#define COMPONENT_SIZE 8 #define MASK 0xff #define ONE_HALF 0x80 #define A_SHIFT 8 * 3 #define R_SHIFT 8 * 2 #define G_SHIFT 8 #define A_MASK 0xff000000 #define R_MASK 0xff0000 #define G_MASK 0xff00 #define RB_MASK 0xff00ff #define AG_MASK 0xff00ff00 #define RB_ONE_HALF 0x800080 #define RB_MASK_PLUS_ONE 0x10000100 #define ALPHA_8(x) ((x) >> A_SHIFT) #define RED_8(x) (((x) >> R_SHIFT) & MASK) #define GREEN_8(x) (((x) >> G_SHIFT) & MASK) #define BLUE_8(x) ((x) & MASK) /* * ARMv6 has UQADD8 instruction, which implements unsigned saturated * addition for 8-bit values packed in 32-bit registers. It is very useful * for UN8x4_ADD_UN8x4, UN8_rb_ADD_UN8_rb and ADD_UN8 macros (which would * otherwise need a lot of arithmetic operations to simulate this operation). * Since most of the major ARM linux distros are built for ARMv7, we are * much less dependent on runtime CPU detection and can get practical * benefits from conditional compilation here for a lot of users. */ #if defined(USE_GCC_INLINE_ASM) && defined(__arm__) && \ !defined(__aarch64__) && (!defined(__thumb__) || defined(__thumb2__)) #if defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || \ defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || \ defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) || \ defined(__ARM_ARCH_6M__) || defined(__ARM_ARCH_7__) || \ defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || \ defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7EM__) static force_inline uint32_t un8x4_add_un8x4 (uint32_t x, uint32_t y) { uint32_t t; asm ("uqadd8 %0, %1, %2" : "=r" (t) : "%r" (x), "r" (y)); return t; } #define UN8x4_ADD_UN8x4(x, y) \ ((x) = un8x4_add_un8x4 ((x), (y))) #define UN8_rb_ADD_UN8_rb(x, y, t) \ ((t) = un8x4_add_un8x4 ((x), (y)), (x) = (t)) #define ADD_UN8(x, y, t) \ ((t) = (x), un8x4_add_un8x4 ((t), (y))) #endif #endif /*****************************************************************************/ /* * Helper macros. */ #define MUL_UN8(a, b, t) \ ((t) = (a) * (uint16_t)(b) + ONE_HALF, ((((t) >> G_SHIFT ) + (t) ) >> G_SHIFT )) #define DIV_UN8(a, b) \ (((uint16_t) (a) * MASK + ((b) / 2)) / (b)) #ifndef ADD_UN8 #define ADD_UN8(x, y, t) \ ((t) = (x) + (y), \ (uint32_t) (uint8_t) ((t) | (0 - ((t) >> G_SHIFT)))) #endif #define DIV_ONE_UN8(x) \ (((x) + ONE_HALF + (((x) + ONE_HALF) >> G_SHIFT)) >> G_SHIFT) /* * The methods below use some tricks to be able to do two color * components at the same time. */ /* * x_rb = (x_rb * a) / 255 */ #define UN8_rb_MUL_UN8(x, a, t) \ do \ { \ t = ((x) & RB_MASK) * (a); \ t += RB_ONE_HALF; \ x = (t + ((t >> G_SHIFT) & RB_MASK)) >> G_SHIFT; \ x &= RB_MASK; \ } while (0) /* * x_rb = min (x_rb + y_rb, 255) */ #ifndef UN8_rb_ADD_UN8_rb #define UN8_rb_ADD_UN8_rb(x, y, t) \ do \ { \ t = ((x) + (y)); \ t |= RB_MASK_PLUS_ONE - ((t >> G_SHIFT) & RB_MASK); \ x = (t & RB_MASK); \ } while (0) #endif /* * x_rb = (x_rb * a_rb) / 255 */ #define UN8_rb_MUL_UN8_rb(x, a, t) \ do \ { \ t = (x & MASK) * (a & MASK); \ t |= (x & R_MASK) * ((a >> R_SHIFT) & MASK); \ t += RB_ONE_HALF; \ t = (t + ((t >> G_SHIFT) & RB_MASK)) >> G_SHIFT; \ x = t & RB_MASK; \ } while (0) /* * x_c = (x_c * a) / 255 */ #define UN8x4_MUL_UN8(x, a) \ do \ { \ uint32_t r1__, r2__, t__; \ \ r1__ = (x); \ UN8_rb_MUL_UN8 (r1__, (a), t__); \ \ r2__ = (x) >> G_SHIFT; \ UN8_rb_MUL_UN8 (r2__, (a), t__); \ \ (x) = r1__ | (r2__ << G_SHIFT); \ } while (0) /* * x_c = (x_c * a) / 255 + y_c */ #define UN8x4_MUL_UN8_ADD_UN8x4(x, a, y) \ do \ { \ uint32_t r1__, r2__, r3__, t__; \ \ r1__ = (x); \ r2__ = (y) & RB_MASK; \ UN8_rb_MUL_UN8 (r1__, (a), t__); \ UN8_rb_ADD_UN8_rb (r1__, r2__, t__); \ \ r2__ = (x) >> G_SHIFT; \ r3__ = ((y) >> G_SHIFT) & RB_MASK; \ UN8_rb_MUL_UN8 (r2__, (a), t__); \ UN8_rb_ADD_UN8_rb (r2__, r3__, t__); \ \ (x) = r1__ | (r2__ << G_SHIFT); \ } while (0) /* * x_c = (x_c * a + y_c * b) / 255 */ #define UN8x4_MUL_UN8_ADD_UN8x4_MUL_UN8(x, a, y, b) \ do \ { \ uint32_t r1__, r2__, r3__, t__; \ \ r1__ = (x); \ r2__ = (y); \ UN8_rb_MUL_UN8 (r1__, (a), t__); \ UN8_rb_MUL_UN8 (r2__, (b), t__); \ UN8_rb_ADD_UN8_rb (r1__, r2__, t__); \ \ r2__ = ((x) >> G_SHIFT); \ r3__ = ((y) >> G_SHIFT); \ UN8_rb_MUL_UN8 (r2__, (a), t__); \ UN8_rb_MUL_UN8 (r3__, (b), t__); \ UN8_rb_ADD_UN8_rb (r2__, r3__, t__); \ \ (x) = r1__ | (r2__ << G_SHIFT); \ } while (0) /* * x_c = (x_c * a_c) / 255 */ #define UN8x4_MUL_UN8x4(x, a) \ do \ { \ uint32_t r1__, r2__, r3__, t__; \ \ r1__ = (x); \ r2__ = (a); \ UN8_rb_MUL_UN8_rb (r1__, r2__, t__); \ \ r2__ = (x) >> G_SHIFT; \ r3__ = (a) >> G_SHIFT; \ UN8_rb_MUL_UN8_rb (r2__, r3__, t__); \ \ (x) = r1__ | (r2__ << G_SHIFT); \ } while (0) /* * x_c = (x_c * a_c) / 255 + y_c */ #define UN8x4_MUL_UN8x4_ADD_UN8x4(x, a, y) \ do \ { \ uint32_t r1__, r2__, r3__, t__; \ \ r1__ = (x); \ r2__ = (a); \ UN8_rb_MUL_UN8_rb (r1__, r2__, t__); \ r2__ = (y) & RB_MASK; \ UN8_rb_ADD_UN8_rb (r1__, r2__, t__); \ \ r2__ = ((x) >> G_SHIFT); \ r3__ = ((a) >> G_SHIFT); \ UN8_rb_MUL_UN8_rb (r2__, r3__, t__); \ r3__ = ((y) >> G_SHIFT) & RB_MASK; \ UN8_rb_ADD_UN8_rb (r2__, r3__, t__); \ \ (x) = r1__ | (r2__ << G_SHIFT); \ } while (0) /* * x_c = (x_c * a_c + y_c * b) / 255 */ #define UN8x4_MUL_UN8x4_ADD_UN8x4_MUL_UN8(x, a, y, b) \ do \ { \ uint32_t r1__, r2__, r3__, t__; \ \ r1__ = (x); \ r2__ = (a); \ UN8_rb_MUL_UN8_rb (r1__, r2__, t__); \ r2__ = (y); \ UN8_rb_MUL_UN8 (r2__, (b), t__); \ UN8_rb_ADD_UN8_rb (r1__, r2__, t__); \ \ r2__ = (x) >> G_SHIFT; \ r3__ = (a) >> G_SHIFT; \ UN8_rb_MUL_UN8_rb (r2__, r3__, t__); \ r3__ = (y) >> G_SHIFT; \ UN8_rb_MUL_UN8 (r3__, (b), t__); \ UN8_rb_ADD_UN8_rb (r2__, r3__, t__); \ \ x = r1__ | (r2__ << G_SHIFT); \ } while (0) /* x_c = min(x_c + y_c, 255) */ #ifndef UN8x4_ADD_UN8x4 #define UN8x4_ADD_UN8x4(x, y) \ do \ { \ uint32_t r1__, r2__, r3__, t__; \ \ r1__ = (x) & RB_MASK; \ r2__ = (y) & RB_MASK; \ UN8_rb_ADD_UN8_rb (r1__, r2__, t__); \ \ r2__ = ((x) >> G_SHIFT) & RB_MASK; \ r3__ = ((y) >> G_SHIFT) & RB_MASK; \ UN8_rb_ADD_UN8_rb (r2__, r3__, t__); \ \ x = r1__ | (r2__ << G_SHIFT); \ } while (0) #endif