/* * Copyright 2020 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "reg_helper.h" #include "dcn30_mpc.h" #include "dcn30_cm_common.h" #include "basics/conversion.h" #include "dcn10/dcn10_cm_common.h" #include "dc.h" #define REG(reg)\ mpc30->mpc_regs->reg #define CTX \ mpc30->base.ctx #undef FN #define FN(reg_name, field_name) \ mpc30->mpc_shift->field_name, mpc30->mpc_mask->field_name #define NUM_ELEMENTS(a) (sizeof(a) / sizeof((a)[0])) static bool mpc3_is_dwb_idle( struct mpc *mpc, int dwb_id) { struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); unsigned int status; REG_GET(DWB_MUX[dwb_id], MPC_DWB0_MUX_STATUS, &status); if (status == 0xf) return true; else return false; } static void mpc3_set_dwb_mux( struct mpc *mpc, int dwb_id, int mpcc_id) { struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); REG_SET(DWB_MUX[dwb_id], 0, MPC_DWB0_MUX, mpcc_id); } static void mpc3_disable_dwb_mux( struct mpc *mpc, int dwb_id) { struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); REG_SET(DWB_MUX[dwb_id], 0, MPC_DWB0_MUX, 0xf); } static void mpc3_set_out_rate_control( struct mpc *mpc, int opp_id, bool enable, bool rate_2x_mode, struct mpc_dwb_flow_control *flow_control) { struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); REG_UPDATE_2(MUX[opp_id], MPC_OUT_RATE_CONTROL_DISABLE, !enable, MPC_OUT_RATE_CONTROL, rate_2x_mode); if (flow_control) REG_UPDATE_2(MUX[opp_id], MPC_OUT_FLOW_CONTROL_MODE, flow_control->flow_ctrl_mode, MPC_OUT_FLOW_CONTROL_COUNT, flow_control->flow_ctrl_cnt1); } static enum dc_lut_mode mpc3_get_ogam_current(struct mpc *mpc, int mpcc_id) { /*Contrary to DCN2 and DCN1 wherein a single status register field holds this info; *in DCN3/3AG, we need to read two separate fields to retrieve the same info */ enum dc_lut_mode mode; uint32_t state_mode; uint32_t state_ram_lut_in_use; struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); REG_GET_2(MPCC_OGAM_CONTROL[mpcc_id], MPCC_OGAM_MODE_CURRENT, &state_mode, MPCC_OGAM_SELECT_CURRENT, &state_ram_lut_in_use); switch (state_mode) { case 0: mode = LUT_BYPASS; break; case 2: switch (state_ram_lut_in_use) { case 0: mode = LUT_RAM_A; break; case 1: mode = LUT_RAM_B; break; default: mode = LUT_BYPASS; break; } break; default: mode = LUT_BYPASS; break; } return mode; } static void mpc3_power_on_ogam_lut( struct mpc *mpc, int mpcc_id, bool power_on) { struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); if (mpc->ctx->dc->debug.enable_mem_low_power.bits.mpc) { // Force power on REG_UPDATE(MPCC_MEM_PWR_CTRL[mpcc_id], MPCC_OGAM_MEM_PWR_DIS, power_on == true ? 1:0); // Wait for confirmation when powering on if (power_on) REG_WAIT(MPCC_MEM_PWR_CTRL[mpcc_id], MPCC_OGAM_MEM_PWR_STATE, 0, 10, 10); } else { REG_SET(MPCC_MEM_PWR_CTRL[mpcc_id], 0, MPCC_OGAM_MEM_PWR_FORCE, power_on == true ? 0 : 1); } } static void mpc3_configure_ogam_lut( struct mpc *mpc, int mpcc_id, bool is_ram_a) { struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); REG_UPDATE_2(MPCC_OGAM_LUT_CONTROL[mpcc_id], MPCC_OGAM_LUT_WRITE_COLOR_MASK, 7, MPCC_OGAM_LUT_HOST_SEL, is_ram_a == true ? 0:1); REG_SET(MPCC_OGAM_LUT_INDEX[mpcc_id], 0, MPCC_OGAM_LUT_INDEX, 0); } static void mpc3_ogam_get_reg_field( struct mpc *mpc, struct dcn3_xfer_func_reg *reg) { struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); reg->shifts.field_region_start_base = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_START_BASE_B; reg->masks.field_region_start_base = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_START_BASE_B; reg->shifts.field_offset = mpc30->mpc_shift->MPCC_OGAM_RAMA_OFFSET_B; reg->masks.field_offset = mpc30->mpc_mask->MPCC_OGAM_RAMA_OFFSET_B; reg->shifts.exp_region0_lut_offset = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION0_LUT_OFFSET; reg->masks.exp_region0_lut_offset = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION0_LUT_OFFSET; reg->shifts.exp_region0_num_segments = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION0_NUM_SEGMENTS; reg->masks.exp_region0_num_segments = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION0_NUM_SEGMENTS; reg->shifts.exp_region1_lut_offset = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION1_LUT_OFFSET; reg->masks.exp_region1_lut_offset = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION1_LUT_OFFSET; reg->shifts.exp_region1_num_segments = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION1_NUM_SEGMENTS; reg->masks.exp_region1_num_segments = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION1_NUM_SEGMENTS; reg->shifts.field_region_end = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_END_B; reg->masks.field_region_end = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_END_B; reg->shifts.field_region_end_slope = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_END_SLOPE_B; reg->masks.field_region_end_slope = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_END_SLOPE_B; reg->shifts.field_region_end_base = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_END_BASE_B; reg->masks.field_region_end_base = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_END_BASE_B; reg->shifts.field_region_linear_slope = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_START_SLOPE_B; reg->masks.field_region_linear_slope = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_START_SLOPE_B; reg->shifts.exp_region_start = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_START_B; reg->masks.exp_region_start = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_START_B; reg->shifts.exp_resion_start_segment = mpc30->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_START_SEGMENT_B; reg->masks.exp_resion_start_segment = mpc30->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_START_SEGMENT_B; } static void mpc3_program_luta(struct mpc *mpc, int mpcc_id, const struct pwl_params *params) { struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); struct dcn3_xfer_func_reg gam_regs; mpc3_ogam_get_reg_field(mpc, &gam_regs); gam_regs.start_cntl_b = REG(MPCC_OGAM_RAMA_START_CNTL_B[mpcc_id]); gam_regs.start_cntl_g = REG(MPCC_OGAM_RAMA_START_CNTL_G[mpcc_id]); gam_regs.start_cntl_r = REG(MPCC_OGAM_RAMA_START_CNTL_R[mpcc_id]); gam_regs.start_slope_cntl_b = REG(MPCC_OGAM_RAMA_START_SLOPE_CNTL_B[mpcc_id]); gam_regs.start_slope_cntl_g = REG(MPCC_OGAM_RAMA_START_SLOPE_CNTL_G[mpcc_id]); gam_regs.start_slope_cntl_r = REG(MPCC_OGAM_RAMA_START_SLOPE_CNTL_R[mpcc_id]); gam_regs.start_end_cntl1_b = REG(MPCC_OGAM_RAMA_END_CNTL1_B[mpcc_id]); gam_regs.start_end_cntl2_b = REG(MPCC_OGAM_RAMA_END_CNTL2_B[mpcc_id]); gam_regs.start_end_cntl1_g = REG(MPCC_OGAM_RAMA_END_CNTL1_G[mpcc_id]); gam_regs.start_end_cntl2_g = REG(MPCC_OGAM_RAMA_END_CNTL2_G[mpcc_id]); gam_regs.start_end_cntl1_r = REG(MPCC_OGAM_RAMA_END_CNTL1_R[mpcc_id]); gam_regs.start_end_cntl2_r = REG(MPCC_OGAM_RAMA_END_CNTL2_R[mpcc_id]); gam_regs.region_start = REG(MPCC_OGAM_RAMA_REGION_0_1[mpcc_id]); gam_regs.region_end = REG(MPCC_OGAM_RAMA_REGION_32_33[mpcc_id]); //New registers in DCN3AG/DCN OGAM block gam_regs.offset_b = REG(MPCC_OGAM_RAMA_OFFSET_B[mpcc_id]); gam_regs.offset_g = REG(MPCC_OGAM_RAMA_OFFSET_G[mpcc_id]); gam_regs.offset_r = REG(MPCC_OGAM_RAMA_OFFSET_R[mpcc_id]); gam_regs.start_base_cntl_b = REG(MPCC_OGAM_RAMA_START_BASE_CNTL_B[mpcc_id]); gam_regs.start_base_cntl_g = REG(MPCC_OGAM_RAMA_START_BASE_CNTL_G[mpcc_id]); gam_regs.start_base_cntl_r = REG(MPCC_OGAM_RAMA_START_BASE_CNTL_R[mpcc_id]); cm_helper_program_gamcor_xfer_func(mpc30->base.ctx, params, &gam_regs); } static void mpc3_program_lutb(struct mpc *mpc, int mpcc_id, const struct pwl_params *params) { struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); struct dcn3_xfer_func_reg gam_regs; mpc3_ogam_get_reg_field(mpc, &gam_regs); gam_regs.start_cntl_b = REG(MPCC_OGAM_RAMB_START_CNTL_B[mpcc_id]); gam_regs.start_cntl_g = REG(MPCC_OGAM_RAMB_START_CNTL_G[mpcc_id]); gam_regs.start_cntl_r = REG(MPCC_OGAM_RAMB_START_CNTL_R[mpcc_id]); gam_regs.start_slope_cntl_b = REG(MPCC_OGAM_RAMB_START_SLOPE_CNTL_B[mpcc_id]); gam_regs.start_slope_cntl_g = REG(MPCC_OGAM_RAMB_START_SLOPE_CNTL_G[mpcc_id]); gam_regs.start_slope_cntl_r = REG(MPCC_OGAM_RAMB_START_SLOPE_CNTL_R[mpcc_id]); gam_regs.start_end_cntl1_b = REG(MPCC_OGAM_RAMB_END_CNTL1_B[mpcc_id]); gam_regs.start_end_cntl2_b = REG(MPCC_OGAM_RAMB_END_CNTL2_B[mpcc_id]); gam_regs.start_end_cntl1_g = REG(MPCC_OGAM_RAMB_END_CNTL1_G[mpcc_id]); gam_regs.start_end_cntl2_g = REG(MPCC_OGAM_RAMB_END_CNTL2_G[mpcc_id]); gam_regs.start_end_cntl1_r = REG(MPCC_OGAM_RAMB_END_CNTL1_R[mpcc_id]); gam_regs.start_end_cntl2_r = REG(MPCC_OGAM_RAMB_END_CNTL2_R[mpcc_id]); gam_regs.region_start = REG(MPCC_OGAM_RAMB_REGION_0_1[mpcc_id]); gam_regs.region_end = REG(MPCC_OGAM_RAMB_REGION_32_33[mpcc_id]); //New registers in DCN3AG/DCN OGAM block gam_regs.offset_b = REG(MPCC_OGAM_RAMB_OFFSET_B[mpcc_id]); gam_regs.offset_g = REG(MPCC_OGAM_RAMB_OFFSET_G[mpcc_id]); gam_regs.offset_r = REG(MPCC_OGAM_RAMB_OFFSET_R[mpcc_id]); gam_regs.start_base_cntl_b = REG(MPCC_OGAM_RAMB_START_BASE_CNTL_B[mpcc_id]); gam_regs.start_base_cntl_g = REG(MPCC_OGAM_RAMB_START_BASE_CNTL_G[mpcc_id]); gam_regs.start_base_cntl_r = REG(MPCC_OGAM_RAMB_START_BASE_CNTL_R[mpcc_id]); cm_helper_program_gamcor_xfer_func(mpc30->base.ctx, params, &gam_regs); } static void mpc3_program_ogam_pwl( struct mpc *mpc, int mpcc_id, const struct pwl_result_data *rgb, uint32_t num) { uint32_t i; struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); uint32_t last_base_value_red = rgb[num-1].red_reg + rgb[num-1].delta_red_reg; uint32_t last_base_value_green = rgb[num-1].green_reg + rgb[num-1].delta_green_reg; uint32_t last_base_value_blue = rgb[num-1].blue_reg + rgb[num-1].delta_blue_reg; /*the entries of DCN3AG gamma LUTs take 18bit base values as opposed to *38 base+delta values per entry in earlier DCN architectures *last base value for our lut is compute by adding the last base value *in our data + last delta */ if (is_rgb_equal(rgb, num)) { for (i = 0 ; i < num; i++) REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].red_reg); REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, last_base_value_red); } else { REG_UPDATE(MPCC_OGAM_LUT_CONTROL[mpcc_id], MPCC_OGAM_LUT_WRITE_COLOR_MASK, 4); for (i = 0 ; i < num; i++) REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].red_reg); REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, last_base_value_red); REG_SET(MPCC_OGAM_LUT_INDEX[mpcc_id], 0, MPCC_OGAM_LUT_INDEX, 0); REG_UPDATE(MPCC_OGAM_LUT_CONTROL[mpcc_id], MPCC_OGAM_LUT_WRITE_COLOR_MASK, 2); for (i = 0 ; i < num; i++) REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].green_reg); REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, last_base_value_green); REG_SET(MPCC_OGAM_LUT_INDEX[mpcc_id], 0, MPCC_OGAM_LUT_INDEX, 0); REG_UPDATE(MPCC_OGAM_LUT_CONTROL[mpcc_id], MPCC_OGAM_LUT_WRITE_COLOR_MASK, 1); for (i = 0 ; i < num; i++) REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].blue_reg); REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, last_base_value_blue); } } void mpc3_set_output_gamma( struct mpc *mpc, int mpcc_id, const struct pwl_params *params) { enum dc_lut_mode current_mode; enum dc_lut_mode next_mode; struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); if (mpc->ctx->dc->debug.cm_in_bypass) { REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE, 0); return; } if (params == NULL) { //disable OGAM REG_SET(MPCC_OGAM_CONTROL[mpcc_id], 0, MPCC_OGAM_MODE, 0); return; } //enable OGAM REG_SET(MPCC_OGAM_CONTROL[mpcc_id], 0, MPCC_OGAM_MODE, 2); current_mode = mpc3_get_ogam_current(mpc, mpcc_id); if (current_mode == LUT_BYPASS) next_mode = LUT_RAM_A; else if (current_mode == LUT_RAM_A) next_mode = LUT_RAM_B; else next_mode = LUT_RAM_A; mpc3_power_on_ogam_lut(mpc, mpcc_id, true); mpc3_configure_ogam_lut(mpc, mpcc_id, next_mode == LUT_RAM_A ? true:false); if (next_mode == LUT_RAM_A) mpc3_program_luta(mpc, mpcc_id, params); else mpc3_program_lutb(mpc, mpcc_id, params); mpc3_program_ogam_pwl( mpc, mpcc_id, params->rgb_resulted, params->hw_points_num); /*we need to program 2 fields here as apposed to 1*/ REG_UPDATE(MPCC_OGAM_CONTROL[mpcc_id], MPCC_OGAM_SELECT, next_mode == LUT_RAM_A ? 0:1); if (mpc->ctx->dc->debug.enable_mem_low_power.bits.mpc) mpc3_power_on_ogam_lut(mpc, mpcc_id, false); } void mpc3_set_denorm( struct mpc *mpc, int opp_id, enum dc_color_depth output_depth) { struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); /* De-normalize Fixed U1.13 color data to different target bit depths. 0 is bypass*/ int denorm_mode = 0; switch (output_depth) { case COLOR_DEPTH_666: denorm_mode = 1; break; case COLOR_DEPTH_888: denorm_mode = 2; break; case COLOR_DEPTH_999: denorm_mode = 3; break; case COLOR_DEPTH_101010: denorm_mode = 4; break; case COLOR_DEPTH_111111: denorm_mode = 5; break; case COLOR_DEPTH_121212: denorm_mode = 6; break; case COLOR_DEPTH_141414: case COLOR_DEPTH_161616: default: /* not valid used case! */ break; } REG_UPDATE(DENORM_CONTROL[opp_id], MPC_OUT_DENORM_MODE, denorm_mode); } void mpc3_set_denorm_clamp( struct mpc *mpc, int opp_id, struct mpc_denorm_clamp denorm_clamp) { struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); /*program min and max clamp values for the pixel components*/ REG_UPDATE_2(DENORM_CONTROL[opp_id], MPC_OUT_DENORM_CLAMP_MAX_R_CR, denorm_clamp.clamp_max_r_cr, MPC_OUT_DENORM_CLAMP_MIN_R_CR, denorm_clamp.clamp_min_r_cr); REG_UPDATE_2(DENORM_CLAMP_G_Y[opp_id], MPC_OUT_DENORM_CLAMP_MAX_G_Y, denorm_clamp.clamp_max_g_y, MPC_OUT_DENORM_CLAMP_MIN_G_Y, denorm_clamp.clamp_min_g_y); REG_UPDATE_2(DENORM_CLAMP_B_CB[opp_id], MPC_OUT_DENORM_CLAMP_MAX_B_CB, denorm_clamp.clamp_max_b_cb, MPC_OUT_DENORM_CLAMP_MIN_B_CB, denorm_clamp.clamp_min_b_cb); } static enum dc_lut_mode mpc3_get_shaper_current(struct mpc *mpc, uint32_t rmu_idx) { enum dc_lut_mode mode; uint32_t state_mode; struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); REG_GET(SHAPER_CONTROL[rmu_idx], MPC_RMU_SHAPER_LUT_MODE_CURRENT, &state_mode); switch (state_mode) { case 0: mode = LUT_BYPASS; break; case 1: mode = LUT_RAM_A; break; case 2: mode = LUT_RAM_B; break; default: mode = LUT_BYPASS; break; } return mode; } static void mpc3_configure_shaper_lut( struct mpc *mpc, bool is_ram_a, uint32_t rmu_idx) { struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); REG_UPDATE(SHAPER_LUT_WRITE_EN_MASK[rmu_idx], MPC_RMU_SHAPER_LUT_WRITE_EN_MASK, 7); REG_UPDATE(SHAPER_LUT_WRITE_EN_MASK[rmu_idx], MPC_RMU_SHAPER_LUT_WRITE_SEL, is_ram_a == true ? 0:1); REG_SET(SHAPER_LUT_INDEX[rmu_idx], 0, MPC_RMU_SHAPER_LUT_INDEX, 0); } static void mpc3_program_shaper_luta_settings( struct mpc *mpc, const struct pwl_params *params, uint32_t rmu_idx) { const struct gamma_curve *curve; struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); REG_SET_2(SHAPER_RAMA_START_CNTL_B[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION_START_B, params->corner_points[0].blue.custom_float_x, MPC_RMU_SHAPER_RAMA_EXP_REGION_START_SEGMENT_B, 0); REG_SET_2(SHAPER_RAMA_START_CNTL_G[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION_START_B, params->corner_points[0].green.custom_float_x, MPC_RMU_SHAPER_RAMA_EXP_REGION_START_SEGMENT_B, 0); REG_SET_2(SHAPER_RAMA_START_CNTL_R[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION_START_B, params->corner_points[0].red.custom_float_x, MPC_RMU_SHAPER_RAMA_EXP_REGION_START_SEGMENT_B, 0); REG_SET_2(SHAPER_RAMA_END_CNTL_B[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION_END_B, params->corner_points[1].blue.custom_float_x, MPC_RMU_SHAPER_RAMA_EXP_REGION_END_BASE_B, params->corner_points[1].blue.custom_float_y); REG_SET_2(SHAPER_RAMA_END_CNTL_G[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION_END_B, params->corner_points[1].green.custom_float_x, MPC_RMU_SHAPER_RAMA_EXP_REGION_END_BASE_B, params->corner_points[1].green.custom_float_y); REG_SET_2(SHAPER_RAMA_END_CNTL_R[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION_END_B, params->corner_points[1].red.custom_float_x, MPC_RMU_SHAPER_RAMA_EXP_REGION_END_BASE_B, params->corner_points[1].red.custom_float_y); curve = params->arr_curve_points; REG_SET_4(SHAPER_RAMA_REGION_0_1[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(SHAPER_RAMA_REGION_2_3[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(SHAPER_RAMA_REGION_4_5[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(SHAPER_RAMA_REGION_6_7[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(SHAPER_RAMA_REGION_8_9[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(SHAPER_RAMA_REGION_10_11[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(SHAPER_RAMA_REGION_12_13[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(SHAPER_RAMA_REGION_14_15[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(SHAPER_RAMA_REGION_16_17[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(SHAPER_RAMA_REGION_18_19[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(SHAPER_RAMA_REGION_20_21[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(SHAPER_RAMA_REGION_22_23[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(SHAPER_RAMA_REGION_24_25[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(SHAPER_RAMA_REGION_26_27[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(SHAPER_RAMA_REGION_28_29[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(SHAPER_RAMA_REGION_30_31[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(SHAPER_RAMA_REGION_32_33[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); } static void mpc3_program_shaper_lutb_settings( struct mpc *mpc, const struct pwl_params *params, uint32_t rmu_idx) { const struct gamma_curve *curve; struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); REG_SET_2(SHAPER_RAMB_START_CNTL_B[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION_START_B, params->corner_points[0].blue.custom_float_x, MPC_RMU_SHAPER_RAMA_EXP_REGION_START_SEGMENT_B, 0); REG_SET_2(SHAPER_RAMB_START_CNTL_G[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION_START_B, params->corner_points[0].green.custom_float_x, MPC_RMU_SHAPER_RAMA_EXP_REGION_START_SEGMENT_B, 0); REG_SET_2(SHAPER_RAMB_START_CNTL_R[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION_START_B, params->corner_points[0].red.custom_float_x, MPC_RMU_SHAPER_RAMA_EXP_REGION_START_SEGMENT_B, 0); REG_SET_2(SHAPER_RAMB_END_CNTL_B[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION_END_B, params->corner_points[1].blue.custom_float_x, MPC_RMU_SHAPER_RAMA_EXP_REGION_END_BASE_B, params->corner_points[1].blue.custom_float_y); REG_SET_2(SHAPER_RAMB_END_CNTL_G[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION_END_B, params->corner_points[1].green.custom_float_x, MPC_RMU_SHAPER_RAMA_EXP_REGION_END_BASE_B, params->corner_points[1].green.custom_float_y); REG_SET_2(SHAPER_RAMB_END_CNTL_R[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION_END_B, params->corner_points[1].red.custom_float_x, MPC_RMU_SHAPER_RAMA_EXP_REGION_END_BASE_B, params->corner_points[1].red.custom_float_y); curve = params->arr_curve_points; REG_SET_4(SHAPER_RAMB_REGION_0_1[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(SHAPER_RAMB_REGION_2_3[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(SHAPER_RAMB_REGION_4_5[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(SHAPER_RAMB_REGION_6_7[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(SHAPER_RAMB_REGION_8_9[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(SHAPER_RAMB_REGION_10_11[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(SHAPER_RAMB_REGION_12_13[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(SHAPER_RAMB_REGION_14_15[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(SHAPER_RAMB_REGION_16_17[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(SHAPER_RAMB_REGION_18_19[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(SHAPER_RAMB_REGION_20_21[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(SHAPER_RAMB_REGION_22_23[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(SHAPER_RAMB_REGION_24_25[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(SHAPER_RAMB_REGION_26_27[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(SHAPER_RAMB_REGION_28_29[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(SHAPER_RAMB_REGION_30_31[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); curve += 2; REG_SET_4(SHAPER_RAMB_REGION_32_33[rmu_idx], 0, MPC_RMU_SHAPER_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num, MPC_RMU_SHAPER_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset, MPC_RMU_SHAPER_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num); } static void mpc3_program_shaper_lut( struct mpc *mpc, const struct pwl_result_data *rgb, uint32_t num, uint32_t rmu_idx) { uint32_t i, red, green, blue; uint32_t red_delta, green_delta, blue_delta; uint32_t red_value, green_value, blue_value; struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); for (i = 0 ; i < num; i++) { red = rgb[i].red_reg; green = rgb[i].green_reg; blue = rgb[i].blue_reg; red_delta = rgb[i].delta_red_reg; green_delta = rgb[i].delta_green_reg; blue_delta = rgb[i].delta_blue_reg; red_value = ((red_delta & 0x3ff) << 14) | (red & 0x3fff); green_value = ((green_delta & 0x3ff) << 14) | (green & 0x3fff); blue_value = ((blue_delta & 0x3ff) << 14) | (blue & 0x3fff); REG_SET(SHAPER_LUT_DATA[rmu_idx], 0, MPC_RMU_SHAPER_LUT_DATA, red_value); REG_SET(SHAPER_LUT_DATA[rmu_idx], 0, MPC_RMU_SHAPER_LUT_DATA, green_value); REG_SET(SHAPER_LUT_DATA[rmu_idx], 0, MPC_RMU_SHAPER_LUT_DATA, blue_value); } } static void mpc3_power_on_shaper_3dlut( struct mpc *mpc, uint32_t rmu_idx, bool power_on) { uint32_t power_status_shaper = 2; uint32_t power_status_3dlut = 2; struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); int max_retries = 10; if (rmu_idx == 0) { REG_SET(MPC_RMU_MEM_PWR_CTRL, 0, MPC_RMU0_MEM_PWR_DIS, power_on == true ? 1:0); /* wait for memory to fully power up */ if (power_on && mpc->ctx->dc->debug.enable_mem_low_power.bits.mpc) { REG_WAIT(MPC_RMU_MEM_PWR_CTRL, MPC_RMU0_SHAPER_MEM_PWR_STATE, 0, 1, max_retries); REG_WAIT(MPC_RMU_MEM_PWR_CTRL, MPC_RMU0_3DLUT_MEM_PWR_STATE, 0, 1, max_retries); } /*read status is not mandatory, it is just for debugging*/ REG_GET(MPC_RMU_MEM_PWR_CTRL, MPC_RMU0_SHAPER_MEM_PWR_STATE, &power_status_shaper); REG_GET(MPC_RMU_MEM_PWR_CTRL, MPC_RMU0_3DLUT_MEM_PWR_STATE, &power_status_3dlut); } else if (rmu_idx == 1) { REG_SET(MPC_RMU_MEM_PWR_CTRL, 0, MPC_RMU1_MEM_PWR_DIS, power_on == true ? 1:0); if (power_on && mpc->ctx->dc->debug.enable_mem_low_power.bits.mpc) { REG_WAIT(MPC_RMU_MEM_PWR_CTRL, MPC_RMU1_SHAPER_MEM_PWR_STATE, 0, 1, max_retries); REG_WAIT(MPC_RMU_MEM_PWR_CTRL, MPC_RMU1_3DLUT_MEM_PWR_STATE, 0, 1, max_retries); } REG_GET(MPC_RMU_MEM_PWR_CTRL, MPC_RMU1_SHAPER_MEM_PWR_STATE, &power_status_shaper); REG_GET(MPC_RMU_MEM_PWR_CTRL, MPC_RMU1_3DLUT_MEM_PWR_STATE, &power_status_3dlut); } /*TODO Add rmu_idx == 2 for SIENNA_CICHLID */ if (power_status_shaper != 0 && power_on == true) BREAK_TO_DEBUGGER(); if (power_status_3dlut != 0 && power_on == true) BREAK_TO_DEBUGGER(); } bool mpc3_program_shaper( struct mpc *mpc, const struct pwl_params *params, uint32_t rmu_idx) { enum dc_lut_mode current_mode; enum dc_lut_mode next_mode; struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); if (params == NULL) { REG_SET(SHAPER_CONTROL[rmu_idx], 0, MPC_RMU_SHAPER_LUT_MODE, 0); return false; } if (mpc->ctx->dc->debug.enable_mem_low_power.bits.mpc) mpc3_power_on_shaper_3dlut(mpc, rmu_idx, true); current_mode = mpc3_get_shaper_current(mpc, rmu_idx); if (current_mode == LUT_BYPASS || current_mode == LUT_RAM_A) next_mode = LUT_RAM_B; else next_mode = LUT_RAM_A; mpc3_configure_shaper_lut(mpc, next_mode == LUT_RAM_A ? true:false, rmu_idx); if (next_mode == LUT_RAM_A) mpc3_program_shaper_luta_settings(mpc, params, rmu_idx); else mpc3_program_shaper_lutb_settings(mpc, params, rmu_idx); mpc3_program_shaper_lut( mpc, params->rgb_resulted, params->hw_points_num, rmu_idx); REG_SET(SHAPER_CONTROL[rmu_idx], 0, MPC_RMU_SHAPER_LUT_MODE, next_mode == LUT_RAM_A ? 1:2); mpc3_power_on_shaper_3dlut(mpc, rmu_idx, false); return true; } static void mpc3_set_3dlut_mode( struct mpc *mpc, enum dc_lut_mode mode, bool is_color_channel_12bits, bool is_lut_size17x17x17, uint32_t rmu_idx) { uint32_t lut_mode; struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); if (mode == LUT_BYPASS) lut_mode = 0; else if (mode == LUT_RAM_A) lut_mode = 1; else lut_mode = 2; REG_UPDATE_2(RMU_3DLUT_MODE[rmu_idx], MPC_RMU_3DLUT_MODE, lut_mode, MPC_RMU_3DLUT_SIZE, is_lut_size17x17x17 == true ? 0 : 1); } static enum dc_lut_mode get3dlut_config( struct mpc *mpc, bool *is_17x17x17, bool *is_12bits_color_channel, int rmu_idx) { uint32_t i_mode, i_enable_10bits, lut_size; enum dc_lut_mode mode; struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); REG_GET(RMU_3DLUT_MODE[rmu_idx], MPC_RMU_3DLUT_MODE_CURRENT, &i_mode); REG_GET(RMU_3DLUT_READ_WRITE_CONTROL[rmu_idx], MPC_RMU_3DLUT_30BIT_EN, &i_enable_10bits); switch (i_mode) { case 0: mode = LUT_BYPASS; break; case 1: mode = LUT_RAM_A; break; case 2: mode = LUT_RAM_B; break; default: mode = LUT_BYPASS; break; } if (i_enable_10bits > 0) *is_12bits_color_channel = false; else *is_12bits_color_channel = true; REG_GET(RMU_3DLUT_MODE[rmu_idx], MPC_RMU_3DLUT_SIZE, &lut_size); if (lut_size == 0) *is_17x17x17 = true; else *is_17x17x17 = false; return mode; } static void mpc3_select_3dlut_ram( struct mpc *mpc, enum dc_lut_mode mode, bool is_color_channel_12bits, uint32_t rmu_idx) { struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); REG_UPDATE_2(RMU_3DLUT_READ_WRITE_CONTROL[rmu_idx], MPC_RMU_3DLUT_RAM_SEL, mode == LUT_RAM_A ? 0 : 1, MPC_RMU_3DLUT_30BIT_EN, is_color_channel_12bits == true ? 0:1); } static void mpc3_select_3dlut_ram_mask( struct mpc *mpc, uint32_t ram_selection_mask, uint32_t rmu_idx) { struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); REG_UPDATE(RMU_3DLUT_READ_WRITE_CONTROL[rmu_idx], MPC_RMU_3DLUT_WRITE_EN_MASK, ram_selection_mask); REG_SET(RMU_3DLUT_INDEX[rmu_idx], 0, MPC_RMU_3DLUT_INDEX, 0); } static void mpc3_set3dlut_ram12( struct mpc *mpc, const struct dc_rgb *lut, uint32_t entries, uint32_t rmu_idx) { uint32_t i, red, green, blue, red1, green1, blue1; struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); for (i = 0 ; i < entries; i += 2) { red = lut[i].red<<4; green = lut[i].green<<4; blue = lut[i].blue<<4; red1 = lut[i+1].red<<4; green1 = lut[i+1].green<<4; blue1 = lut[i+1].blue<<4; REG_SET_2(RMU_3DLUT_DATA[rmu_idx], 0, MPC_RMU_3DLUT_DATA0, red, MPC_RMU_3DLUT_DATA1, red1); REG_SET_2(RMU_3DLUT_DATA[rmu_idx], 0, MPC_RMU_3DLUT_DATA0, green, MPC_RMU_3DLUT_DATA1, green1); REG_SET_2(RMU_3DLUT_DATA[rmu_idx], 0, MPC_RMU_3DLUT_DATA0, blue, MPC_RMU_3DLUT_DATA1, blue1); } } static void mpc3_set3dlut_ram10( struct mpc *mpc, const struct dc_rgb *lut, uint32_t entries, uint32_t rmu_idx) { uint32_t i, red, green, blue, value; struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); for (i = 0; i < entries; i++) { red = lut[i].red; green = lut[i].green; blue = lut[i].blue; //should we shift red 22bit and green 12? ask Nvenko value = (red<<20) | (green<<10) | blue; REG_SET(RMU_3DLUT_DATA_30BIT[rmu_idx], 0, MPC_RMU_3DLUT_DATA_30BIT, value); } } static void mpc3_init_mpcc(struct mpcc *mpcc, int mpcc_inst) { mpcc->mpcc_id = mpcc_inst; mpcc->dpp_id = 0xf; mpcc->mpcc_bot = NULL; mpcc->blnd_cfg.overlap_only = false; mpcc->blnd_cfg.global_alpha = 0xff; mpcc->blnd_cfg.global_gain = 0xff; mpcc->blnd_cfg.background_color_bpc = 4; mpcc->blnd_cfg.bottom_gain_mode = 0; mpcc->blnd_cfg.top_gain = 0x1f000; mpcc->blnd_cfg.bottom_inside_gain = 0x1f000; mpcc->blnd_cfg.bottom_outside_gain = 0x1f000; mpcc->sm_cfg.enable = false; mpcc->shared_bottom = false; } static void program_gamut_remap( struct dcn30_mpc *mpc30, int mpcc_id, const uint16_t *regval, int select) { uint16_t selection = 0; struct color_matrices_reg gam_regs; if (regval == NULL || select == GAMUT_REMAP_BYPASS) { REG_SET(MPCC_GAMUT_REMAP_MODE[mpcc_id], 0, MPCC_GAMUT_REMAP_MODE, GAMUT_REMAP_BYPASS); return; } switch (select) { case GAMUT_REMAP_COEFF: selection = 1; break; /*this corresponds to GAMUT_REMAP coefficients set B * we don't have common coefficient sets in dcn3ag/dcn3 */ case GAMUT_REMAP_COMA_COEFF: selection = 2; break; default: break; } gam_regs.shifts.csc_c11 = mpc30->mpc_shift->MPCC_GAMUT_REMAP_C11_A; gam_regs.masks.csc_c11 = mpc30->mpc_mask->MPCC_GAMUT_REMAP_C11_A; gam_regs.shifts.csc_c12 = mpc30->mpc_shift->MPCC_GAMUT_REMAP_C12_A; gam_regs.masks.csc_c12 = mpc30->mpc_mask->MPCC_GAMUT_REMAP_C12_A; if (select == GAMUT_REMAP_COEFF) { gam_regs.csc_c11_c12 = REG(MPC_GAMUT_REMAP_C11_C12_A[mpcc_id]); gam_regs.csc_c33_c34 = REG(MPC_GAMUT_REMAP_C33_C34_A[mpcc_id]); cm_helper_program_color_matrices( mpc30->base.ctx, regval, &gam_regs); } else if (select == GAMUT_REMAP_COMA_COEFF) { gam_regs.csc_c11_c12 = REG(MPC_GAMUT_REMAP_C11_C12_B[mpcc_id]); gam_regs.csc_c33_c34 = REG(MPC_GAMUT_REMAP_C33_C34_B[mpcc_id]); cm_helper_program_color_matrices( mpc30->base.ctx, regval, &gam_regs); } //select coefficient set to use REG_SET(MPCC_GAMUT_REMAP_MODE[mpcc_id], 0, MPCC_GAMUT_REMAP_MODE, selection); } void mpc3_set_gamut_remap( struct mpc *mpc, int mpcc_id, const struct mpc_grph_gamut_adjustment *adjust) { struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); int i = 0; int gamut_mode; if (adjust->gamut_adjust_type != GRAPHICS_GAMUT_ADJUST_TYPE_SW) program_gamut_remap(mpc30, mpcc_id, NULL, GAMUT_REMAP_BYPASS); else { struct fixed31_32 arr_matrix[12]; uint16_t arr_reg_val[12]; for (i = 0; i < 12; i++) arr_matrix[i] = adjust->temperature_matrix[i]; convert_float_matrix( arr_reg_val, arr_matrix, 12); //current coefficient set in use REG_GET(MPCC_GAMUT_REMAP_MODE[mpcc_id], MPCC_GAMUT_REMAP_MODE_CURRENT, &gamut_mode); if (gamut_mode == 0) gamut_mode = 1; //use coefficient set A else if (gamut_mode == 1) gamut_mode = 2; else gamut_mode = 1; program_gamut_remap(mpc30, mpcc_id, arr_reg_val, gamut_mode); } } bool mpc3_program_3dlut( struct mpc *mpc, const struct tetrahedral_params *params, int rmu_idx) { enum dc_lut_mode mode; bool is_17x17x17; bool is_12bits_color_channel; const struct dc_rgb *lut0; const struct dc_rgb *lut1; const struct dc_rgb *lut2; const struct dc_rgb *lut3; int lut_size0; int lut_size; if (params == NULL) { mpc3_set_3dlut_mode(mpc, LUT_BYPASS, false, false, rmu_idx); return false; } mpc3_power_on_shaper_3dlut(mpc, rmu_idx, true); mode = get3dlut_config(mpc, &is_17x17x17, &is_12bits_color_channel, rmu_idx); if (mode == LUT_BYPASS || mode == LUT_RAM_B) mode = LUT_RAM_A; else mode = LUT_RAM_B; is_17x17x17 = !params->use_tetrahedral_9; is_12bits_color_channel = params->use_12bits; if (is_17x17x17) { lut0 = params->tetrahedral_17.lut0; lut1 = params->tetrahedral_17.lut1; lut2 = params->tetrahedral_17.lut2; lut3 = params->tetrahedral_17.lut3; lut_size0 = sizeof(params->tetrahedral_17.lut0)/ sizeof(params->tetrahedral_17.lut0[0]); lut_size = sizeof(params->tetrahedral_17.lut1)/ sizeof(params->tetrahedral_17.lut1[0]); } else { lut0 = params->tetrahedral_9.lut0; lut1 = params->tetrahedral_9.lut1; lut2 = params->tetrahedral_9.lut2; lut3 = params->tetrahedral_9.lut3; lut_size0 = sizeof(params->tetrahedral_9.lut0)/ sizeof(params->tetrahedral_9.lut0[0]); lut_size = sizeof(params->tetrahedral_9.lut1)/ sizeof(params->tetrahedral_9.lut1[0]); } mpc3_select_3dlut_ram(mpc, mode, is_12bits_color_channel, rmu_idx); mpc3_select_3dlut_ram_mask(mpc, 0x1, rmu_idx); if (is_12bits_color_channel) mpc3_set3dlut_ram12(mpc, lut0, lut_size0, rmu_idx); else mpc3_set3dlut_ram10(mpc, lut0, lut_size0, rmu_idx); mpc3_select_3dlut_ram_mask(mpc, 0x2, rmu_idx); if (is_12bits_color_channel) mpc3_set3dlut_ram12(mpc, lut1, lut_size, rmu_idx); else mpc3_set3dlut_ram10(mpc, lut1, lut_size, rmu_idx); mpc3_select_3dlut_ram_mask(mpc, 0x4, rmu_idx); if (is_12bits_color_channel) mpc3_set3dlut_ram12(mpc, lut2, lut_size, rmu_idx); else mpc3_set3dlut_ram10(mpc, lut2, lut_size, rmu_idx); mpc3_select_3dlut_ram_mask(mpc, 0x8, rmu_idx); if (is_12bits_color_channel) mpc3_set3dlut_ram12(mpc, lut3, lut_size, rmu_idx); else mpc3_set3dlut_ram10(mpc, lut3, lut_size, rmu_idx); mpc3_set_3dlut_mode(mpc, mode, is_12bits_color_channel, is_17x17x17, rmu_idx); if (mpc->ctx->dc->debug.enable_mem_low_power.bits.mpc) mpc3_power_on_shaper_3dlut(mpc, rmu_idx, false); return true; } void mpc3_set_output_csc( struct mpc *mpc, int opp_id, const uint16_t *regval, enum mpc_output_csc_mode ocsc_mode) { struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); struct color_matrices_reg ocsc_regs; REG_WRITE(MPC_OUT_CSC_COEF_FORMAT, 0); REG_SET(CSC_MODE[opp_id], 0, MPC_OCSC_MODE, ocsc_mode); if (ocsc_mode == MPC_OUTPUT_CSC_DISABLE) return; if (regval == NULL) { BREAK_TO_DEBUGGER(); return; } ocsc_regs.shifts.csc_c11 = mpc30->mpc_shift->MPC_OCSC_C11_A; ocsc_regs.masks.csc_c11 = mpc30->mpc_mask->MPC_OCSC_C11_A; ocsc_regs.shifts.csc_c12 = mpc30->mpc_shift->MPC_OCSC_C12_A; ocsc_regs.masks.csc_c12 = mpc30->mpc_mask->MPC_OCSC_C12_A; if (ocsc_mode == MPC_OUTPUT_CSC_COEF_A) { ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_A[opp_id]); ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_A[opp_id]); } else { ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_B[opp_id]); ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_B[opp_id]); } cm_helper_program_color_matrices( mpc30->base.ctx, regval, &ocsc_regs); } void mpc3_set_ocsc_default( struct mpc *mpc, int opp_id, enum dc_color_space color_space, enum mpc_output_csc_mode ocsc_mode) { struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); uint32_t arr_size; struct color_matrices_reg ocsc_regs; const uint16_t *regval = NULL; REG_WRITE(MPC_OUT_CSC_COEF_FORMAT, 0); REG_SET(CSC_MODE[opp_id], 0, MPC_OCSC_MODE, ocsc_mode); if (ocsc_mode == MPC_OUTPUT_CSC_DISABLE) return; regval = find_color_matrix(color_space, &arr_size); if (regval == NULL) { BREAK_TO_DEBUGGER(); return; } ocsc_regs.shifts.csc_c11 = mpc30->mpc_shift->MPC_OCSC_C11_A; ocsc_regs.masks.csc_c11 = mpc30->mpc_mask->MPC_OCSC_C11_A; ocsc_regs.shifts.csc_c12 = mpc30->mpc_shift->MPC_OCSC_C12_A; ocsc_regs.masks.csc_c12 = mpc30->mpc_mask->MPC_OCSC_C12_A; if (ocsc_mode == MPC_OUTPUT_CSC_COEF_A) { ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_A[opp_id]); ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_A[opp_id]); } else { ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_B[opp_id]); ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_B[opp_id]); } cm_helper_program_color_matrices( mpc30->base.ctx, regval, &ocsc_regs); } void mpc3_set_rmu_mux( struct mpc *mpc, int rmu_idx, int value) { struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); if (rmu_idx == 0) REG_UPDATE(MPC_RMU_CONTROL, MPC_RMU0_MUX, value); else if (rmu_idx == 1) REG_UPDATE(MPC_RMU_CONTROL, MPC_RMU1_MUX, value); } uint32_t mpc3_get_rmu_mux_status( struct mpc *mpc, int rmu_idx) { uint32_t status = 0xf; struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); if (rmu_idx == 0) REG_GET(MPC_RMU_CONTROL, MPC_RMU0_MUX_STATUS, &status); else if (rmu_idx == 1) REG_GET(MPC_RMU_CONTROL, MPC_RMU1_MUX_STATUS, &status); return status; } uint32_t mpcc3_acquire_rmu(struct mpc *mpc, int mpcc_id, int rmu_idx) { uint32_t rmu_status; //determine if this mpcc is already multiplexed to an RMU unit rmu_status = mpc3_get_rmu_mux_status(mpc, rmu_idx); if (rmu_status == mpcc_id) //return rmu_idx of pre_acquired rmu unit return rmu_idx; if (rmu_status == 0xf) {//rmu unit is disabled mpc3_set_rmu_mux(mpc, rmu_idx, mpcc_id); return rmu_idx; } //no vacant RMU units or invalid parameters acquire_post_bldn_3dlut return -1; } int mpcc3_release_rmu(struct mpc *mpc, int mpcc_id) { struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); int rmu_idx; uint32_t rmu_status; int released_rmu = -1; for (rmu_idx = 0; rmu_idx < mpc30->num_rmu; rmu_idx++) { rmu_status = mpc3_get_rmu_mux_status(mpc, rmu_idx); if (rmu_status == mpcc_id) { mpc3_set_rmu_mux(mpc, rmu_idx, 0xf); released_rmu = rmu_idx; break; } } return released_rmu; } static void mpc3_mpc_init(struct mpc *mpc) { struct dcn30_mpc *mpc30 = TO_DCN30_MPC(mpc); int mpcc_id; mpc1_mpc_init(mpc); if (mpc->ctx->dc->debug.enable_mem_low_power.bits.mpc) { if (mpc30->mpc_mask->MPC_RMU0_MEM_LOW_PWR_MODE && mpc30->mpc_mask->MPC_RMU1_MEM_LOW_PWR_MODE) { REG_UPDATE(MPC_RMU_MEM_PWR_CTRL, MPC_RMU0_MEM_LOW_PWR_MODE, 3); REG_UPDATE(MPC_RMU_MEM_PWR_CTRL, MPC_RMU1_MEM_LOW_PWR_MODE, 3); } if (mpc30->mpc_mask->MPCC_OGAM_MEM_LOW_PWR_MODE) { for (mpcc_id = 0; mpcc_id < mpc30->num_mpcc; mpcc_id++) REG_UPDATE(MPCC_MEM_PWR_CTRL[mpcc_id], MPCC_OGAM_MEM_LOW_PWR_MODE, 3); } } } const struct mpc_funcs dcn30_mpc_funcs = { .read_mpcc_state = mpc1_read_mpcc_state, .insert_plane = mpc1_insert_plane, .remove_mpcc = mpc1_remove_mpcc, .mpc_init = mpc3_mpc_init, .mpc_init_single_inst = mpc1_mpc_init_single_inst, .update_blending = mpc2_update_blending, .cursor_lock = mpc1_cursor_lock, .get_mpcc_for_dpp = mpc1_get_mpcc_for_dpp, .wait_for_idle = mpc2_assert_idle_mpcc, .assert_mpcc_idle_before_connect = mpc2_assert_mpcc_idle_before_connect, .init_mpcc_list_from_hw = mpc1_init_mpcc_list_from_hw, .set_denorm = mpc3_set_denorm, .set_denorm_clamp = mpc3_set_denorm_clamp, .set_output_csc = mpc3_set_output_csc, .set_ocsc_default = mpc3_set_ocsc_default, .set_output_gamma = mpc3_set_output_gamma, .insert_plane_to_secondary = NULL, .remove_mpcc_from_secondary = NULL, .set_dwb_mux = mpc3_set_dwb_mux, .disable_dwb_mux = mpc3_disable_dwb_mux, .is_dwb_idle = mpc3_is_dwb_idle, .set_out_rate_control = mpc3_set_out_rate_control, .set_gamut_remap = mpc3_set_gamut_remap, .program_shaper = mpc3_program_shaper, .acquire_rmu = mpcc3_acquire_rmu, .program_3dlut = mpc3_program_3dlut, .release_rmu = mpcc3_release_rmu, .power_on_mpc_mem_pwr = mpc20_power_on_ogam_lut, }; void dcn30_mpc_construct(struct dcn30_mpc *mpc30, struct dc_context *ctx, const struct dcn30_mpc_registers *mpc_regs, const struct dcn30_mpc_shift *mpc_shift, const struct dcn30_mpc_mask *mpc_mask, int num_mpcc, int num_rmu) { int i; mpc30->base.ctx = ctx; mpc30->base.funcs = &dcn30_mpc_funcs; mpc30->mpc_regs = mpc_regs; mpc30->mpc_shift = mpc_shift; mpc30->mpc_mask = mpc_mask; mpc30->mpcc_in_use_mask = 0; mpc30->num_mpcc = num_mpcc; mpc30->num_rmu = num_rmu; for (i = 0; i < MAX_MPCC; i++) mpc3_init_mpcc(&mpc30->base.mpcc_array[i], i); }