, diag=4 {{{ 3, 5, 1 }, // horiz=1, vert=0, diag=0 { 3, 6, 4 }, // horiz=1, vert=0, diag=1 { 3, 6, 7 }, // horiz=1, vert=0, diag=2 { 3, 6, 8 }, // horiz=1, vert=0, diag=3 { 3, 6, 8 }}, // horiz=1, vert=0, diag=4 {{ 7, 7, 2 }, // horiz=1, vert=1, diag=0 { 7, 7, 5 }, // horiz=1, vert=1, diag=1 { 7, 7, 7 }, // horiz=1, vert=1, diag=2 { 7, 7, 8 }, // horiz=1, vert=1, diag=3 { 7, 7, 8 }}, // horiz=1, vert=1, diag=4 {{ 8, 7, 2 }, // horiz=1, vert=2, diag=0 { 8, 7, 5 }, // horiz=1, vert=2, diag=1 { 8, 7, 7 }, // horiz=1, vert=2, diag=2 { 8, 7, 8 }, // horiz=1, vert=2, diag=3 { 8, 7, 8 }}}, // horiz=1, vert=2, diag=4 {{{ 4, 8, 2 }, // horiz=2, vert=0, diag=0 { 4, 8, 5 }, // horiz=2, vert=0, diag=1 { 4, 8, 7 }, // horiz=2, vert=0, diag=2 { 4, 8, 8 }, // horiz=2, vert=0, diag=3 { 4, 8, 8 }}, // horiz=2, vert=0, diag=4 {{ 7, 8, 2 }, // horiz=2, vert=1, diag=0 { 7, 8, 5 }, // horiz=2, vert=1, diag=1 { 7, 8, 7 }, // horiz=2, vert=1, diag=2 { 7, 8, 8 }, // horiz=2, vert=1, diag=3 { 7, 8, 8 }}, // horiz=2, vert=1, diag=4 {{ 8, 8, 2 }, // horiz=2, vert=2, diag=0 { 8, 8, 5 }, // horiz=2, vert=2, diag=1 { 8, 8, 7 }, // horiz=2, vert=2, diag=2 { 8, 8, 8 }, // horiz=2, vert=2, diag=3 { 8, 8, 8 }}} // horiz=2, vert=2, diag=4 }; // arithmetic decoder context and xor bit for the sign bit in the // significance propagation pass: // [horiz][vert][k] // where horiz/vert are offset by 2 (i.e., range is -2 .. 2) // and k = 0 for the context // = 1 for the xor bit static Guint signContext[5][5][2] = { {{ 13, 1 }, // horiz=-2, vert=-2 { 13, 1 }, // horiz=-2, vert=-1 { 12, 1 }, // horiz=-2, vert= 0 { 11, 1 }, // horiz=-2, vert=+1 { 11, 1 }}, // horiz=-2, vert=+2 {{ 13, 1 }, // horiz=-1, vert=-2 { 13, 1 }, // horiz=-1, vert=-1 { 12, 1 }, // horiz=-1, vert= 0 { 11, 1 }, // horiz=-1, vert=+1 { 11, 1 }}, // horiz=-1, vert=+2 {{ 10, 1 }, // horiz= 0, vert=-2 { 10, 1 }, // horiz= 0, vert=-1 { 9, 0 }, // horiz= 0, vert= 0 { 10, 0 }, // horiz= 0, vert=+1 { 10, 0 }}, // horiz= 0, vert=+2 {{ 11, 0 }, // horiz=+1, vert=-2 { 11, 0 }, // horiz=+1, vert=-1 { 12, 0 }, // horiz=+1, vert= 0 { 13, 0 }, // horiz=+1, vert=+1 { 13, 0 }}, // horiz=+1, vert=+2 {{ 11, 0 }, // horiz=+2, vert=-2 { 11, 0 }, // horiz=+2, vert=-1 { 12, 0 }, // horiz=+2, vert= 0 { 13, 0 }, // horiz=+2, vert=+1 { 13, 0 }}, // horiz=+2, vert=+2 }; //------------------------------------------------------------------------ // constants used in the IDWT #define idwtAlpha -1.586134342059924 #define idwtBeta -0.052980118572961 #define idwtGamma 0.882911075530934 #define idwtDelta 0.443506852043971 #define idwtKappa 1.230174104914001 #define idwtIKappa (1.0 / idwtKappa) // number of bits to the right of the decimal point for the fixed // point arithmetic used in the IDWT #define fracBits 16 //------------------------------------------------------------------------ // floor(x / y) #define jpxFloorDiv(x, y) ((x) / (y)) // floor(x / 2^y) #define jpxFloorDivPow2(x, y) ((x) >> (y)) // ceil(x / y) #define jpxCeilDiv(x, y) (((x) + (y) - 1) / (y)) // ceil(x / 2^y) #define jpxCeilDivPow2(x, y) (((x) + (1 << (y)) - 1) >> (y)) //------------------------------------------------------------------------ JPXStream::JPXStream(Stream *strA): FilterStream(strA) { nComps = 0; bpc = NULL; width = height = 0; haveCS = gFalse; havePalette = gFalse; haveCompMap = gFalse; haveChannelDefn = gFalse; img.tiles = NULL; bitBuf = 0; bitBufLen = 0; bitBufSkip = gFalse; byteCount = 0; } JPXStream::~JPXStream() { JPXTile *tile; JPXTileComp *tileComp; JPXResLevel *resLevel; JPXPrecinct *precinct; JPXSubband *subband; JPXCodeBlock *cb; Guint comp, i, k, r, pre, sb; gfree(bpc); if (havePalette) { gfree(palette.bpc); gfree(palette.c); } if (haveCompMap) { gfree(compMap.comp); gfree(compMap.type); gfree(compMap.pComp); } if (haveChannelDefn) { gfree(channelDefn.idx); gfree(channelDefn.type); gfree(channelDefn.assoc); } if (img.tiles) { for (i = 0; i < img.nXTiles * img.nYTiles; ++i) { tile = &img.tiles[i]; if (tile->tileComps) { for (comp = 0; comp < img.nComps; ++comp) { tileComp = &tile->tileComps[comp]; gfree(tileComp->quantSteps); gfree(tileComp->data); gfree(tileComp->buf); if (tileComp->resLevels) { for (r = 0; r <= tileComp->nDecompLevels; ++r) { resLevel = &tileComp->resLevels[r]; if (resLevel->precincts) { for (pre = 0; pre < 1; ++pre) { precinct = &resLevel->precincts[pre]; if (precinct->subbands) { for (sb = 0; sb < (r == 0 ? 1 : 3); ++sb) { subband = &precinct->subbands[sb]; gfree(subband->inclusion); gfree(subband->zeroBitPlane); if (subband->cbs) { for (k = 0; k < subband->nXCBs * subband->nYCBs; ++k) { cb = &subband->cbs[k]; gfree(cb->coeffs); if (cb->arithDecoder) { delete cb->arithDecoder; } if (cb->stats) { delete cb->stats; } } gfree(subband->cbs); } } gfree(precinct->subbands); } } gfree(img.tiles[i].tileComps[comp].resLevels[r].precincts); } } gfree(img.tiles[i].tileComps[comp].resLevels); } } gfree(img.tiles[i].tileComps); } } gfree(img.tiles); } delete str; } void JPXStream::reset() { str->reset(); if (readBoxes()) { curY = img.yOffset; } else { // readBoxes reported an error, so we go immediately to EOF curY = img.ySize; } curX = img.xOffset; curComp = 0; readBufLen = 0; } int JPXStream::getChar() { int c; if (readBufLen < 8) { fillReadBuf(); } if (readBufLen == 8) { c = readBuf & 0xff; readBufLen = 0; } else if (readBufLen > 8) { c = (readBuf >> (readBufLen - 8)) & 0xff; readBufLen -= 8; } else if (readBufLen == 0) { c = EOF; } else { c = (readBuf << (8 - readBufLen)) & 0xff; readBufLen = 0; } return c; } int JPXStream::lookChar() { int c; if (readBufLen < 8) { fillReadBuf(); } if (readBufLen == 8) { c = readBuf & 0xff; } else if (readBufLen > 8) { c = (readBuf >> (readBufLen - 8)) & 0xff; } else if (readBufLen == 0) { c = EOF; } else { c = (readBuf << (8 - readBufLen)) & 0xff; } return c; } void JPXStream::fillReadBuf() { JPXTileComp *tileComp; Guint tileIdx, tx, ty; int pix, pixBits; do { if (curY >= img.ySize) { return; } tileIdx = ((curY - img.yTileOffset) / img.yTileSize) * img.nXTiles + (curX - img.xTileOffset) / img.xTileSize; #if 1 //~ ignore the palette, assume the PDF ColorSpace object is valid tileComp = &img.tiles[tileIdx].tileComps[curComp]; #else tileComp = &img.tiles[tileIdx].tileComps[havePalette ? 0 : curComp]; #endif tx = jpxCeilDiv((curX - img.xTileOffset) % img.xTileSize, tileComp->hSep); ty = jpxCeilDiv((curY - img.yTileOffset) % img.yTileSize, tileComp->vSep); pix = (int)tileComp->data[ty * (tileComp->x1 - tileComp->x0) + tx]; pixBits = tileComp->prec; #if 1 //~ ignore the palette, assume the PDF ColorSpace object is valid if (++curComp == img.nComps) { #else if (havePalette) { if (pix >= 0 && pix < palette.nEntries) { pix = palette.c[pix * palette.nComps + curComp]; } else { pix = pixBits = palette.bpc[curComp]; } if (++curComp == (Guint)(havePalette ? palette.nComps : img.nComps)) { #endif curComp = 0; if (++curX == img.xSize) { curX = img.xOffset; ++curY; } } if (pixBits == 8) { readBuf = (readBuf << 8) | (pix & 0xff); } else { readBuf = (readBuf << pixBits) | (pix & ((1 << pixBits) - 1)); } readBufLen += pixBits; } while (readBufLen < 8); } GooString *JPXStream::getPSFilter(int psLevel, char *indent) { return NULL; } GBool JPXStream::isBinary(GBool last) { return str->isBinary(gTrue); } void JPXStream::getImageParams(int *bitsPerComponent, StreamColorSpaceMode *csMode) { Guint boxType, boxLen, dataLen, csEnum; Guint bpc1, dummy, i; int csMeth, csPrec, csPrec1, dummy2; StreamColorSpaceMode csMode1; GBool haveBPC, haveCSMode; csPrec = 0; // make gcc happy haveBPC = haveCSMode = gFalse; str->reset(); if (str->lookChar() == 0xff) { getImageParams2(bitsPerComponent, csMode); } else { while (readBoxHdr(&boxType, &boxLen, &dataLen)) { if (boxType == 0x6a703268) { // JP2 header // skip the superbox } else if (boxType == 0x69686472) { // image header if (readULong(&dummy) && readULong(&dummy) && readUWord(&dummy) && readUByte(&bpc1) && readUByte(&dummy) && readUByte(&dummy) && readUByte(&dummy)) { *bitsPerComponent = bpc1 + 1; haveBPC = gTrue; } } else if (boxType == 0x636F6C72) { // color specification if (readByte(&csMeth) && readByte(&csPrec1) && readByte(&dummy2)) { if (csMeth == 1) { if (readULong(&csEnum)) { csMode1 = streamCSNone; if (csEnum == jpxCSBiLevel || csEnum == jpxCSGrayscale) { csMode1 = streamCSDeviceGray; } else if (csEnum == jpxCSCMYK) { csMode1 = streamCSDeviceCMYK; } else if (csEnum == jpxCSsRGB || csEnum == jpxCSCISesRGB || csEnum == jpxCSROMMRGB) { csMode1 = streamCSDeviceRGB; } if (csMode1 != streamCSNone && (!haveCSMode || csPrec1 > csPrec)) { *csMode = csMode1; csPrec = csPrec1; haveCSMode = gTrue; } for (i = 0; i < dataLen - 7; ++i) { str->getChar(); } } } else { for (i = 0; i < dataLen - 3; ++i) { str->getChar(); } } } } else if (boxType == 0x6A703263) { // codestream if (!(haveBPC && haveCSMode)) { getImageParams2(bitsPerComponent, csMode); } break; } else { for (i = 0; i < dataLen; ++i) { str->getChar(); } } } } str->close(); } // Get image parameters from the codestream. void JPXStream::getImageParams2(int *bitsPerComponent, StreamColorSpaceMode *csMode) { int segType; Guint segLen, nComps1, bpc1, dummy, i; while (readMarkerHdr(&segType, &segLen)) { if (segType == 0x51) { // SIZ - image and tile size if (readUWord(&dummy) && readULong(&dummy) && readULong(&dummy) && readULong(&dummy) && readULong(&dummy) && readULong(&dummy) && readULong(&dummy) && readULong(&dummy) && readULong(&dummy) && readUWord(&nComps1) && readUByte(&bpc1)) { *bitsPerComponent = (bpc1 & 0x7f) + 1; // if there's no color space info, take a guess if (nComps1 == 1) { *csMode = streamCSDeviceGray; } else if (nComps1 == 3) { *csMode = streamCSDeviceRGB; } else if (nComps1 == 4) { *csMode = streamCSDeviceCMYK; } } break; } else { if (segLen > 2) { for (i = 0; i < segLen - 2; ++i) { str->getChar(); } } } } } GBool JPXStream::readBoxes() { Guint boxType, boxLen, dataLen; Guint bpc1, compression, unknownColorspace, ipr; Guint i, j; haveImgHdr = gFalse; // check for a naked JPEG 2000 codestream (without the JP2/JPX // wrapper) -- this appears to be a violation of the PDF spec, but // Acrobat allows it if (str->lookChar() == 0xff) { error(getPos(), "Naked JPEG 2000 codestream, missing JP2/JPX wrapper"); readCodestream(0); nComps = img.nComps; bpc = (Guint *)gmallocn(nComps, sizeof(Guint)); for (i = 0; i < nComps; ++i) { bpc[i] = img.tiles[0].tileComps[i].prec; } width = img.xSize - img.xOffset; height = img.ySize - img.yOffset; return gTrue; } while (readBoxHdr(&boxType, &boxLen, &dataLen)) { switch (boxType) { case 0x6a703268: // JP2 header // this is a grouping box ('superbox') which has no real // contents and doesn't appear to be used consistently, i.e., // some things which should be subboxes of the JP2 header box // show up outside of it - so we simply ignore the JP2 header // box break; case 0x69686472: // image header if (!readULong(&height) || !readULong(&width) || !readUWord(&nComps) || !readUByte(&bpc1) || !readUByte(&compression) || !readUByte(&unknownColorspace) || !readUByte(&ipr)) { error(getPos(), "Unexpected EOF in JPX stream"); return gFalse; } if (compression != 7) { error(getPos(), "Unknown compression type in JPX stream"); return gFalse; } bpc = (Guint *)gmallocn(nComps, sizeof(Guint)); for (i = 0; i < nComps; ++i) { bpc[i] = bpc1; } haveImgHdr = gTrue; break; case 0x62706363: // bits per component if (!haveImgHdr) { error(getPos(), "Found bits per component box before image header box in JPX stream"); return gFalse; } if (dataLen != nComps) { error(getPos(), "Invalid bits per component box in JPX stream"); return gFalse; } for (i = 0; i < nComps; ++i) { if (!readUByte(&bpc[i])) { error(getPos(), "Unexpected EOF in JPX stream"); return gFalse; } } break; case 0x636F6C72: // color specification if (!readColorSpecBox(dataLen)) { return gFalse; } break; case 0x70636c72: // palette if (!readUWord(&palette.nEntries) || !readUByte(&palette.nComps)) { error(getPos(), "Unexpected EOF in JPX stream"); return gFalse; } palette.bpc = (Guint *)gmallocn(palette.nComps, sizeof(Guint)); palette.c = (int *)gmallocn(palette.nEntries * palette.nComps, sizeof(int)); for (i = 0; i < palette.nComps; ++i) { if (!readUByte(&palette.bpc[i])) { error(getPos(), "Unexpected EOF in JPX stream"); return gFalse; } ++palette.bpc[i]; } for (i = 0; i < palette.nEntries; ++i) { for (j = 0; j < palette.nComps; ++j) { if (!readNBytes(((palette.bpc[j] & 0x7f) + 7) >> 3, (palette.bpc[j] & 0x80) ? gTrue : gFalse, &palette.c[i * palette.nComps + j])) { error(getPos(), "Unexpected EOF in JPX stream"); return gFalse; } } } havePalette = gTrue; break; case 0x636d6170: // component mapping compMap.nChannels = dataLen / 4; compMap.comp = (Guint *)gmallocn(compMap.nChannels, sizeof(Guint)); compMap.type = (Guint *)gmallocn(compMap.nChannels, sizeof(Guint)); compMap.pComp = (Guint *)gmallocn(compMap.nChannels, sizeof(Guint)); for (i = 0; i < compMap.nChannels; ++i) { if (!readUWord(&compMap.comp[i]) || !readUByte(&compMap.type[i]) || !readUByte(&compMap.pComp[i])) { error(getPos(), "Unexpected EOF in JPX stream"); return gFalse; } } haveCompMap = gTrue; break; case 0x63646566: // channel definition if (!readUWord(&channelDefn.nChannels)) { error(getPos(), "Unexpected EOF in JPX stream"); return gFalse; } channelDefn.idx = (Guint *)gmallocn(channelDefn.nChannels, sizeof(Guint)); channelDefn.type = (Guint *)gmallocn(channelDefn.nChannels, sizeof(Guint)); channelDefn.assoc = (Guint *)gmallocn(channelDefn.nChannels, sizeof(Guint)); for (i = 0; i < channelDefn.nChannels; ++i) { if (!readUWord(&channelDefn.idx[i]) || !readUWord(&channelDefn.type[i]) || !readUWord(&channelDefn.assoc[i])) { error(getPos(), "Unexpected EOF in JPX stream"); return gFalse; } } haveChannelDefn = gTrue; break; case 0x6A703263: // contiguous codestream if (!bpc) { error(getPos(), "JPX stream is missing the image header box"); } if (!haveCS) { error(getPos(), "JPX stream has no supported color spec"); } if (!readCodestream(dataLen)) { return gFalse; } break; default: for (i = 0; i < dataLen; ++i) { if (str->getChar() == EOF) { error(getPos(), "Unexpected EOF in JPX stream"); return gFalse; } } break; } } return gTrue; } GBool JPXStream::readColorSpecBox(Guint dataLen) { JPXColorSpec newCS; Guint csApprox, csEnum; Guint i; GBool ok; ok = gFalse; if (!readUByte(&newCS.meth) || !readByte(&newCS.prec) || !readUByte(&csApprox)) { goto err; } switch (newCS.meth) { case 1: // enumerated colorspace if (!readULong(&csEnum)) { goto err; } newCS.enumerated.type = (JPXColorSpaceType)csEnum; switch (newCS.enumerated.type) { case jpxCSBiLevel: ok = gTrue; break; case jpxCSYCbCr1: ok = gTrue; break; case jpxCSYCbCr2: ok = gTrue; break; case jpxCSYCBCr3: ok = gTrue; break; case jpxCSPhotoYCC: ok = gTrue; break; case jpxCSCMY: ok = gTrue; break; case jpxCSCMYK: ok = gTrue; break; case jpxCSYCCK: ok = gTrue; break; case jpxCSCIELab: if (dataLen == 7 + 7*4) { if (!readULong(&newCS.enumerated.cieLab.rl) || !readULong(&newCS.enumerated.cieLab.ol) || !readULong(&newCS.enumerated.cieLab.ra) || !readULong(&newCS.enumerated.cieLab.oa) || !readULong(&newCS.enumerated.cieLab.rb) || !readULong(&newCS.enumerated.cieLab.ob) || !readULong(&newCS.enumerated.cieLab.il)) { goto err; } } else if (dataLen == 7) { //~ this assumes the 8-bit case newCS.enumerated.cieLab.rl = 100; newCS.enumerated.cieLab.ol = 0; newCS.enumerated.cieLab.ra = 255; newCS.enumerated.cieLab.oa = 128; newCS.enumerated.cieLab.rb = 255; newCS.enumerated.cieLab.ob = 96; newCS.enumerated.cieLab.il = 0x00443530; } else { goto err; } ok = gTrue; break; case jpxCSsRGB: ok = gTrue; break; case jpxCSGrayscale: ok = gTrue; break; case jpxCSBiLevel2: ok = gTrue; break; case jpxCSCIEJab: // not allowed in PDF goto err; case jpxCSCISesRGB: ok = gTrue; break; case jpxCSROMMRGB: ok = gTrue; break; case jpxCSsRGBYCbCr: ok = gTrue; break; case jpxCSYPbPr1125: ok = gTrue; break; case jpxCSYPbPr1250: ok = gTrue; break; default: goto err; } break; case 2: // restricted ICC profile case 3: // any ICC profile (JPX) case 4: // vendor color (JPX) for (i = 0; i < dataLen - 3; ++i) { if (str->getChar() == EOF) { goto err; } } break; } if (ok && (!haveCS || newCS.prec > cs.prec)) { cs = newCS; haveCS = gTrue; } return gTrue; err: error(getPos(), "Error in JPX color spec"); return gFalse; } GBool JPXStream::readCodestream(Guint len) { JPXTile *tile; JPXTileComp *tileComp; int segType; GBool haveSIZ, haveCOD, haveQCD, haveSOT; Guint precinctSize, style; Guint segLen, capabilities, nTiles, comp, i, j, r; //----- main header haveSIZ = haveCOD = haveQCD = haveSOT = gFalse; do { if (!readMarkerHdr(&segType, &segLen)) { error(getPos(), "Error in JPX codestream"); return gFalse; } switch (segType) { case 0x4f: // SOC - start of codestream // marker only break; case 0x51: // SIZ - image and tile size if (!readUWord(&capabilities) || !readULong(&img.xSize) || !readULong(&img.ySize) || !readULong(&img.xOffset) || !readULong(&img.yOffset) || !readULong(&img.xTileSize) || !readULong(&img.yTileSize) || !readULong(&img.xTileOffset) || !readULong(&img.yTileOffset) || !readUWord(&img.nComps)) { error(getPos(), "Error in JPX SIZ marker segment"); return gFalse; } if (haveImgHdr && img.nComps != nComps) { error(getPos(), "Different number of components in JPX SIZ marker segment"); return gFalse; } img.nXTiles = (img.xSize - img.xTileOffset + img.xTileSize - 1) / img.xTileSize; img.nYTiles = (img.ySize - img.yTileOffset + img.yTileSize - 1) / img.yTileSize; nTiles = img.nXTiles * img.nYTiles; // check for overflow before allocating memory if (nTiles == 0 || nTiles / img.nXTiles != img.nYTiles) { error(getPos(), "Bad tile count in JPX SIZ marker segment"); return gFalse; } img.tiles = (JPXTile *)gmallocn(nTiles, sizeof(JPXTile)); for (i = 0; i < img.nXTiles * img.nYTiles; ++i) { img.tiles[i].tileComps = (JPXTileComp *)gmallocn(img.nComps, sizeof(JPXTileComp)); for (comp = 0; comp < img.nComps; ++comp) { img.tiles[i].tileComps[comp].quantSteps = NULL; img.tiles[i].tileComps[comp].data = NULL; img.tiles[i].tileComps[comp].buf = NULL; img.tiles[i].tileComps[comp].resLevels = NULL; } } for (comp = 0; comp < img.nComps; ++comp) { if (!readUByte(&img.tiles[0].tileComps[comp].prec) || !readUByte(&img.tiles[0].tileComps[comp].hSep) || !readUByte(&img.tiles[0].tileComps[comp].vSep)) { error(getPos(), "Error in JPX SIZ marker segment"); return gFalse; } img.tiles[0].tileComps[comp].sgned = (img.tiles[0].tileComps[comp].prec & 0x80) ? gTrue : gFalse; img.tiles[0].tileComps[comp].prec = (img.tiles[0].tileComps[comp].prec & 0x7f) + 1; for (i = 1; i < img.nXTiles * img.nYTiles; ++i) { img.tiles[i].tileComps[comp] = img.tiles[0].tileComps[comp]; } } haveSIZ = gTrue; break; case 0x52: // COD - coding style default if (!readUByte(&img.tiles[0].tileComps[0].style) || !readUByte(&img.tiles[0].progOrder) || !readUWord(&img.tiles[0].nLayers) || !readUByte(&img.tiles[0].multiComp) || !readUByte(&img.tiles[0].tileComps[0].nDecompLevels) || !readUByte(&img.tiles[0].tileComps[0].codeBlockW) || !readUByte(&img.tiles[0].tileComps[0].codeBlockH) || !readUByte(&img.tiles[0].tileComps[0].codeBlockStyle) || !readUByte(&img.tiles[0].tileComps[0].transform)) { error(getPos(), "Error in JPX COD marker segment"); return gFalse; } img.tiles[0].tileComps[0].codeBlockW += 2; img.tiles[0].tileComps[0].codeBlockH += 2; for (i = 0; i < img.nXTiles * img.nYTiles; ++i) { if (i != 0) { img.tiles[i].progOrder = img.tiles[0].progOrder; img.tiles[i].nLayers = img.tiles[0].nLayers; img.tiles[i].multiComp = img.tiles[0].multiComp; } for (comp = 0; comp < img.nComps; ++comp) { if (!(i == 0 && comp == 0)) { img.tiles[i].tileComps[comp].style = img.tiles[0].tileComps[0].style; img.tiles[i].tileComps[comp].nDecompLevels = img.tiles[0].tileComps[0].nDecompLevels; img.tiles[i].tileComps[comp].codeBlockW = img.tiles[0].tileComps[0].codeBlockW; img.tiles[i].tileComps[comp].codeBlockH = img.tiles[0].tileComps[0].codeBlockH; img.tiles[i].tileComps[comp].codeBlockStyle = img.tiles[0].tileComps[0].codeBlockStyle; img.tiles[i].tileComps[comp].transform = img.tiles[0].tileComps[0].transform; } img.tiles[i].tileComps[comp].resLevels = (JPXResLevel *)gmallocn( (img.tiles[i].tileComps[comp].nDecompLevels + 1), sizeof(JPXResLevel)); for (r = 0; r <= img.tiles[i].tileComps[comp].nDecompLevels; ++r) { img.tiles[i].tileComps[comp].resLevels[r].precincts = NULL; } } } for (r = 0; r <= img.tiles[0].tileComps[0].nDecompLevels; ++r) { if (img.tiles[0].tileComps[0].style & 0x01) { if (!readUByte(&precinctSize)) { error(getPos(), "Error in JPX COD marker segment"); return gFalse; } img.tiles[0].tileComps[0].resLevels[r].precinctWidth = precinctSize & 0x0f; img.tiles[0].tileComps[0].resLevels[r].precinctHeight = (precinctSize >> 4) & 0x0f; } else { img.tiles[0].tileComps[0].resLevels[r].precinctWidth = 15; img.tiles[0].tileComps[0].resLevels[r].precinctHeight = 15; } } for (i = 0; i < img.nXTiles * img.nYTiles; ++i) { for (comp = 0; comp < img.nComps; ++comp) { if (!(i == 0 && comp == 0)) { for (r = 0; r <= img.tiles[i].tileComps[comp].nDecompLevels; ++r) { img.tiles[i].tileComps[comp].resLevels[r].precinctWidth = img.tiles[0].tileComps[0].resLevels[r].precinctWidth; img.tiles[i].tileComps[comp].resLevels[r].precinctHeight = img.tiles[0].tileComps[0].resLevels[r].precinctHeight; } } } } haveCOD = gTrue; break; case 0x53: // COC - coding style component if (!haveCOD) { error(getPos(), "JPX COC marker segment before COD segment"); return gFalse; } if ((img.nComps > 256 && !readUWord(&comp)) || (img.nComps <= 256 && !readUByte(&comp)) || comp >= img.nComps || !readUByte(&style) || !readUByte(&img.tiles[0].tileComps[comp].nDecompLevels) || !readUByte(&img.tiles[0].tileComps[comp].codeBlockW) || !readUByte(&img.tiles[0].tileComps[comp].codeBlockH) || !readUByte(&img.tiles[0].tileComps[comp].codeBlockStyle) || !readUByte(&img.tiles[0].tileComps[comp].transform)) { error(getPos(), "Error in JPX COC marker segment"); return gFalse; } img.tiles[0].tileComps[comp].style = (img.tiles[0].tileComps[comp].style & ~1) | (style & 1); img.tiles[0].tileComps[comp].codeBlockW += 2; img.tiles[0].tileComps[comp].codeBlockH += 2; for (i = 0; i < img.nXTiles * img.nYTiles; ++i) { if (i != 0) { img.tiles[i].tileComps[comp].style = img.tiles[0].tileComps[comp].style; img.tiles[i].tileComps[comp].nDecompLevels = img.tiles[0].tileComps[comp].nDecompLevels; img.tiles[i].tileComps[comp].codeBlockW = img.tiles[0].tileComps[comp].codeBlockW; img.tiles[i].tileComps[comp].codeBlockH = img.tiles[0].tileComps[comp].codeBlockH; img.tiles[i].tileComps[comp].codeBlockStyle = img.tiles[0].tileComps[comp].codeBlockStyle; img.tiles[i].tileComps[comp].transform = img.tiles[0].tileComps[comp].transform; } img.tiles[i].tileComps[comp].resLevels = (JPXResLevel *)greallocn( img.tiles[i].tileComps[comp].resLevels, (img.tiles[i].tileComps[comp].nDecompLevels + 1), sizeof(JPXResLevel)); for (r = 0; r <= img.tiles[i].tileComps[comp].nDecompLevels; ++r) { img.tiles[i].tileComps[comp].resLevels[r].precincts = NULL; } } for (r = 0; r <= img.tiles[0].tileComps[comp].nDecompLevels; ++r) { if (img.tiles[0].tileComps[comp].style & 0x01) { if (!readUByte(&precinctSize)) { error(getPos(), "Error in JPX COD marker segment"); return gFalse; } img.tiles[0].tileComps[comp].resLevels[r].precinctWidth = precinctSize & 0x0f; img.tiles[0].tileComps[comp].resLevels[r].precinctHeight = (precinctSize >> 4) & 0x0f; } else { img.tiles[0].tileComps[comp].resLevels[r].precinctWidth = 15; img.tiles[0].tileComps[comp].resLevels[r].precinctHeight = 15; } } for (i = 1; i < img.nXTiles * img.nYTiles; ++i) { for (r = 0; r <= img.tiles[i].tileComps[comp].nDecompLevels; ++r) { img.tiles[i].tileComps[comp].resLevels[r].precinctWidth = img.tiles[0].tileComps[comp].resLevels[r].precinctWidth; img.tiles[i].tileComps[comp].resLevels[r].precinctHeight = img.tiles[0].tileComps[comp].resLevels[r].precinctHeight; } } break; case 0x5c: // QCD - quantization default if (!readUByte(&img.tiles[0].tileComps[0].quantStyle)) { error(getPos(), "Error in JPX QCD marker segment"); return gFalse; } if ((img.tiles[0].tileComps[0].quantStyle & 0x1f) == 0x00) { img.tiles[0].tileComps[0].nQuantSteps = segLen - 3; img.tiles[0].tileComps[0].quantSteps = (Guint *)greallocn(img.tiles[0].tileComps[0].quantSteps, img.tiles[0].tileComps[0].nQuantSteps, sizeof(Guint)); for (i = 0; i < img.tiles[0].tileComps[0].nQuantSteps; ++i) { if (!readUByte(&img.tiles[0].tileComps[0].quantSteps[i])) { error(getPos(), "Error in JPX QCD marker segment"); return gFalse; } } } else if ((img.tiles[0].tileComps[0].quantStyle & 0x1f) == 0x01) { img.tiles[0].tileComps[0].nQuantSteps = 1; img.tiles[0].tileComps[0].quantSteps = (Guint *)greallocn(img.tiles[0].tileComps[0].quantSteps, img.tiles[0].tileComps[0].nQuantSteps, sizeof(Guint)); if (!readUWord(&img.tiles[0].tileComps[0].quantSteps[0])) { error(getPos(), "Error in JPX QCD marker segment"); return gFalse; } } else if ((img.tiles[0].tileComps[0].quantStyle & 0x1f) == 0x02) { img.tiles[0].tileComps[0].nQuantSteps = (segLen - 3) / 2; img.tiles[0].tileComps[0].quantSteps = (Guint *)greallocn(img.tiles[0].tileComps[0].quantSteps, img.tiles[0].tileComps[0].nQuantSteps, sizeof(Guint)); for (i = 0; i < img.tiles[0].tileComps[0].nQuantSteps; ++i) { if (!readUWord(&img.tiles[0].tileComps[0].quantSteps[i])) { error(getPos(), "Error in JPX QCD marker segment"); return gFalse; } } } else { error(getPos(), "Error in JPX QCD marker segment"); return gFalse; } for (i = 0; i < img.nXTiles * img.nYTiles; ++i) { for (comp = 0; comp < img.nComps; ++comp) { if (!(i == 0 && comp == 0)) { img.tiles[i].tileComps[comp].quantStyle = img.tiles[0].tileComps[0].quantStyle; img.tiles[i].tileComps[comp].nQuantSteps = img.tiles[0].tileComps[0].nQuantSteps; img.tiles[i].tileComps[comp].quantSteps = (Guint *)greallocn(img.tiles[i].tileComps[comp].quantSteps, img.tiles[0].tileComps[0].nQuantSteps, sizeof(Guint)); for (j = 0; j < img.tiles[0].tileComps[0].nQuantSteps; ++j) { img.tiles[i].tileComps[comp].quantSteps[j] = img.tiles[0].tileComps[0].quantSteps[j]; } } } } haveQCD = gTrue; break; case 0x5d: // QCC - quantization component if (!haveQCD) { error(getPos(), "JPX QCC marker segment before QCD segment"); return gFalse; } if ((img.nComps > 256 && !readUWord(&comp)) || (img.nComps <= 256 && !readUByte(&comp)) || comp >= img.nComps || !readUByte(&img.tiles[0].tileComps[comp].quantStyle)) { error(getPos(), "Error in JPX QCC marker segment"); return gFalse; } if ((img.tiles[0].tileComps[comp].quantStyle & 0x1f) == 0x00) { img.tiles[0].tileComps[comp].nQuantSteps = segLen - (img.nComps > 256 ? 5 : 4); img.tiles[0].tileComps[comp].quantSteps = (Guint *)greallocn(img.tiles[0].tileComps[comp].quantSteps, img.tiles[0].tileComps[comp].nQuantSteps, sizeof(Guint)); for (i = 0; i < img.tiles[0].tileComps[comp].nQuantSteps; ++i) { if (!readUByte(&img.tiles[0].tileComps[comp].quantSteps[i])) { error(getPos(), "Error in JPX QCC marker segment"); return gFalse; } } } else if ((img.tiles[0].tileComps[comp].quantStyle & 0x1f) == 0x01) { img.tiles[0].tileComps[comp].nQuantSteps = 1; img.tiles[0].tileComps[comp].quantSteps = (Guint *)greallocn(img.tiles[0].tileComps[comp].quantSteps, img.tiles[0].tileComps[comp].nQuantSteps, sizeof(Guint)); if (!readUWord(&img.tiles[0].tileComps[comp].quantSteps[0])) { error(getPos(), "Error in JPX QCC marker segment"); return gFalse; } } else if ((img.tiles[0].tileComps[comp].quantStyle & 0x1f) == 0x02) { img.tiles[0].tileComps[comp].nQuantSteps = (segLen - (img.nComps > 256 ? 5 : 4)) / 2; img.tiles[0].tileComps[comp].quantSteps = (Guint *)greallocn(img.tiles[0].tileComps[comp].quantSteps, img.tiles[0].tileComps[comp].nQuantSteps, sizeof(Guint)); for (i = 0; i < img.tiles[0].tileComps[comp].nQuantSteps; ++i) { if (!readUWord(&img.tiles[0].tileComps[comp].quantSteps[i])) { error(getPos(), "Error in JPX QCD marker segment"); return gFalse; } } } else { error(getPos(), "Error in JPX QCC marker segment"); return gFalse; } for (i = 1; i < img.nXTiles * img.nYTiles; ++i) { img.tiles[i].tileComps[comp].quantStyle = img.tiles[0].tileComps[comp].quantStyle; img.tiles[i].tileComps[comp].nQuantSteps = img.tiles[0].tileComps[comp].nQuantSteps; img.tiles[i].tileComps[comp].quantSteps = (Guint *)greallocn(img.tiles[i].tileComps[comp].quantSteps, img.tiles[0].tileComps[comp].nQuantSteps, sizeof(Guint)); for (j = 0; j < img.tiles[0].tileComps[comp].nQuantSteps; ++j) { img.tiles[i].tileComps[comp].quantSteps[j] = img.tiles[0].tileComps[comp].quantSteps[j]; } } break; case 0x5e: // RGN - region of interest #if 1 //~ ROI is unimplemented fprintf(stderr, "RGN\n"); for (i = 0; i < segLen - 2; ++i) { if (str->getChar() == EOF) { error(getPos(), "Error in JPX PPM marker segment"); return gFalse; } } #else if ((img.nComps > 256 && !readUWord(&comp)) || (img.nComps <= 256 && !readUByte(&comp)) || comp >= img.nComps || !readUByte(&compInfo[comp].defROI.style) || !readUByte(&compInfo[comp].defROI.shift)) { error(getPos(), "Error in JPX RGN marker segment"); return gFalse; } #endif break; case 0x5f: // POC - progression order change #if 1 //~ progression order changes are unimplemented fprintf(stderr, "POC\n"); for (i = 0; i < segLen - 2; ++i) { if (str->getChar() == EOF) { error(getPos(), "Error in JPX PPM marker segment"); return gFalse; } } #else nProgs = (segLen - 2) / (img.nComps > 256 ? 9 : 7); progs = (JPXProgOrder *)gmallocn(nProgs, sizeof(JPXProgOrder)); for (i = 0; i < nProgs; ++i) { if (!readUByte(&progs[i].startRes) || !(img.nComps > 256 && readUWord(&progs[i].startComp)) || !(img.nComps <= 256 && readUByte(&progs[i].startComp)) || !readUWord(&progs[i].endLayer) || !readUByte(&progs[i].endRes) || !(img.nComps > 256 && readUWord(&progs[i].endComp)) || !(img.nComps <= 256 && readUByte(&progs[i].endComp)) || !readUByte(&progs[i].progOrder)) { error(getPos(), "Error in JPX POC marker segment"); return gFalse; } } #endif break; case 0x60: // PPM - packed packet headers, main header #if 1 //~ packed packet headers are unimplemented fprintf(stderr, "PPM\n"); for (i = 0; i < segLen - 2; ++i) { if (str->getChar() == EOF) { error(getPos(), "Error in JPX PPM marker segment"); return gFalse; } } #endif break; case 0x55: // TLM - tile-part lengths // skipped for (i = 0; i < segLen - 2; ++i) { if (str->getChar() == EOF) { error(getPos(), "Error in JPX TLM marker segment"); return gFalse; } } break; case 0x57: // PLM - packet length, main header // skipped for (i = 0; i < segLen - 2; ++i) { if (str->getChar() == EOF) { error(getPos(), "Error in JPX PLM marker segment"); return gFalse; } } break; case 0x63: // CRG - component registration // skipped for (i = 0; i < segLen - 2; ++i) { if (str->getChar() == EOF) { error(getPos(), "Error in JPX CRG marker segment"); return gFalse; } } break; case 0x64: // COM - comment // skipped for (i = 0; i < segLen - 2; ++i) { if (str->getChar() == EOF) { error(getPos(), "Error in JPX COM marker segment"); return gFalse; } } break; case 0x90: // SOT - start of tile haveSOT = gTrue; break; default: error(getPos(), "Unknown marker segment %02x in JPX stream", segType); for (i = 0; i < segLen - 2; ++i) { if (str->getChar() == EOF) { break; } } break; } } while (!haveSOT); if (!haveSIZ) { error(getPos(), "Missing SIZ marker segment in JPX stream"); return gFalse; } if (!haveCOD) { error(getPos(), "Missing COD marker segment in JPX stream"); return gFalse; } if (!haveQCD) { error(getPos(), "Missing QCD marker segment in JPX stream"); return gFalse; } //----- read the tile-parts while (1) { if (!readTilePart()) { return gFalse; } if (!readMarkerHdr(&segType, &segLen)) { error(getPos(), "Error in JPX codestream"); return gFalse; } if (segType != 0x90) { // SOT - start of tile break; } } if (segType != 0xd9) { // EOC - end of codestream error(getPos(), "Missing EOC marker in JPX codestream"); return gFalse; } //----- finish decoding the image for (i = 0; i < img.nXTiles * img.nYTiles; ++i) { tile = &img.tiles[i]; for (comp = 0; comp < img.nComps; ++comp) { tileComp = &tile->tileComps[comp]; inverseTransform(tileComp); } if (!inverseMultiCompAndDC(tile)) { return gFalse; } } //~ can free memory below tileComps here, and also tileComp.buf return gTrue; } GBool JPXStream::readTilePart() { JPXTile *tile; JPXTileComp *tileComp; JPXResLevel *resLevel; JPXPrecinct *precinct; JPXSubband *subband; JPXCodeBlock *cb; GBool haveSOD; Guint tileIdx, tilePartLen, tilePartIdx, nTileParts; GBool tilePartToEOC; Guint precinctSize, style; Guint n, nSBs, nx, ny, sbx0, sby0, comp, segLen; Guint i, j, k, cbX, cbY, r, pre, sb, cbi; int segType, level; // process the SOT marker segment if (!readUWord(&tileIdx) || !readULong(&tilePartLen) || !readUByte(&tilePartIdx) || !readUByte(&nTileParts)) { error(getPos(), "Error in JPX SOT marker segment"); return gFalse; } if (tileIdx >= img.nXTiles * img.nYTiles) { error(getPos(), "Weird tile index in JPX stream"); return gFalse; } tilePartToEOC = tilePartLen == 0; tilePartLen -= 12; // subtract size of SOT segment haveSOD = gFalse; do { if (!readMarkerHdr(&segType, &segLen)) { error(getPos(), "Error in JPX tile-part codestream"); return gFalse; } tilePartLen -= 2 + segLen; switch (segType) { case 0x52: // COD - coding style default if (!readUByte(&img.tiles[tileIdx].tileComps[0].style) || !readUByte(&img.tiles[tileIdx].progOrder) || !readUWord(&img.tiles[tileIdx].nLayers) || !readUByte(&img.tiles[tileIdx].multiComp) || !readUByte(&img.tiles[tileIdx].tileComps[0].nDecompLevels) || !readUByte(&img.tiles[tileIdx].tileComps[0].codeBlockW) || !readUByte(&img.tiles[tileIdx].tileComps[0].codeBlockH) || !readUByte(&img.tiles[tileIdx].tileComps[0].codeBlockStyle) || !readUByte(&img.tiles[tileIdx].tileComps[0].transform)) { error(getPos(), "Error in JPX COD marker segment"); return gFalse; } img.tiles[tileIdx].tileComps[0].codeBlockW += 2; img.tiles[tileIdx].tileComps[0].codeBlockH += 2; for (comp = 0; comp < img.nComps; ++comp) { if (comp != 0) { img.tiles[tileIdx].tileComps[comp].style = img.tiles[tileIdx].tileComps[0].style; img.tiles[tileIdx].tileComps[comp].nDecompLevels = img.tiles[tileIdx].tileComps[0].nDecompLevels; img.tiles[tileIdx].tileComps[comp].codeBlockW = img.tiles[tileIdx].tileComps[0].codeBlockW; img.tiles[tileIdx].tileComps[comp].codeBlockH = img.tiles[tileIdx].tileComps[0].codeBlockH; img.tiles[tileIdx].tileComps[comp].codeBlockStyle = img.tiles[tileIdx].tileComps[0].codeBlockStyle; img.tiles[tileIdx].tileComps[comp].transform = img.tiles[tileIdx].tileComps[0].transform; } img.tiles[tileIdx].tileComps[comp].resLevels = (JPXResLevel *)greallocn( img.tiles[tileIdx].tileComps[comp].resLevels, (img.tiles[tileIdx].tileComps[comp].nDecompLevels + 1), sizeof(JPXResLevel)); for (r = 0; r <= img.tiles[tileIdx].tileComps[comp].nDecompLevels; ++r) { img.tiles[tileIdx].tileComps[comp].resLevels[r].precincts = NULL; } } for (r = 0; r <= img.tiles[tileIdx].tileComps[0].nDecompLevels; ++r) { if (img.tiles[tileIdx].tileComps[0].style & 0x01) { if (!readUByte(&precinctSize)) { error(getPos(), "Error in JPX COD marker segment"); return gFalse; } img.tiles[tileIdx].tileComps[0].resLevels[r].precinctWidth = precinctSize & 0x0f; img.tiles[tileIdx].tileComps[0].resLevels[r].precinctHeight = (precinctSize >> 4) & 0x0f; } else { img.tiles[tileIdx].tileComps[0].resLevels[r].precinctWidth = 15; img.tiles[tileIdx].tileComps[0].resLevels[r].precinctHeight = 15; } } for (comp = 1; comp < img.nComps; ++comp) { for (r = 0; r <= img.tiles[tileIdx].tileComps[comp].nDecompLevels; ++r) { img.tiles[tileIdx].tileComps[comp].resLevels[r].precinctWidth = img.tiles[tileIdx].tileComps[0].resLevels[r].precinctWidth; img.tiles[tileIdx].tileComps[comp].resLevels[r].precinctHeight = img.tiles[tileIdx].tileComps[0].resLevels[r].precinctHeight; } } break; case 0x53: // COC - coding style component if ((img.nComps > 256 && !readUWord(&comp)) || (img.nComps <= 256 && !readUByte(&comp)) || comp >= img.nComps || !readUByte(&style) || !readUByte(&img.tiles[tileIdx].tileComps[comp].nDecompLevels) || !readUByte(&img.tiles[tileIdx].tileComps[comp].codeBlockW) || !readUByte(&img.tiles[tileIdx].tileComps[comp].codeBlockH) || !readUByte(&img.tiles[tileIdx].tileComps[comp].codeBlockStyle) || !readUByte(&img.tiles[tileIdx].tileComps[comp].transform)) { error(getPos(), "Error in JPX COC marker segment"); return gFalse; } img.tiles[tileIdx].tileComps[comp].style = (img.tiles[tileIdx].tileComps[comp].style & ~1) | (style & 1); img.tiles[tileIdx].tileComps[comp].codeBlockW += 2; img.tiles[tileIdx].tileComps[comp].codeBlockH += 2; img.tiles[tileIdx].tileComps[comp].resLevels = (JPXResLevel *)greallocn( img.tiles[tileIdx].tileComps[comp].resLevels, (img.tiles[tileIdx].tileComps[comp].nDecompLevels + 1), sizeof(JPXResLevel)); for (r = 0; r <= img.tiles[tileIdx].tileComps[comp].nDecompLevels; ++r) { img.tiles[tileIdx].tileComps[comp].resLevels[r].precincts = NULL; } for (r = 0; r <= img.tiles[tileIdx].tileComps[comp].nDecompLevels; ++r) { if (img.tiles[tileIdx].tileComps[comp].style & 0x01) { if (!readUByte(&precinctSize)) { error(getPos(), "Error in JPX COD marker segment"); return gFalse; } img.tiles[tileIdx].tileComps[comp].resLevels[r].precinctWidth = precinctSize & 0x0f; img.tiles[tileIdx].tileComps[comp].resLevels[r].precinctHeight = (precinctSize >> 4) & 0x0f; } else { img.tiles[tileIdx].tileComps[comp].resLevels[r].precinctWidth = 15; img.tiles[tileIdx].tileComps[comp].resLevels[r].precinctHeight = 15; } } break; case 0x5c: // QCD - quantization default if (!readUByte(&img.tiles[tileIdx].tileComps[0].quantStyle)) { error(getPos(), "Error in JPX QCD marker segment"); return gFalse; } if ((img.tiles[tileIdx].tileComps[0].quantStyle & 0x1f) == 0x00) { img.tiles[tileIdx].tileComps[0].nQuantSteps = segLen - 3; img.tiles[tileIdx].tileComps[0].quantSteps = (Guint *)greallocn(img.tiles[tileIdx].tileComps[0].quantSteps, img.tiles[tileIdx].tileComps[0].nQuantSteps, sizeof(Guint)); for (i = 0; i < img.tiles[tileIdx].tileComps[0].nQuantSteps; ++i) { if (!readUByte(&img.tiles[tileIdx].tileComps[0].quantSteps[i])) { error(getPos(), "Error in JPX QCD marker segment"); return gFalse; } } } else if ((img.tiles[tileIdx].tileComps[0].quantStyle & 0x1f) == 0x01) { img.tiles[tileIdx].tileComps[0].nQuantSteps = 1; img.tiles[tileIdx].tileComps[0].quantSteps = (Guint *)greallocn(img.tiles[tileIdx].tileComps[0].quantSteps, img.tiles[tileIdx].tileComps[0].nQuantSteps, sizeof(Guint)); if (!readUWord(&img.tiles[tileIdx].tileComps[0].quantSteps[0])) { error(getPos(), "Error in JPX QCD marker segment"); return gFalse; } } else if ((img.tiles[tileIdx].tileComps[0].quantStyle & 0x1f) == 0x02) { img.tiles[tileIdx].tileComps[0].nQuantSteps = (segLen - 3) / 2; img.tiles[tileIdx].tileComps[0].quantSteps = (Guint *)greallocn(img.tiles[tileIdx].tileComps[0].quantSteps, img.tiles[tileIdx].tileComps[0].nQuantSteps, sizeof(Guint)); for (i = 0; i < img.tiles[tileIdx].tileComps[0].nQuantSteps; ++i) { if (!readUWord(&img.tiles[tileIdx].tileComps[0].quantSteps[i])) { error(getPos(), "Error in JPX QCD marker segment"); return gFalse; } } } else { error(getPos(), "Error in JPX QCD marker segment"); return gFalse; } for (comp = 1; comp < img.nComps; ++comp) { img.tiles[tileIdx].tileComps[comp].quantStyle = img.tiles[tileIdx].tileComps[0].quantStyle; img.tiles[tileIdx].tileComps[comp].nQuantSteps = img.tiles[tileIdx].tileComps[0].nQuantSteps; img.tiles[tileIdx].tileComps[comp].quantSteps = (Guint *)greallocn(img.tiles[tileIdx].tileComps[comp].quantSteps, img.tiles[tileIdx].tileComps[0].nQuantSteps, sizeof(Guint)); for (j = 0; j < img.tiles[tileIdx].tileComps[0].nQuantSteps; ++j) { img.tiles[tileIdx].tileComps[comp].quantSteps[j] = img.tiles[tileIdx].tileComps[0].quantSteps[j]; } } break; case 0x5d: // QCC - quantization component if ((img.nComps > 256 && !readUWord(&comp)) || (img.nComps <= 256 && !readUByte(&comp)) || comp >= img.nComps || !readUByte(&img.tiles[tileIdx].tileComps[comp].quantStyle)) { error(getPos(), "Error in JPX QCC marker segment"); return gFalse; } if ((img.tiles[tileIdx].tileComps[comp].quantStyle & 0x1f) == 0x00) { img.tiles[tileIdx].tileComps[comp].nQuantSteps = segLen - (img.nComps > 256 ? 5 : 4); img.tiles[tileIdx].tileComps[comp].quantSteps = (Guint *)greallocn(img.tiles[tileIdx].tileComps[comp].quantSteps, img.tiles[tileIdx].tileComps[comp].nQuantSteps, sizeof(Guint)); for (i = 0; i < img.tiles[tileIdx].tileComps[comp].nQuantSteps; ++i) { if (!readUByte(&img.tiles[tileIdx].tileComps[comp].quantSteps[i])) { error(getPos(), "Error in JPX QCC marker segment"); return gFalse; } } } else if ((img.tiles[tileIdx].tileComps[comp].quantStyle & 0x1f) == 0x01) { img.tiles[tileIdx].tileComps[comp].nQuantSteps = 1; img.tiles[tileIdx].tileComps[comp].quantSteps = (Guint *)greallocn(img.tiles[tileIdx].tileComps[comp].quantSteps, img.tiles[tileIdx].tileComps[comp].nQuantSteps, sizeof(Guint)); if (!readUWord(&img.tiles[tileIdx].tileComps[comp].quantSteps[0])) { error(getPos(), "Error in JPX QCC marker segment"); return gFalse; } } else if ((img.tiles[tileIdx].tileComps[comp].quantStyle & 0x1f) == 0x02) { img.tiles[tileIdx].tileComps[comp].nQuantSteps = (segLen - (img.nComps > 256 ? 5 : 4)) / 2; img.tiles[tileIdx].tileComps[comp].quantSteps = (Guint *)greallocn(img.tiles[tileIdx].tileComps[comp].quantSteps, img.tiles[tileIdx].tileComps[comp].nQuantSteps, sizeof(Guint)); for (i = 0; i < img.tiles[tileIdx].tileComps[comp].nQuantSteps; ++i) { if (!readUWord(&img.tiles[tileIdx].tileComps[comp].quantSteps[i])) { error(getPos(), "Error in JPX QCD marker segment"); return gFalse; } } } else { error(getPos(), "Error in JPX QCC marker segment"); return gFalse; } break; case 0x5e: // RGN - region of interest #if 1 //~ ROI is unimplemented fprintf(stderr, "RGN\n"); for (i = 0; i < segLen - 2; ++i) { if (str->getChar() == EOF) { error(getPos(), "Error in JPX PPM marker segment"); return gFalse; } } #else if ((img.nComps > 256 && !readUWord(&comp)) || (img.nComps <= 256 && !readUByte(&comp)) || comp >= img.nComps || !readUByte(&compInfo[comp].roi.style) || !readUByte(&compInfo[comp].roi.shift)) { error(getPos(), "Error in JPX RGN marker segment"); return gFalse; } #endif break; case 0x5f: // POC - progression order change #if 1 //~ progression order changes are unimplemented fprintf(stderr, "POC\n"); for (i = 0; i < segLen - 2; ++i) { if (str->getChar() == EOF) { error(getPos(), "Error in JPX PPM marker segment"); return gFalse; } } #else nTileProgs = (segLen - 2) / (img.nComps > 256 ? 9 : 7); tileProgs = (JPXProgOrder *)gmallocn(nTileProgs, sizeof(JPXProgOrder)); for (i = 0; i < nTileProgs; ++i) { if (!readUByte(&tileProgs[i].startRes) || !(img.nComps > 256 && readUWord(&tileProgs[i].startComp)) || !(img.nComps <= 256 && readUByte(&tileProgs[i].startComp)) || !readUWord(&tileProgs[i].endLayer) || !readUByte(&tileProgs[i].endRes) || !(img.nComps > 256 && readUWord(&tileProgs[i].endComp)) || !(img.nComps <= 256 && readUByte(&tileProgs[i].endComp)) || !readUByte(&tileProgs[i].progOrder)) { error(getPos(), "Error in JPX POC marker segment"); return gFalse; } } #endif break; case 0x61: // PPT - packed packet headers, tile-part hdr #if 1 //~ packed packet headers are unimplemented fprintf(stderr, "PPT\n"); for (i = 0; i < segLen - 2; ++i) { if (str->getChar() == EOF) { error(getPos(), "Error in JPX PPT marker segment"); return gFalse; } } #endif case 0x58: // PLT - packet length, tile-part header // skipped for (i = 0; i < segLen - 2; ++i) { if (str->getChar() == EOF) { error(getPos(), "Error in JPX PLT marker segment"); return gFalse; } } break; case 0x64: // COM - comment // skipped for (i = 0; i < segLen - 2; ++i) { if (str->getChar() == EOF) { error(getPos(), "Error in JPX COM marker segment"); return gFalse; } } break; case 0x93: // SOD - start of data haveSOD = gTrue; break; default: error(getPos(), "Unknown marker segment %02x in JPX tile-part stream", segType); for (i = 0; i < segLen - 2; ++i) { if (str->getChar() == EOF) { break; } } break; } } while (!haveSOD); //----- initialize the tile, precincts, and code-blocks if (tilePartIdx == 0) { tile = &img.tiles[tileIdx]; i = tileIdx / img.nXTiles; j = tileIdx % img.nXTiles; if ((tile->x0 = img.xTileOffset + j * img.xTileSize) < img.xOffset) { tile->x0 = img.xOffset; } if ((tile->y0 = img.yTileOffset + i * img.yTileSize) < img.yOffset) { tile->y0 = img.yOffset; } if ((tile->x1 = img.xTileOffset + (j + 1) * img.xTileSize) > img.xSize) { tile->x1 = img.xSize; } if ((tile->y1 = img.yTileOffset + (i + 1) * img.yTileSize) > img.ySize) { tile->y1 = img.ySize; } tile->comp = 0; tile->res = 0; tile->precinct = 0; tile->layer = 0; tile->maxNDecompLevels = 0; for (comp = 0; comp < img.nComps; ++comp) { tileComp = &tile->tileComps[comp]; if (tileComp->nDecompLevels > tile->maxNDecompLevels) { tile->maxNDecompLevels = tileComp->nDecompLevels; } tileComp->x0 = jpxCeilDiv(tile->x0, tileComp->hSep); tileComp->y0 = jpxCeilDiv(tile->y0, tileComp->hSep); tileComp->x1 = jpxCeilDiv(tile->x1, tileComp->hSep); tileComp->y1 = jpxCeilDiv(tile->y1, tileComp->hSep); tileComp->cbW = 1 << tileComp->codeBlockW; tileComp->cbH = 1 << tileComp->codeBlockH; tileComp->data = (int *)gmallocn((tileComp->x1 - tileComp->x0) * (tileComp->y1 - tileComp->y0), sizeof(int)); if (tileComp->x1 - tileComp->x0 > tileComp->y1 - tileComp->y0) { n = tileComp->x1 - tileComp->x0; } else { n = tileComp->y1 - tileComp->y0; } tileComp->buf = (int *)gmallocn(n + 8, sizeof(int)); for (r = 0; r <= tileComp->nDecompLevels; ++r) { resLevel = &tileComp->resLevels[r]; k = r == 0 ? tileComp->nDecompLevels : tileComp->nDecompLevels - r + 1; resLevel->x0 = jpxCeilDivPow2(tileComp->x0, k); resLevel->y0 = jpxCeilDivPow2(tileComp->y0, k); resLevel->x1 = jpxCeilDivPow2(tileComp->x1, k); resLevel->y1 = jpxCeilDivPow2(tileComp->y1, k); if (r == 0) { resLevel->bx0[0] = resLevel->x0; resLevel->by0[0] = resLevel->y0; resLevel->bx1[0] = resLevel->x1; resLevel->by1[0] = resLevel->y1; } else { resLevel->bx0[0] = jpxCeilDivPow2(tileComp->x0 - (1 << (k-1)), k); resLevel->by0[0] = resLevel->y0; resLevel->bx1[0] = jpxCeilDivPow2(tileComp->x1 - (1 << (k-1)), k); resLevel->by1[0] = resLevel->y1; resLevel->bx0[1] = resLevel->x0; resLevel->by0[1] = jpxCeilDivPow2(tileComp->y0 - (1 << (k-1)), k); resLevel->bx1[1] = resLevel->x1; resLevel->by1[1] = jpxCeilDivPow2(tileComp->y1 - (1 << (k-1)), k); resLevel->bx0[2] = jpxCeilDivPow2(tileComp->x0 - (1 << (k-1)), k); resLevel->by0[2] = jpxCeilDivPow2(tileComp->y0 - (1 << (k-1)), k); resLevel->bx1[2] = jpxCeilDivPow2(tileComp->x1 - (1 << (k-1)), k); resLevel->by1[2] = jpxCeilDivPow2(tileComp->y1 - (1 << (k-1)), k); } resLevel->precincts = (JPXPrecinct *)gmallocn(1, sizeof(JPXPrecinct)); for (pre = 0; pre < 1; ++pre) { precinct = &resLevel->precincts[pre]; precinct->x0 = resLevel->x0; precinct->y0 = resLevel->y0; precinct->x1 = resLevel->x1; precinct->y1 = resLevel->y1; nSBs = r == 0 ? 1 : 3; precinct->subbands = (JPXSubband *)gmallocn(nSBs, sizeof(JPXSubband)); for (sb = 0; sb < nSBs; ++sb) { subband = &precinct->subbands[sb]; subband->x0 = resLevel->bx0[sb]; subband->y0 = resLevel->by0[sb]; subband->x1 = resLevel->bx1[sb]; subband->y1 = resLevel->by1[sb]; subband->nXCBs = jpxCeilDivPow2(subband->x1, tileComp->codeBlockW) - jpxFloorDivPow2(subband->x0, tileComp->codeBlockW); subband->nYCBs = jpxCeilDivPow2(subband->y1, tileComp->codeBlockH) - jpxFloorDivPow2(subband->y0, tileComp->codeBlockH); n = subband->nXCBs > subband->nYCBs ? subband->nXCBs : subband->nYCBs; for (subband->maxTTLevel = 0, --n; n; ++subband->maxTTLevel, n >>= 1) ; n = 0; for (level = subband->maxTTLevel; level >= 0; --level) { nx = jpxCeilDivPow2(subband->nXCBs, level); ny = jpxCeilDivPow2(subband->nYCBs, level); n += nx * ny; } subband->inclusion = (JPXTagTreeNode *)gmallocn(n, sizeof(JPXTagTreeNode)); subband->zeroBitPlane = (JPXTagTreeNode *)gmallocn(n, sizeof(JPXTagTreeNode)); for (k = 0; k < n; ++k) { subband->inclusion[k].finished = gFalse; subband->inclusion[k].val = 0; subband->zeroBitPlane[k].finished = gFalse; subband->zeroBitPlane[k].val = 0; } subband->cbs = (JPXCodeBlock *)gmallocn(subband->nXCBs * subband->nYCBs, sizeof(JPXCodeBlock)); sbx0 = jpxFloorDivPow2(subband->x0, tileComp->codeBlockW); sby0 = jpxFloorDivPow2(subband->y0, tileComp->codeBlockH); cb = subband->cbs; for (cbY = 0; cbY < subband->nYCBs; ++cbY) { for (cbX = 0; cbX < subband->nXCBs; ++cbX) { cb->x0 = (sbx0 + cbX) << tileComp->codeBlockW; cb->x1 = cb->x0 + tileComp->cbW; if (subband->x0 > cb->x0) { cb->x0 = subband->x0; } if (subband->x1 < cb->x1) { cb->x1 = subband->x1; } cb->y0 = (sby0 + cbY) << tileComp->codeBlockH; cb->y1 = cb->y0 + tileComp->cbH; if (subband->y0 > cb->y0) { cb->y0 = subband->y0; } if (subband->y1 < cb->y1) { cb->y1 = subband->y1; } cb->seen = gFalse; cb->lBlock = 3; cb->nextPass = jpxPassCleanup; cb->nZeroBitPlanes = 0; cb->coeffs = (JPXCoeff *)gmallocn((1 << (tileComp->codeBlockW + tileComp->codeBlockH)), sizeof(JPXCoeff)); for (cbi = 0; cbi < (Guint)(1 << (tileComp->codeBlockW + tileComp->codeBlockH)); ++cbi) { cb->coeffs[cbi].flags = 0; cb->coeffs[cbi].len = 0; cb->coeffs[cbi].mag = 0; } cb->arithDecoder = NULL; cb->stats = NULL; ++cb; } } } } } } } return readTilePartData(tileIdx, tilePartLen, tilePartToEOC); } GBool JPXStream::readTilePartData(Guint tileIdx, Guint tilePartLen, GBool tilePartToEOC) { JPXTile *tile; JPXTileComp *tileComp; JPXResLevel *resLevel; JPXPrecinct *precinct; JPXSubband *subband; JPXCodeBlock *cb; Guint ttVal; Guint bits, cbX, cbY, nx, ny, i, j, n, sb; int level; tile = &img.tiles[tileIdx]; // read all packets from this tile-part while (1) { if (tilePartToEOC) { //~ peek for an EOC marker } else if (tilePartLen == 0) { break; } tileComp = &tile->tileComps[tile->comp]; resLevel = &tileComp->resLevels[tile->res]; precinct = &resLevel->precincts[tile->precinct]; //----- packet header // zero-length flag if (!readBits(1, &bits)) { goto err; } if (!bits) { // packet is empty -- clear all code-block inclusion flags for (sb = 0; sb < (tile->res == 0 ? 1 : 3); ++sb) { subband = &precinct->subbands[sb]; for (cbY = 0; cbY < subband->nYCBs; ++cbY) { for (cbX = 0; cbX < subband->nXCBs; ++cbX) { cb = &subband->cbs[cbY * subband->nXCBs + cbX]; cb->included = gFalse; } } } } else { for (sb = 0; sb < (tile->res == 0 ? 1 : 3); ++sb) { subband = &precinct->subbands[sb]; for (cbY = 0; cbY < subband->nYCBs; ++cbY) { for (cbX = 0; cbX < subband->nXCBs; ++cbX) { cb = &subband->cbs[cbY * subband->nXCBs + cbX]; // skip code-blocks with no coefficients if (cb->x0 >= cb->x1 || cb->y0 >= cb->y1) { cb->included = gFalse; continue; } // code-block inclusion if (cb->seen) { if (!readBits(1, &cb->included)) { goto err; } } else { ttVal = 0; i = 0; for (level = subband->maxTTLevel; level >= 0; --level) { nx = jpxCeilDivPow2(subband->nXCBs, level); ny = jpxCeilDivPow2(subband->nYCBs, level); j = i + (cbY >> level) * nx + (cbX >> level); if (!subband->inclusion[j].finished && !subband->inclusion[j].val) { subband->inclusion[j].val = ttVal; } else { ttVal = subband->inclusion[j].val; } while (!subband->inclusion[j].finished && ttVal <= tile->layer) { if (!readBits(1, &bits)) { goto err; } if (bits == 1) { subband->inclusion[j].finished = gTrue; } else { ++ttVal; } } subband->inclusion[j].val = ttVal; if (ttVal > tile->layer) { break; } i += nx * ny; } cb->included = level < 0; } if (cb->included) { // zero bit-plane count if (!cb->seen) { ttVal = 0; i = 0; for (level = subband->maxTTLevel; level >= 0; --level) { nx = jpxCeilDivPow2(subband->nXCBs, level); ny = jpxCeilDivPow2(subband->nYCBs, level); j = i + (cbY >> level) * nx + (cbX >> level); if (!subband->zeroBitPlane[j].finished && !subband->zeroBitPlane[j].val) { subband->zeroBitPlane[j].val = ttVal; } else { ttVal = subband->zeroBitPlane[j].val; } while (!subband->zeroBitPlane[j].finished) { if (!readBits(1, &bits)) { goto err; } if (bits == 1) { subband->zeroBitPlane[j].finished = gTrue; } else { ++ttVal; } } subband->zeroBitPlane[j].val = ttVal; i += nx * ny; } cb->nZeroBitPlanes = ttVal; } // number of coding passes if (!readBits(1, &bits)) { goto err; } if (bits == 0) { cb->nCodingPasses = 1; } else { if (!readBits(1, &bits)) { goto err; } if (bits == 0) { cb->nCodingPasses = 2; } else { if (!readBits(2, &bits)) { goto err; } if (bits < 3) { cb->nCodingPasses = 3 + bits; } else { if (!readBits(5, &bits)) { goto err; } if (bits < 31) { cb->nCodingPasses = 6 + bits; } else { if (!readBits(7, &bits)) { goto err; } cb->nCodingPasses = 37 + bits; } } } } // update Lblock while (1) { if (!readBits(1, &bits)) { goto err; } if (!bits) { break; } ++cb->lBlock; } // length of compressed data //~ deal with multiple codeword segments for (n = cb->lBlock, i = cb->nCodingPasses >> 1; i; ++n, i >>= 1) ; if (!readBits(n, &cb->dataLen)) { goto err; } } } } } } tilePartLen -= byteCount; clearBitBuf(); //----- packet data for (sb = 0; sb < (tile->res == 0 ? 1 : 3); ++sb) { subband = &precinct->subbands[sb]; for (cbY = 0; cbY < subband->nYCBs; ++cbY) { for (cbX = 0; cbX < subband->nXCBs; ++cbX) { cb = &subband->cbs[cbY * subband->nXCBs + cbX]; if (cb->included) { if (!readCodeBlockData(tileComp, resLevel, precinct, subband, tile->res, sb, cb)) { return gFalse; } tilePartLen -= cb->dataLen; cb->seen = gTrue; } } } } //----- next packet switch (tile->progOrder) { case 0: // layer, resolution level, component, precinct if (++tile->comp == img.nComps) { tile->comp = 0; if (++tile->res == tile->maxNDecompLevels + 1) { tile->res = 0; if (++tile->layer == tile->nLayers) { tile->layer = 0; } } } break; case 1: // resolution level, layer, component, precinct if (++tile->comp == img.nComps) { tile->comp = 0; if (++tile->layer == tile->nLayers) { tile->layer = 0; if (++tile->res == tile->maxNDecompLevels + 1) { tile->res = 0; } } } break; case 2: // resolution level, precinct, component, layer //~ this isn't correct -- see B.12.1.3 if (++tile->layer == tile->nLayers) { tile->layer = 0; if (++tile->comp == img.nComps) { tile->comp = 0; if (++tile->res == tile->maxNDecompLevels + 1) { tile->res = 0; } } } break; case 3: // precinct, component, resolution level, layer //~ this isn't correct -- see B.12.1.4 if (++tile->layer == tile->nLayers) { tile->layer = 0; if (++tile->res == tile->maxNDecompLevels + 1) { tile->res = 0; if (++tile->comp == img.nComps) { tile->comp = 0; } } } break; case 4: // component, precinct, resolution level, layer //~ this isn't correct -- see B.12.1.5 if (++tile->layer == tile->nLayers) { tile->layer = 0; if (++tile->res == tile->maxNDecompLevels + 1) { tile->res = 0; if (++tile->comp == img.nComps) { tile->comp = 0; } } } break; } } return gTrue; err: error(getPos(), "Error in JPX stream"); return gFalse; } GBool JPXStream::readCodeBlockData(JPXTileComp *tileComp, JPXResLevel *resLevel, JPXPrecinct *precinct, JPXSubband *subband, Guint res, Guint sb, JPXCodeBlock *cb) { JPXCoeff *coeff0, *coeff1, *coeff; Guint horiz, vert, diag, all, cx, xorBit; int horizSign, vertSign; Guint i, x, y0, y1, y2; if (cb->arithDecoder) { cb->arithDecoder->restart(cb->dataLen); } else { cb->arithDecoder = new JArithmeticDecoder(); cb->arithDecoder->setStream(str, cb->dataLen); cb->arithDecoder->start(); cb->stats = new JArithmeticDecoderStats(jpxNContexts); cb->stats->setEntry(jpxContextSigProp, 4, 0); cb->stats->setEntry(jpxContextRunLength, 3, 0); cb->stats->setEntry(jpxContextUniform, 46, 0); } for (i = 0; i < cb->nCodingPasses; ++i) { switch (cb->nextPass) { //----- significance propagation pass case jpxPassSigProp: for (y0 = cb->y0, coeff0 = cb->coeffs; y0 < cb->y1; y0 += 4, coeff0 += 4 << tileComp->codeBlockW) { for (x = cb->x0, coeff1 = coeff0; x < cb->x1; ++x, ++coeff1) { for (y1 = 0, coeff = coeff1; y1 < 4 && y0+y1 < cb->y1; ++y1, coeff += tileComp->cbW) { if (!(coeff->flags & jpxCoeffSignificant)) { horiz = vert = diag = 0; horizSign = vertSign = 2; if (x > cb->x0) { if (coeff[-1].flags & jpxCoeffSignificant) { ++horiz; horizSign += (coeff[-1].flags & jpxCoeffSign) ? -1 : 1; } if (y0+y1 > cb->y0) { diag += (coeff[-(int)tileComp->cbW - 1].flags >> jpxCoeffSignificantB) & 1; } if (y0+y1 < cb->y1 - 1) { diag += (coeff[tileComp->cbW - 1].flags >> jpxCoeffSignificantB) & 1; } } if (x < cb->x1 - 1) { if (coeff[1].flags & jpxCoeffSignificant) { ++horiz; horizSign += (coeff[1].flags & jpxCoeffSign) ? -1 : 1; } if (y0+y1 > cb->y0) { diag += (coeff[-(int)tileComp->cbW + 1].flags >> jpxCoeffSignificantB) & 1; } if (y0+y1 < cb->y1 - 1) { diag += (coeff[tileComp->cbW + 1].flags >> jpxCoeffSignificantB) & 1; } } if (y0+y1 > cb->y0) { if (coeff[-(int)tileComp->cbW].flags & jpxCoeffSignificant) { ++vert; vertSign += (coeff[-(int)tileComp->cbW].flags & jpxCoeffSign) ? -1 : 1; } } if (y0+y1 < cb->y1 - 1) { if (coeff[tileComp->cbW].flags & jpxCoeffSignificant) { ++vert; vertSign += (coeff[tileComp->cbW].flags & jpxCoeffSign) ? -1 : 1; } } cx = sigPropContext[horiz][vert][diag][res == 0 ? 1 : sb]; if (cx != 0) { if (cb->arithDecoder->decodeBit(cx, cb->stats)) { coeff->flags |= jpxCoeffSignificant | jpxCoeffFirstMagRef; coeff->mag = (coeff->mag << 1) | 1; cx = signContext[horizSign][vertSign][0]; xorBit = signContext[horizSign][vertSign][1]; if (cb->arithDecoder->decodeBit(cx, cb->stats) ^ xorBit) { coeff->flags |= jpxCoeffSign; } } ++coeff->len; coeff->flags |= jpxCoeffTouched; } } } } } ++cb->nextPass; break; //----- magnitude refinement pass case jpxPassMagRef: for (y0 = cb->y0, coeff0 = cb->coeffs; y0 < cb->y1; y0 += 4, coeff0 += 4 << tileComp->codeBlockW) { for (x = cb->x0, coeff1 = coeff0; x < cb->x1; ++x, ++coeff1) { for (y1 = 0, coeff = coeff1; y1 < 4 && y0+y1 < cb->y1; ++y1, coeff += tileComp->cbW) { if ((coeff->flags & jpxCoeffSignificant) && !(coeff->flags & jpxCoeffTouched)) { if (coeff->flags & jpxCoeffFirstMagRef) { all = 0; if (x > cb->x0) { all += (coeff[-1].flags >> jpxCoeffSignificantB) & 1; if (y0+y1 > cb->y0) { all += (coeff[-(int)tileComp->cbW - 1].flags >> jpxCoeffSignificantB) & 1; } if (y0+y1 < cb->y1 - 1) { all += (coeff[tileComp->cbW - 1].flags >> jpxCoeffSignificantB) & 1; } } if (x < cb->x1 - 1) { all += (coeff[1].flags >> jpxCoeffSignificantB) & 1; if (y0+y1 > cb->y0) { all += (coeff[-(int)tileComp->cbW + 1].flags >> jpxCoeffSignificantB) & 1; } if (y0+y1 < cb->y1 - 1) { all += (coeff[tileComp->cbW + 1].flags >> jpxCoeffSignificantB) & 1; } } if (y0+y1 > cb->y0) { all += (coeff[-(int)tileComp->cbW].flags >> jpxCoeffSignificantB) & 1; } if (y0+y1 < cb->y1 - 1) { all += (coeff[tileComp->cbW].flags >> jpxCoeffSignificantB) & 1; } cx = all ? 15 : 14; } else { cx = 16; } coeff->mag = (coeff->mag << 1) | cb->arithDecoder->decodeBit(cx, cb->stats); ++coeff->len; coeff->flags |= jpxCoeffTouched; coeff->flags &= ~jpxCoeffFirstMagRef; } } } } ++cb->nextPass; break; //----- cleanup pass case jpxPassCleanup: for (y0 = cb->y0, coeff0 = cb->coeffs; y0 < cb->y1; y0 += 4, coeff0 += 4 << tileComp->codeBlockW) { for (x = cb->x0, coeff1 = coeff0; x < cb->x1; ++x, ++coeff1) { y1 = 0; if (y0 + 3 < cb->y1 && !(coeff1->flags & jpxCoeffTouched) && !(coeff1[tileComp->cbW].flags & jpxCoeffTouched) && !(coeff1[2 * tileComp->cbW].flags & jpxCoeffTouched) && !(coeff1[3 * tileComp->cbW].flags & jpxCoeffTouched) && (x == cb->x0 || y0 == cb->y0 || !(coeff1[-(int)tileComp->cbW - 1].flags & jpxCoeffSignificant)) && (y0 == cb->y0 || !(coeff1[-(int)tileComp->cbW].flags & jpxCoeffSignificant)) && (x == cb->x1 - 1 || y0 == cb->y0 || !(coeff1[-(int)tileComp->cbW + 1].flags & jpxCoeffSignificant)) && (x == cb->x0 || (!(coeff1[-1].flags & jpxCoeffSignificant) && !(coeff1[tileComp->cbW - 1].flags & jpxCoeffSignificant) && !(coeff1[2 * tileComp->cbW - 1].flags & jpxCoeffSignificant) && !(coeff1[3 * tileComp->cbW - 1].flags & jpxCoeffSignificant))) && (x == cb->x1 - 1 || (!(coeff1[1].flags & jpxCoeffSignificant) && !(coeff1[tileComp->cbW + 1].flags & jpxCoeffSignificant) && !(coeff1[2 * tileComp->cbW + 1].flags & jpxCoeffSignificant) && !(coeff1[3 * tileComp->cbW + 1].flags & jpxCoeffSignificant))) && (x == cb->x0 || y0+4 == cb->y1 || !(coeff1[4 * tileComp->cbW - 1].flags & jpxCoeffSignificant)) && (y0+4 == cb->y1 || !(coeff1[4 * tileComp->cbW].flags & jpxCoeffSignificant)) && (x == cb->x1 - 1 || y0+4 == cb->y1 || !(coeff1[4 * tileComp->cbW + 1].flags & jpxCoeffSignificant))) { if (cb->arithDecoder->decodeBit(jpxContextRunLength, cb->stats)) { y1 = cb->arithDecoder->decodeBit(jpxContextUniform, cb->stats); y1 = (y1 << 1) | cb->arithDecoder->decodeBit(jpxContextUniform, cb->stats); for (y2 = 0, coeff = coeff1; y2 < y1; ++y2, coeff += tileComp->cbW) { ++coeff->len; } coeff->flags |= jpxCoeffSignificant | jpxCoeffFirstMagRef; coeff->mag = (coeff->mag << 1) | 1; ++coeff->len; cx = signContext[2][2][0]; xorBit = signContext[2][2][1]; if (cb->arithDecoder->decodeBit(cx, cb->stats) ^ xorBit) { coeff->flags |= jpxCoeffSign; } ++y1; } else { for (y1 = 0, coeff = coeff1; y1 < 4; ++y1, coeff += tileComp->cbW) { ++coeff->len; } y1 = 4; } } for (coeff = &coeff1[y1 << tileComp->codeBlockW]; y1 < 4 && y0 + y1 < cb->y1; ++y1, coeff += tileComp->cbW) { if (!(coeff->flags & jpxCoeffTouched)) { horiz = vert = diag = 0; horizSign = vertSign = 2; if (x > cb->x0) { if (coeff[-1].flags & jpxCoeffSignificant) { ++horiz; horizSign += (coeff[-1].flags & jpxCoeffSign) ? -1 : 1; } if (y0+y1 > cb->y0) { diag += (coeff[-(int)tileComp->cbW - 1].flags >> jpxCoeffSignificantB) & 1; } if (y0+y1 < cb->y1 - 1) { diag += (coeff[tileComp->cbW - 1].flags >> jpxCoeffSignificantB) & 1; } } if (x < cb->x1 - 1) { if (coeff[1].flags & jpxCoeffSignificant) { ++horiz; horizSign += (coeff[1].flags & jpxCoeffSign) ? -1 : 1; } if (y0+y1 > cb->y0) { diag += (coeff[-(int)tileComp->cbW + 1].flags >> jpxCoeffSignificantB) & 1; } if (y0+y1 < cb->y1 - 1) { diag += (coeff[tileComp->cbW + 1].flags >> jpxCoeffSignificantB) & 1; } } if (y0+y1 > cb->y0) { if (coeff[-(int)tileComp->cbW].flags & jpxCoeffSignificant) { ++vert; vertSign += (coeff[-(int)tileComp->cbW].flags & jpxCoeffSign) ? -1 : 1; } } if (y0+y1 < cb->y1 - 1) { if (coeff[tileComp->cbW].flags & jpxCoeffSignificant) { ++vert; vertSign += (coeff[tileComp->cbW].flags & jpxCoeffSign) ? -1 : 1; } } cx = sigPropContext[horiz][vert][diag][res == 0 ? 1 : sb]; if (cb->arithDecoder->decodeBit(cx, cb->stats)) { coeff->flags |= jpxCoeffSignificant | jpxCoeffFirstMagRef; coeff->mag = (coeff->mag << 1) | 1; cx = signContext[horizSign][vertSign][0]; xorBit = signContext[horizSign][vertSign][1]; if (cb->arithDecoder->decodeBit(cx, cb->stats) ^ xorBit) { coeff->flags |= jpxCoeffSign; } } ++coeff->len; } else { coeff->flags &= ~jpxCoeffTouched; } } } } cb->nextPass = jpxPassSigProp; break; } } cb->arithDecoder->cleanup(); return gTrue; } // Inverse quantization, and wavelet transform (IDWT). This also does // the initial shift to convert to fixed point format. void JPXStream::inverseTransform(JPXTileComp *tileComp) { JPXResLevel *resLevel; JPXPrecinct *precinct; JPXSubband *subband; JPXCodeBlock *cb; JPXCoeff *coeff0, *coeff; Guint qStyle, guard, eps, shift; int shift2; double mu; int val; int *dataPtr; Guint nx0, ny0, nx1, ny1; Guint r, cbX, cbY, x, y; //----- (NL)LL subband (resolution level 0) resLevel = &tileComp->resLevels[0]; precinct = &resLevel->precincts[0]; subband = &precinct->subbands[0]; // i-quant parameters qStyle = tileComp->quantStyle & 0x1f; guard = (tileComp->quantStyle >> 5) & 7; if (qStyle == 0) { eps = (tileComp->quantSteps[0] >> 3) & 0x1f; shift = guard + eps - 1; mu = 0; // make gcc happy } else { shift = guard - 1 + tileComp->prec; mu = (double)(0x800 + (tileComp->quantSteps[0] & 0x7ff)) / 2048.0; } if (tileComp->transform == 0) { shift += fracBits; } // copy (NL)LL into the upper-left corner of the data array, doing // the fixed point adjustment and dequantization along the way cb = subband->cbs; for (cbY = 0; cbY < subband->nYCBs; ++cbY) { for (cbX = 0; cbX < subband->nXCBs; ++cbX) { for (y = cb->y0, coeff0 = cb->coeffs; y < cb->y1; ++y, coeff0 += tileComp->cbW) { dataPtr = &tileComp->data[(y - subband->y0) * (tileComp->x1 - tileComp->x0) + (cb->x0 - subband->x0)]; for (x = cb->x0, coeff = coeff0; x < cb->x1; ++x, ++coeff) { val = (int)coeff->mag; if (val != 0) { shift2 = shift - (cb->nZeroBitPlanes + coeff->len); if (shift2 > 0) { val = (val << shift2) + (1 << (shift2 - 1)); } else { val >>= -shift2; } if (qStyle == 0) { if (tileComp->transform == 0) { val &= -1 << fracBits; } } else { val = (int)((double)val * mu); } if (coeff->flags & jpxCoeffSign) { val = -val; } } *dataPtr++ = val; } } ++cb; } } //----- IDWT for each level for (r = 1; r <= tileComp->nDecompLevels; ++r) { resLevel = &tileComp->resLevels[r]; // (n)LL is already in the upper-left corner of the // tile-component data array -- interleave with (n)HL/LH/HH // and inverse transform to get (n-1)LL, which will be stored // in the upper-left corner of the tile-component data array if (r == tileComp->nDecompLevels) { nx0 = tileComp->x0; ny0 = tileComp->y0; nx1 = tileComp->x1; ny1 = tileComp->y1; } else { nx0 = tileComp->resLevels[r+1].x0; ny0 = tileComp->resLevels[r+1].y0; nx1 = tileComp->resLevels[r+1].x1; ny1 = tileComp->resLevels[r+1].y1; } inverseTransformLevel(tileComp, r, resLevel, nx0, ny0, nx1, ny1); } } // Do one level of the inverse transform: // - take (n)LL from the tile-component data array // - take (n)HL/LH/HH from // - leave the resulting (n-1)LL in the tile-component data array void JPXStream::inverseTransformLevel(JPXTileComp *tileComp, Guint r, JPXResLevel *resLevel, Guint nx0, Guint ny0, Guint nx1, Guint ny1) { JPXPrecinct *precinct; JPXSubband *subband; JPXCodeBlock *cb; JPXCoeff *coeff0, *coeff; Guint qStyle, guard, eps, shift, t; int shift2; double mu; int val; int *dataPtr; Guint xo, yo; Guint x, y, sb, cbX, cbY; int xx, yy; //----- interleave // spread out LL for (yy = resLevel->y1 - 1; yy >= (int)resLevel->y0; --yy) { for (xx = resLevel->x1 - 1; xx >= (int)resLevel->x0; --xx) { tileComp->data[(2 * yy - ny0) * (tileComp->x1 - tileComp->x0) + (2 * xx - nx0)] = tileComp->data[(yy - resLevel->y0) * (tileComp->x1 - tileComp->x0) + (xx - resLevel->x0)]; } } // i-quant parameters qStyle = tileComp->quantStyle & 0x1f; guard = (tileComp->quantStyle >> 5) & 7; // interleave HL/LH/HH precinct = &resLevel->precincts[0]; for (sb = 0; sb < 3; ++sb) { // i-quant parameters if (qStyle == 0) { eps = (tileComp->quantSteps[3*r - 2 + sb] >> 3) & 0x1f; shift = guard + eps - 1; mu = 0; // make gcc happy } else { shift = guard + tileComp->prec; if (sb == 2) { ++shift; } t = tileComp->quantSteps[qStyle == 1 ? 0 : (3*r - 2 + sb)]; mu = (double)(0x800 + (t & 0x7ff)) / 2048.0; } if (tileComp->transform == 0) { shift += fracBits; } // copy the subband coefficients into the data array, doing the // fixed point adjustment and dequantization along the way xo = (sb & 1) ? 0 : 1; yo = (sb > 0) ? 1 : 0; subband = &precinct->subbands[sb]; cb = subband->cbs; for (cbY = 0; cbY < subband->nYCBs; ++cbY) { for (cbX = 0; cbX < subband->nXCBs; ++cbX) { for (y = cb->y0, coeff0 = cb->coeffs; y < cb->y1; ++y, coeff0 += tileComp->cbW) { dataPtr = &tileComp->data[(2 * y + yo - ny0) * (tileComp->x1 - tileComp->x0) + (2 * cb->x0 + xo - nx0)]; for (x = cb->x0, coeff = coeff0; x < cb->x1; ++x, ++coeff) { val = (int)coeff->mag; if (val != 0) { shift2 = shift - (cb->nZeroBitPlanes + coeff->len); if (shift2 > 0) { val = (val << shift2) + (1 << (shift2 - 1)); } else { val >>= -shift2; } if (qStyle == 0) { if (tileComp->transform == 0) { val &= -1 << fracBits; } } else { val = (int)((double)val * mu); } if (coeff->flags & jpxCoeffSign) { val = -val; } } *dataPtr = val; dataPtr += 2; } } ++cb; } } } //----- horizontal (row) transforms dataPtr = tileComp->data; for (y = 0; y < ny1 - ny0; ++y) { inverseTransform1D(tileComp, dataPtr, 1, nx0, nx1); dataPtr += tileComp->x1 - tileComp->x0; } //----- vertical (column) transforms dataPtr = tileComp->data; for (x = 0; x < nx1 - nx0; ++x) { inverseTransform1D(tileComp, dataPtr, tileComp->x1 - tileComp->x0, ny0, ny1); ++dataPtr; } } void JPXStream::inverseTransform1D(JPXTileComp *tileComp, int *data, Guint stride, Guint i0, Guint i1) { int *buf; Guint offset, end, i; //----- special case for length = 1 if (i1 - i0 == 1) { if (i0 & 1) { *data >>= 1; } } else { // choose an offset: this makes even buf[] indexes correspond to // odd values of i, and vice versa offset = 3 + (i0 & 1); end = offset + i1 - i0; //----- gather buf = tileComp->buf; for (i = 0; i < i1 - i0; ++i) { buf[offset + i] = data[i * stride]; } //----- extend right buf[end] = buf[end - 2]; if (i1 - i0 == 2) { buf[end+1] = buf[offset + 1]; buf[end+2] = buf[offset]; buf[end+3] = buf[offset + 1]; } else { buf[end+1] = buf[end - 3]; if (i1 - i0 == 3) { buf[end+2] = buf[offset + 1]; buf[end+3] = buf[offset + 2]; } else { buf[end+2] = buf[end - 4]; if (i1 - i0 == 4) { buf[end+3] = buf[offset + 1]; } else { buf[end+3] = buf[end - 5]; } } } //----- extend left buf[offset - 1] = buf[offset + 1]; buf[offset - 2] = buf[offset + 2]; buf[offset - 3] = buf[offset + 3]; if (offset == 4) { buf[0] = buf[offset + 4]; } //----- 9-7 irreversible filter if (tileComp->transform == 0) { // step 1 (even) for (i = 1; i <= end + 2; i += 2) { buf[i] = (int)(idwtKappa * buf[i]); } // step 2 (odd) for (i = 0; i <= end + 3; i += 2) { buf[i] = (int)(idwtIKappa * buf[i]); } // step 3 (even) for (i = 1; i <= end + 2; i += 2) { buf[i] = (int)(buf[i] - idwtDelta * (buf[i-1] + buf[i+1])); } // step 4 (odd) for (i = 2; i <= end + 1; i += 2) { buf[i] = (int)(buf[i] - idwtGamma * (buf[i-1] + buf[i+1])); } // step 5 (even) for (i = 3; i <= end; i += 2) { buf[i] = (int)(buf[i] - idwtBeta * (buf[i-1] + buf[i+1])); } // step 6 (odd) for (i = 4; i <= end - 1; i += 2) { buf[i] = (int)(buf[i] - idwtAlpha * (buf[i-1] + buf[i+1])); } //----- 5-3 reversible filter } else { // step 1 (even) for (i = 3; i <= end; i += 2) { buf[i] -= (buf[i-1] + buf[i+1] + 2) >> 2; } // step 2 (odd) for (i = 4; i < end; i += 2) { buf[i] += (buf[i-1] + buf[i+1]) >> 1; } } //----- scatter for (i = 0; i < i1 - i0; ++i) { data[i * stride] = buf[offset + i]; } } } // Inverse multi-component transform and DC level shift. This also // converts fixed point samples back to integers. GBool JPXStream::inverseMultiCompAndDC(JPXTile *tile) { JPXTileComp *tileComp; int coeff, d0, d1, d2, t, minVal, maxVal, zeroVal; int *dataPtr; Guint j, comp, x, y; //----- inverse multi-component transform if (tile->multiComp == 1) { if (img.nComps < 3 || tile->tileComps[0].hSep != tile->tileComps[1].hSep || tile->tileComps[0].vSep != tile->tileComps[1].vSep || tile->tileComps[1].hSep != tile->tileComps[2].hSep || tile->tileComps[1].vSep != tile->tileComps[2].vSep) { return gFalse; } // inverse irreversible multiple component transform if (tile->tileComps[0].transform == 0) { j = 0; for (y = 0; y < tile->tileComps[0].y1 - tile->tileComps[0].y0; ++y) { for (x = 0; x < tile->tileComps[0].x1 - tile->tileComps[0].x0; ++x) { d0 = tile->tileComps[0].data[j]; d1 = tile->tileComps[1].data[j]; d2 = tile->tileComps[2].data[j]; tile->tileComps[0].data[j] = (int)(d0 + 1.402 * d2 + 0.5); tile->tileComps[1].data[j] = (int)(d0 - 0.34413 * d1 - 0.71414 * d2 + 0.5); tile->tileComps[2].data[j] = (int)(d0 + 1.772 * d1 + 0.5); ++j; } } // inverse reversible multiple component transform } else { j = 0; for (y = 0; y < tile->tileComps[0].y1 - tile->tileComps[0].y0; ++y) { for (x = 0; x < tile->tileComps[0].x1 - tile->tileComps[0].x0; ++x) { d0 = tile->tileComps[0].data[j]; d1 = tile->tileComps[1].data[j]; d2 = tile->tileComps[2].data[j]; tile->tileComps[1].data[j] = t = d0 - ((d2 + d1) >> 2); tile->tileComps[0].data[j] = d2 + t; tile->tileComps[2].data[j] = d1 + t; ++j; } } } } //----- DC level shift for (comp = 0; comp < img.nComps; ++comp) { tileComp = &tile->tileComps[comp]; // signed: clip if (tileComp->sgned) { minVal = -(1 << (tileComp->prec - 1)); maxVal = (1 << (tileComp->prec - 1)) - 1; dataPtr = tileComp->data; for (y = 0; y < tileComp->y1 - tileComp->y0; ++y) { for (x = 0; x < tileComp->x1 - tileComp->x0; ++x) { coeff = *dataPtr; if (tileComp->transform == 0) { coeff >>= fracBits; } if (coeff < minVal) { coeff = minVal; } else if (coeff > maxVal) { coeff = maxVal; } *dataPtr++ = coeff; } } // unsigned: inverse DC level shift and clip } else { maxVal = (1 << tileComp->prec) - 1; zeroVal = 1 << (tileComp->prec - 1); dataPtr = tileComp->data; for (y = 0; y < tileComp->y1 - tileComp->y0; ++y) { for (x = 0; x < tileComp->x1 - tileComp->x0; ++x) { coeff = *dataPtr; if (tileComp->transform == 0) { coeff >>= fracBits; } coeff += zeroVal; if (coeff < 0) { coeff = 0; } else if (coeff > maxVal) { coeff = maxVal; } *dataPtr++ = coeff; } } } } return gTrue; } GBool JPXStream::readBoxHdr(Guint *boxType, Guint *boxLen, Guint *dataLen) { Guint len, lenH; if (!readULong(&len) || !readULong(boxType)) { return gFalse; } if (len == 1) { if (!readULong(&lenH) || !readULong(&len)) { return gFalse; } if (lenH) { error(getPos(), "JPX stream contains a box larger than 2^32 bytes"); return gFalse; } *boxLen = len; *dataLen = len - 16; } else if (len == 0) { *boxLen = 0; *dataLen = 0; } else { *boxLen = len; *dataLen = len - 8; } return gTrue; } int JPXStream::readMarkerHdr(int *segType, Guint *segLen) { int c; do { do { if ((c = str->getChar()) == EOF) { return gFalse; } } while (c != 0xff); do { if ((c = str->getChar()) == EOF) { return gFalse; } } while (c == 0xff); } while (c == 0x00); *segType = c; if ((c >= 0x30 && c <= 0x3f) || c == 0x4f || c == 0x92 || c == 0x93 || c == 0xd9) { *segLen = 0; return gTrue; } return readUWord(segLen); } GBool JPXStream::readUByte(Guint *x) { int c0; if ((c0 = str->getChar()) == EOF) { return gFalse; } *x = (Guint)c0; return gTrue; } GBool JPXStream::readByte(int *x) { int c0; if ((c0 = str->getChar()) == EOF) { return gFalse; } *x = c0; if (c0 & 0x80) { *x |= -1 - 0xff; } return gTrue; } GBool JPXStream::readUWord(Guint *x) { int c0, c1; if ((c0 = str->getChar()) == EOF || (c1 = str->getChar()) == EOF) { return gFalse; } *x = (Guint)((c0 << 8) | c1); return gTrue; } GBool JPXStream::readULong(Guint *x) { int c0, c1, c2, c3; if ((c0 = str->getChar()) == EOF || (c1 = str->getChar()) == EOF || (c2 = str->getChar()) == EOF || (c3 = str->getChar()) == EOF) { return gFalse; } *x = (Guint)((c0 << 24) | (c1 << 16) | (c2 << 8) | c3); return gTrue; } GBool JPXStream::readNBytes(int nBytes, GBool signd, int *x) { int y, c, i; y = 0; for (i = 0; i < nBytes; ++i) { if ((c = str->getChar()) == EOF) { return gFalse; } y = (y << 8) + c; } if (signd) { if (y & (1 << (8 * nBytes - 1))) { y |= -1 << (8 * nBytes); } } *x = y; return gTrue; } GBool JPXStream::readBits(int nBits, Guint *x) { int c; while (bitBufLen < nBits) { if ((c = str->getChar()) == EOF) { return gFalse; } ++byteCount; if (bitBufSkip) { bitBuf = (bitBuf << 7) | (c & 0x7f); bitBufLen += 7; } else { bitBuf = (bitBuf << 8) | (c & 0xff); bitBufLen += 8; } bitBufSkip = c == 0xff; } *x = (bitBuf >> (bitBufLen - nBits)) & ((1 << nBits) - 1); bitBufLen -= nBits; return gTrue; } void JPXStream::clearBitBuf() { bitBufLen = 0; bitBufSkip = gFalse; byteCount = 0; }