summaryrefslogtreecommitdiff
path: root/src/util/sha1/sha1.c
blob: ef59ea1dfc61bc463b700901b295545fb4c104a8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
/*	$OpenBSD: sha1.c,v 1.26 2015/09/11 09:18:27 guenther Exp $	*/

/*
 * SHA-1 in C
 * By Steve Reid <steve@edmweb.com>
 * 100% Public Domain
 *
 * Test Vectors (from FIPS PUB 180-1)
 * "abc"
 *   A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
 * "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
 *   84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
 * A million repetitions of "a"
 *   34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
 */

#include <stdint.h>
#include <string.h>
#include "sha1.h"

#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))

/*
 * blk0() and blk() perform the initial expand.
 * I got the idea of expanding during the round function from SSLeay
 */
#if BYTE_ORDER == LITTLE_ENDIAN
# define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
    |(rol(block->l[i],8)&0x00FF00FF))
#else
# define blk0(i) block->l[i]
#endif
#define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
    ^block->l[(i+2)&15]^block->l[i&15],1))

/*
 * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
 */
#define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
#define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
#define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
#define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
#define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);

typedef union {
	uint8_t c[64];
	uint32_t l[16];
} CHAR64LONG16;

/*
 * Hash a single 512-bit block. This is the core of the algorithm.
 */
void
SHA1Transform(uint32_t state[5], const uint8_t buffer[SHA1_BLOCK_LENGTH])
{
	uint32_t a, b, c, d, e;
	uint8_t workspace[SHA1_BLOCK_LENGTH];
	CHAR64LONG16 *block = (CHAR64LONG16 *)workspace;

	(void)memcpy(block, buffer, SHA1_BLOCK_LENGTH);

	/* Copy context->state[] to working vars */
	a = state[0];
	b = state[1];
	c = state[2];
	d = state[3];
	e = state[4];

	/* 4 rounds of 20 operations each. Loop unrolled. */
	R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
	R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
	R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
	R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
	R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
	R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
	R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
	R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
	R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
	R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
	R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
	R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
	R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
	R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
	R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
	R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
	R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
	R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
	R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
	R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);

	/* Add the working vars back into context.state[] */
	state[0] += a;
	state[1] += b;
	state[2] += c;
	state[3] += d;
	state[4] += e;

	/* Wipe variables */
	a = b = c = d = e = 0;
}


/*
 * SHA1Init - Initialize new context
 */
void
SHA1Init(SHA1_CTX *context)
{

	/* SHA1 initialization constants */
	context->count = 0;
	context->state[0] = 0x67452301;
	context->state[1] = 0xEFCDAB89;
	context->state[2] = 0x98BADCFE;
	context->state[3] = 0x10325476;
	context->state[4] = 0xC3D2E1F0;
}


/*
 * Run your data through this.
 */
void
SHA1Update(SHA1_CTX *context, const uint8_t *data, size_t len)
{
	size_t i, j;

	j = (size_t)((context->count >> 3) & 63);
	context->count += (len << 3);
	if ((j + len) > 63) {
		(void)memcpy(&context->buffer[j], data, (i = 64-j));
		SHA1Transform(context->state, context->buffer);
		for ( ; i + 63 < len; i += 64)
			SHA1Transform(context->state, (uint8_t *)&data[i]);
		j = 0;
	} else {
		i = 0;
	}
	(void)memcpy(&context->buffer[j], &data[i], len - i);
}


/*
 * Add padding and return the message digest.
 */
void
SHA1Pad(SHA1_CTX *context)
{
	uint8_t finalcount[8];
	uint32_t i;

	for (i = 0; i < 8; i++) {
		finalcount[i] = (uint8_t)((context->count >>
		    ((7 - (i & 7)) * 8)) & 255);	/* Endian independent */
	}
	SHA1Update(context, (uint8_t *)"\200", 1);
	while ((context->count & 504) != 448)
		SHA1Update(context, (uint8_t *)"\0", 1);
	SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */
}

void
SHA1Final(uint8_t digest[SHA1_DIGEST_LENGTH], SHA1_CTX *context)
{
	uint32_t i;

	SHA1Pad(context);
	for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
		digest[i] = (uint8_t)
		   ((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
	}
	memset(context, 0, sizeof(*context));
}