1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
|
/*
* Mesa 3-D graphics library
*
* Copyright (C) 2006 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
/**
* \file bitset.h
* \brief Bitset of arbitrary size definitions.
* \author Michal Krol
*/
#ifndef BITSET_H
#define BITSET_H
#include "util/bitscan.h"
#include "util/macros.h"
/****************************************************************************
* generic bitset implementation
*/
#define BITSET_WORD unsigned int
#define BITSET_WORDBITS (sizeof (BITSET_WORD) * 8)
/* bitset declarations
*/
#define BITSET_WORDS(bits) (((bits) + BITSET_WORDBITS - 1) / BITSET_WORDBITS)
#define BITSET_DECLARE(name, bits) BITSET_WORD name[BITSET_WORDS(bits)]
/* bitset operations
*/
#define BITSET_COPY(x, y) memcpy( (x), (y), sizeof (x) )
#define BITSET_EQUAL(x, y) (memcmp( (x), (y), sizeof (x) ) == 0)
#define BITSET_ZERO(x) memset( (x), 0, sizeof (x) )
#define BITSET_ONES(x) memset( (x), 0xff, sizeof (x) )
#define BITSET_SIZE(x) (8 * sizeof(x)) // bitset size in bits
#define BITSET_BITWORD(b) ((b) / BITSET_WORDBITS)
#define BITSET_BIT(b) (1u << ((b) % BITSET_WORDBITS))
/* single bit operations
*/
#define BITSET_TEST(x, b) (((x)[BITSET_BITWORD(b)] & BITSET_BIT(b)) != 0)
#define BITSET_SET(x, b) ((x)[BITSET_BITWORD(b)] |= BITSET_BIT(b))
#define BITSET_CLEAR(x, b) ((x)[BITSET_BITWORD(b)] &= ~BITSET_BIT(b))
#define BITSET_MASK(b) (((b) % BITSET_WORDBITS == 0) ? ~0 : BITSET_BIT(b) - 1)
#define BITSET_RANGE(b, e) ((BITSET_MASK((e) + 1)) & ~(BITSET_BIT(b) - 1))
/* logic bit operations
*/
static inline void
__bitset_and(BITSET_WORD *r, const BITSET_WORD *x, const BITSET_WORD *y, unsigned n)
{
for (unsigned i = 0; i < n; i++)
r[i] = x[i] & y[i];
}
static inline void
__bitset_or(BITSET_WORD *r, const BITSET_WORD *x, const BITSET_WORD *y, unsigned n)
{
for (unsigned i = 0; i < n; i++)
r[i] = x[i] | y[i];
}
static inline void
__bitset_not(BITSET_WORD *x, unsigned n)
{
for (unsigned i = 0; i < n; i++)
x[i] = ~x[i];
}
static inline void
__bitset_andnot(BITSET_WORD *r, const BITSET_WORD *x, const BITSET_WORD *y, unsigned n)
{
for (unsigned i = 0; i < n; i++)
r[i] = x[i] & ~y[i];
}
#define BITSET_AND(r, x, y) \
do { \
STATIC_ASSERT(ARRAY_SIZE(r) == ARRAY_SIZE(x)); \
STATIC_ASSERT(ARRAY_SIZE(r) == ARRAY_SIZE(y)); \
__bitset_and(r, x, y, ARRAY_SIZE(r)); \
} while (0)
#define BITSET_OR(r, x, y) \
do { \
STATIC_ASSERT(ARRAY_SIZE(r) == ARRAY_SIZE(x)); \
STATIC_ASSERT(ARRAY_SIZE(r) == ARRAY_SIZE(y)); \
__bitset_or(r, x, y, ARRAY_SIZE(r)); \
} while (0)
#define BITSET_NOT(x) \
__bitset_not(x, ARRAY_SIZE(x))
#define BITSET_ANDNOT(r, x, y) \
do { \
assert(ARRAY_SIZE(r) == ARRAY_SIZE(x)); \
assert(ARRAY_SIZE(r) == ARRAY_SIZE(y)); \
__bitset_andnot(r, x, y, ARRAY_SIZE(r)); \
} while (0)
static inline void
__bitset_rotate_right(BITSET_WORD *x, unsigned amount, unsigned n)
{
assert(amount < BITSET_WORDBITS);
if (amount == 0)
return;
for (unsigned i = 0; i < n - 1; i++) {
x[i] = (x[i] >> amount) | (x[i + 1] << (BITSET_WORDBITS - amount));
}
x[n - 1] = x[n - 1] >> amount;
}
static inline void
__bitset_rotate_left(BITSET_WORD *x, unsigned amount, unsigned n)
{
assert(amount < BITSET_WORDBITS);
if (amount == 0)
return;
for (int i = n - 1; i > 0; i--) {
x[i] = (x[i] << amount) | (x[i - 1] >> (BITSET_WORDBITS - amount));
}
x[0] = x[0] << amount;
}
static inline void
__bitset_shr(BITSET_WORD *x, unsigned amount, unsigned n)
{
const unsigned int words = amount / BITSET_WORDBITS;
if (amount == 0)
return;
if (words) {
unsigned i;
for (i = 0; i < n - words; i++)
x[i] = x[i + words];
while (i < n)
x[i++] = 0;
amount %= BITSET_WORDBITS;
}
__bitset_rotate_right(x, amount, n);
}
static inline void
__bitset_shl(BITSET_WORD *x, unsigned amount, unsigned n)
{
const int words = amount / BITSET_WORDBITS;
if (amount == 0)
return;
if (words) {
int i;
for (i = n - 1; i >= words; i--) {
x[i] = x[i - words];
}
while (i >= 0) {
x[i--] = 0;
}
amount %= BITSET_WORDBITS;
}
__bitset_rotate_left(x, amount, n);
}
#define BITSET_SHR(x, n) \
__bitset_shr(x, n, ARRAY_SIZE(x));
#define BITSET_SHL(x, n) \
__bitset_shl(x, n, ARRAY_SIZE(x));
/* bit range operations (e=end is inclusive)
*/
#define BITSET_GET_RANGE_INSIDE_WORD(x, b, e) \
(BITSET_BITWORD(b) == BITSET_BITWORD(e) ? \
(((x)[BITSET_BITWORD(b)] >> (b % BITSET_WORDBITS)) & \
BITSET_MASK((e) - (b) + 1)) : \
(assert (!"BITSET_TEST_RANGE: bit range crosses word boundary"), 0))
#define BITSET_TEST_RANGE_INSIDE_WORD(x, b, e, mask) \
(BITSET_GET_RANGE_INSIDE_WORD(x, b, e) == (mask))
#define BITSET_SET_RANGE_INSIDE_WORD(x, b, e) \
(BITSET_BITWORD(b) == BITSET_BITWORD(e) ? \
((x)[BITSET_BITWORD(b)] |= BITSET_RANGE(b, e)) : \
(assert (!"BITSET_SET_RANGE_INSIDE_WORD: bit range crosses word boundary"), 0))
#define BITSET_CLEAR_RANGE_INSIDE_WORD(x, b, e) \
(BITSET_BITWORD(b) == BITSET_BITWORD(e) ? \
((x)[BITSET_BITWORD(b)] &= ~BITSET_RANGE(b, e)) : \
(assert (!"BITSET_CLEAR_RANGE: bit range crosses word boundary"), 0))
static inline bool
__bitset_test_range(const BITSET_WORD *r, unsigned start, unsigned end)
{
const unsigned size = end - start + 1;
const unsigned start_mod = start % BITSET_WORDBITS;
if (start_mod + size <= BITSET_WORDBITS) {
return !BITSET_TEST_RANGE_INSIDE_WORD(r, start, end, 0);
} else {
const unsigned first_size = BITSET_WORDBITS - start_mod;
return __bitset_test_range(r, start, start + first_size - 1) ||
__bitset_test_range(r, start + first_size, end);
}
}
#define BITSET_TEST_RANGE(x, b, e) \
__bitset_test_range(x, b, e)
static inline void
__bitset_set_range(BITSET_WORD *r, unsigned start, unsigned end)
{
const unsigned size = end - start + 1;
const unsigned start_mod = start % BITSET_WORDBITS;
if (start_mod + size <= BITSET_WORDBITS) {
BITSET_SET_RANGE_INSIDE_WORD(r, start, end);
} else {
const unsigned first_size = BITSET_WORDBITS - start_mod;
__bitset_set_range(r, start, start + first_size - 1);
__bitset_set_range(r, start + first_size, end);
}
}
#define BITSET_SET_RANGE(x, b, e) \
__bitset_set_range(x, b, e)
static inline void
__bitclear_clear_range(BITSET_WORD *r, unsigned start, unsigned end)
{
const unsigned size = end - start + 1;
const unsigned start_mod = start % BITSET_WORDBITS;
if (start_mod + size <= BITSET_WORDBITS) {
BITSET_CLEAR_RANGE_INSIDE_WORD(r, start, end);
} else {
const unsigned first_size = BITSET_WORDBITS - start_mod;
__bitclear_clear_range(r, start, start + first_size - 1);
__bitclear_clear_range(r, start + first_size, end);
}
}
#define BITSET_CLEAR_RANGE(x, b, e) \
__bitclear_clear_range(x, b, e)
static inline unsigned
__bitset_prefix_sum(const BITSET_WORD *x, unsigned b, unsigned n)
{
unsigned prefix = 0;
for (unsigned i = 0; i < n; i++) {
if ((i + 1) * BITSET_WORDBITS <= b) {
prefix += util_bitcount(x[i]);
} else {
prefix += util_bitcount(x[i] & BITFIELD_MASK(b - i * BITSET_WORDBITS));
break;
}
}
return prefix;
}
/* Count set bits in the bitset (compute the size/cardinality of the bitset).
* This is a special case of prefix sum, but this convenience method is more
* natural when applicable.
*/
static inline unsigned
__bitset_count(const BITSET_WORD *x, unsigned n)
{
return __bitset_prefix_sum(x, ~0, n);
}
#define BITSET_PREFIX_SUM(x, b) \
__bitset_prefix_sum(x, b, ARRAY_SIZE(x))
#define BITSET_COUNT(x) \
__bitset_count(x, ARRAY_SIZE(x))
/* Return true if the bitset has no bits set.
*/
static inline bool
__bitset_is_empty(const BITSET_WORD *x, int n)
{
for (int i = 0; i < n; i++) {
if (x[i])
return false;
}
return true;
}
/* Get first bit set in a bitset.
*/
static inline int
__bitset_ffs(const BITSET_WORD *x, int n)
{
for (int i = 0; i < n; i++) {
if (x[i])
return ffs(x[i]) + BITSET_WORDBITS * i;
}
return 0;
}
/* Get the last bit set in a bitset.
*/
static inline int
__bitset_last_bit(const BITSET_WORD *x, int n)
{
for (int i = n - 1; i >= 0; i--) {
if (x[i])
return util_last_bit(x[i]) + BITSET_WORDBITS * i;
}
return 0;
}
/* Get the last bit set in a bitset before last_bit.
*/
static inline int
__bitset_last_bit_before(const BITSET_WORD *x, int last_bit)
{
int n = last_bit / BITSET_WORDBITS;
int reminder = last_bit % BITSET_WORDBITS;
if (reminder) {
BITSET_WORD last = x[n] & BITFIELD_MASK(reminder);
if (last)
return util_last_bit(last) + n * BITSET_WORDBITS;
}
return __bitset_last_bit(x, n);
}
#define BITSET_FFS(x) __bitset_ffs(x, ARRAY_SIZE(x))
#define BITSET_LAST_BIT(x) __bitset_last_bit(x, ARRAY_SIZE(x))
#define BITSET_LAST_BIT_SIZED(x, size) __bitset_last_bit(x, size)
#define BITSET_LAST_BIT_BEFORE(x, last_bit) __bitset_last_bit_before(x, last_bit)
#define BITSET_IS_EMPTY(x) __bitset_is_empty(x, ARRAY_SIZE(x))
static inline unsigned
__bitset_next_set(unsigned i, BITSET_WORD *tmp,
const BITSET_WORD *set, unsigned size)
{
unsigned bit, word;
/* NOTE: The initial conditions for this function are very specific. At
* the start of the loop, the tmp variable must be set to *set and the
* initial i value set to 0. This way, if there is a bit set in the first
* word, we ignore the i-value and just grab that bit (so 0 is ok, even
* though 0 may be returned). If the first word is 0, then the value of
* `word` will be 0 and we will go on to look at the second word.
*/
word = BITSET_BITWORD(i);
while (*tmp == 0) {
word++;
if (word >= BITSET_WORDS(size))
return size;
*tmp = set[word];
}
/* Find the next set bit in the non-zero word */
bit = ffs(*tmp) - 1;
/* Unset the bit */
*tmp &= ~(1ull << bit);
return word * BITSET_WORDBITS + bit;
}
/**
* Iterates over each set bit in a set
*
* @param __i iteration variable, bit number
* @param __set the bitset to iterate (will not be modified)
* @param __size number of bits in the set to consider
*/
#define BITSET_FOREACH_SET(__i, __set, __size) \
for (BITSET_WORD __tmp = (__size) == 0 ? 0 : *(__set), *__foo = &__tmp; __foo != NULL; __foo = NULL) \
for (__i = 0; \
(__i = __bitset_next_set(__i, &__tmp, __set, __size)) < __size;)
static inline void
__bitset_next_range(unsigned *start, unsigned *end, const BITSET_WORD *set,
unsigned size)
{
/* To find the next start, start searching from end. In the first iteration
* it will be at 0, in every subsequent iteration it will be at the first
* 0-bit after the range.
*/
unsigned word = BITSET_BITWORD(*end);
if (word >= BITSET_WORDS(size)) {
*start = *end = size;
return;
}
BITSET_WORD tmp = set[word] & ~(BITSET_BIT(*end) - 1);
while (!tmp) {
word++;
if (word >= BITSET_WORDS(size)) {
*start = *end = size;
return;
}
tmp = set[word];
}
*start = word * BITSET_WORDBITS + ffs(tmp) - 1;
/* Now do the opposite to find end. Here we can start at start + 1, because
* we know that the bit at start is 1 and we're searching for the first
* 0-bit.
*/
word = BITSET_BITWORD(*start + 1);
if (word >= BITSET_WORDS(size)) {
*end = size;
return;
}
tmp = set[word] | (BITSET_BIT(*start + 1) - 1);
while (~tmp == 0) {
word++;
if (word >= BITSET_WORDS(size)) {
*end = size;
return;
}
tmp = set[word];
}
/* Cap "end" at "size" in case there are extra bits past "size" set in the
* word. This is only necessary for "end" because we terminate the loop if
* "start" goes past "size".
*/
*end = MIN2(word * BITSET_WORDBITS + ffs(~tmp) - 1, size);
}
/**
* Iterates over each contiguous range of set bits in a set
*
* @param __start the first 1 bit of the current range
* @param __end the bit after the last 1 bit of the current range
* @param __set the bitset to iterate (will not be modified)
* @param __size number of bits in the set to consider
*/
#define BITSET_FOREACH_RANGE(__start, __end, __set, __size) \
for (__start = 0, __end = 0, \
__bitset_next_range(&__start, &__end, __set, __size); \
__start < __size; \
__bitset_next_range(&__start, &__end, __set, __size))
#ifdef __cplusplus
/**
* Simple C++ wrapper of a bitset type of static size, with value semantics
* and basic bitwise arithmetic operators. The operators defined below are
* expected to have the same semantics as the same operator applied to other
* fundamental integer types. T is the name of the struct to instantiate
* it as, and N is the number of bits in the bitset.
*/
#define DECLARE_BITSET_T(T, N) struct T { \
explicit \
operator bool() const \
{ \
for (unsigned i = 0; i < BITSET_WORDS(N); i++) \
if (words[i]) \
return true; \
return false; \
} \
\
T & \
operator=(int x) \
{ \
const T c = {{ (BITSET_WORD)x }}; \
return *this = c; \
} \
\
friend bool \
operator==(const T &b, const T &c) \
{ \
return BITSET_EQUAL(b.words, c.words); \
} \
\
friend bool \
operator!=(const T &b, const T &c) \
{ \
return !(b == c); \
} \
\
friend bool \
operator==(const T &b, int x) \
{ \
const T c = {{ (BITSET_WORD)x }}; \
return b == c; \
} \
\
friend bool \
operator!=(const T &b, int x) \
{ \
return !(b == x); \
} \
\
friend T \
operator~(const T &b) \
{ \
T c; \
for (unsigned i = 0; i < BITSET_WORDS(N); i++) \
c.words[i] = ~b.words[i]; \
return c; \
} \
\
T & \
operator|=(const T &b) \
{ \
for (unsigned i = 0; i < BITSET_WORDS(N); i++) \
words[i] |= b.words[i]; \
return *this; \
} \
\
friend T \
operator|(const T &b, const T &c) \
{ \
T d = b; \
d |= c; \
return d; \
} \
\
T & \
operator&=(const T &b) \
{ \
for (unsigned i = 0; i < BITSET_WORDS(N); i++) \
words[i] &= b.words[i]; \
return *this; \
} \
\
friend T \
operator&(const T &b, const T &c) \
{ \
T d = b; \
d &= c; \
return d; \
} \
\
bool \
test(unsigned i) const \
{ \
return BITSET_TEST(words, i); \
} \
\
T & \
set(unsigned i) \
{ \
BITSET_SET(words, i); \
return *this; \
} \
\
T & \
clear(unsigned i) \
{ \
BITSET_CLEAR(words, i); \
return *this; \
} \
\
BITSET_WORD words[BITSET_WORDS(N)]; \
}
#endif
#endif
|