summaryrefslogtreecommitdiff
path: root/src/panfrost/midgard/midgard_emit.c
blob: 7f320a982260ca7cdffc4c2e093560b25217f0ca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
/*
 * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
 * Copyright (C) 2019-2020 Collabora, Ltd.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "compiler.h"
#include "midgard_ops.h"
#include "midgard_quirks.h"

static midgard_int_mod
mir_get_imod(bool shift, nir_alu_type T, bool half, bool scalar)
{
        if (!half) {
                assert(!shift);
                /* Sign-extension, really... */
                return scalar ? 0 : midgard_int_normal;
        }

        if (shift)
                return midgard_int_shift;

        if (nir_alu_type_get_base_type(T) == nir_type_int)
                return midgard_int_sign_extend;
        else
                return midgard_int_zero_extend;
}

unsigned
mir_pack_mod(midgard_instruction *ins, unsigned i, bool scalar)
{
        bool integer = midgard_is_integer_op(ins->op);
        unsigned base_size = max_bitsize_for_alu(ins);
        unsigned sz = nir_alu_type_get_type_size(ins->src_types[i]);
        bool half = (sz == (base_size >> 1));

        return integer ?
                mir_get_imod(ins->src_shift[i], ins->src_types[i], half, scalar) :
                ((ins->src_abs[i] << 0) |
                 ((ins->src_neg[i] << 1)));
}

/* Midgard IR only knows vector ALU types, but we sometimes need to actually
 * use scalar ALU instructions, for functional or performance reasons. To do
 * this, we just demote vector ALU payloads to scalar. */

static int
component_from_mask(unsigned mask)
{
        for (int c = 0; c < 8; ++c) {
                if (mask & (1 << c))
                        return c;
        }

        assert(0);
        return 0;
}

static unsigned
mir_pack_scalar_source(unsigned mod, bool is_full, unsigned component)
{
        midgard_scalar_alu_src s = {
                .mod = mod,
                .full = is_full,
                .component = component << (is_full ? 1 : 0)
        };

        unsigned o;
        memcpy(&o, &s, sizeof(s));

        return o & ((1 << 6) - 1);
}

static midgard_scalar_alu
vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
{
        bool is_full = nir_alu_type_get_type_size(ins->dest_type) == 32;

        bool half_0 = nir_alu_type_get_type_size(ins->src_types[0]) == 16;
        bool half_1 = nir_alu_type_get_type_size(ins->src_types[1]) == 16;
        unsigned comp = component_from_mask(ins->mask);

        unsigned packed_src[2] = {
                mir_pack_scalar_source(mir_pack_mod(ins, 0, true), !half_0, ins->swizzle[0][comp]),
                mir_pack_scalar_source(mir_pack_mod(ins, 1, true), !half_1, ins->swizzle[1][comp])
        };

        /* The output component is from the mask */
        midgard_scalar_alu s = {
                .op = v.op,
                .src1 = packed_src[0],
                .src2 = packed_src[1],
                .unknown = 0,
                .outmod = v.outmod,
                .output_full = is_full,
                .output_component = comp
        };

        /* Full components are physically spaced out */
        if (is_full) {
                assert(s.output_component < 4);
                s.output_component <<= 1;
        }

        /* Inline constant is passed along rather than trying to extract it
         * from v */

        if (ins->has_inline_constant) {
                uint16_t imm = 0;
                int lower_11 = ins->inline_constant & ((1 << 12) - 1);
                imm |= (lower_11 >> 9) & 3;
                imm |= (lower_11 >> 6) & 4;
                imm |= (lower_11 >> 2) & 0x38;
                imm |= (lower_11 & 63) << 6;

                s.src2 = imm;
        }

        return s;
}

/* 64-bit swizzles are super easy since there are 2 components of 2 components
 * in an 8-bit field ... lots of duplication to go around!
 *
 * Swizzles of 32-bit vectors accessed from 64-bit instructions are a little
 * funny -- pack them *as if* they were native 64-bit, using rep_* flags to
 * flag upper. For instance, xy would become 64-bit XY but that's just xyzw
 * native. Likewise, zz would become 64-bit XX with rep* so it would be xyxy
 * with rep. Pretty nifty, huh? */

static unsigned
mir_pack_swizzle_64(unsigned *swizzle, unsigned max_component)
{
        unsigned packed = 0;

        for (unsigned i = 0; i < 2; ++i) {
                assert(swizzle[i] <= max_component);

                unsigned a = (swizzle[i] & 1) ?
                        (COMPONENT_W << 2) | COMPONENT_Z :
                        (COMPONENT_Y << 2) | COMPONENT_X;

                packed |= a << (i * 4);
        }

        return packed;
}

static void
mir_pack_mask_alu(midgard_instruction *ins, midgard_vector_alu *alu)
{
        unsigned effective = ins->mask;

        /* If we have a destination override, we need to figure out whether to
         * override to the lower or upper half, shifting the effective mask in
         * the latter, so AAAA.... becomes AAAA */

        unsigned inst_size = max_bitsize_for_alu(ins);
        signed upper_shift = mir_upper_override(ins, inst_size);

        if (upper_shift >= 0) {
                effective >>= upper_shift;
                alu->dest_override = upper_shift ?
                        midgard_dest_override_upper :
                        midgard_dest_override_lower;
        } else {
                alu->dest_override = midgard_dest_override_none;
        }

        if (inst_size == 32)
                alu->mask = expand_writemask(effective, 2);
        else if (inst_size == 64)
                alu->mask = expand_writemask(effective, 1);
        else
                alu->mask = effective;
}

static unsigned
mir_pack_swizzle(unsigned mask, unsigned *swizzle,
                nir_alu_type T, midgard_reg_mode reg_mode,
                bool op_channeled, bool *rep_low, bool *rep_high)
{
        unsigned packed = 0;
        unsigned sz = nir_alu_type_get_type_size(T);

        if (reg_mode == midgard_reg_mode_64) {
                assert(sz == 64 || sz == 32);
                unsigned components = (sz == 32) ? 4 : 2;

                packed = mir_pack_swizzle_64(swizzle, components);

                if (sz == 32) {
                        bool lo = swizzle[0] >= COMPONENT_Z;
                        bool hi = swizzle[1] >= COMPONENT_Z;

                        if (mask & 0x1) {
                                /* We can't mix halves... */
                                if (mask & 2)
                                        assert(lo == hi);

                                *rep_low = lo;
                        } else {
                                *rep_low = hi;
                        }
                } else if (sz < 32) {
                        unreachable("Cannot encode 8/16 swizzle in 64-bit");
                }
        } else {
                /* For 32-bit, swizzle packing is stupid-simple. For 16-bit,
                 * the strategy is to check whether the nibble we're on is
                 * upper or lower. We need all components to be on the same
                 * "side"; that much is enforced by the ISA and should have
                 * been lowered. TODO: 8-bit packing. TODO: vec8 */

                unsigned first = mask ? ffs(mask) - 1 : 0;
                bool upper = swizzle[first] > 3;

                if (upper && mask)
                        assert(sz <= 16);

                bool dest_up = !op_channeled && (first >= 4);

                for (unsigned c = (dest_up ? 4 : 0); c < (dest_up ? 8 : 4); ++c) {
                        unsigned v = swizzle[c];

                        ASSERTED bool t_upper = v > 3;

                        /* Ensure we're doing something sane */

                        if (mask & (1 << c)) {
                                assert(t_upper == upper);
                                assert(v <= 7);
                        }

                        /* Use the non upper part */
                        v &= 0x3;

                        packed |= v << (2 * (c % 4));
                }


                /* Replicate for now.. should really pick a side for
                 * dot products */

                if (reg_mode == midgard_reg_mode_16 && sz == 16) {
                        *rep_low = !upper;
                        *rep_high = upper;
                } else if (reg_mode == midgard_reg_mode_16 && sz == 8) {
                        *rep_low = upper;
                        *rep_high = upper;
                } else if (reg_mode == midgard_reg_mode_32) {
                        *rep_low = upper;
                } else {
                        unreachable("Unhandled reg mode");
                }
        }

        return packed;
}

static void
mir_pack_vector_srcs(midgard_instruction *ins, midgard_vector_alu *alu)
{
        bool channeled = GET_CHANNEL_COUNT(alu_opcode_props[ins->op].props);

        unsigned base_size = max_bitsize_for_alu(ins);

        for (unsigned i = 0; i < 2; ++i) {
                if (ins->has_inline_constant && (i == 1))
                        continue;

                if (ins->src[i] == ~0)
                        continue;

                bool rep_lo = false, rep_hi = false;
                unsigned sz = nir_alu_type_get_type_size(ins->src_types[i]);
                bool half = (sz == (base_size >> 1));

                assert((sz == base_size) || half);

                unsigned swizzle = mir_pack_swizzle(ins->mask, ins->swizzle[i],
                                ins->src_types[i], reg_mode_for_bitsize(base_size),
                                channeled, &rep_lo, &rep_hi);

                midgard_vector_alu_src pack = {
                        .mod = mir_pack_mod(ins, i, false),
                        .rep_low = rep_lo,
                        .rep_high = rep_hi,
                        .half = half,
                        .swizzle = swizzle
                };

                unsigned p = vector_alu_srco_unsigned(pack);
                
                if (i == 0)
                        alu->src1 = p;
                else
                        alu->src2 = p;
        }
}

static void
mir_pack_swizzle_ldst(midgard_instruction *ins)
{
        /* TODO: non-32-bit, non-vec4 */
        for (unsigned c = 0; c < 4; ++c) {
                unsigned v = ins->swizzle[0][c];

                /* Check vec4 */
                assert(v <= 3);

                ins->load_store.swizzle |= v << (2 * c);
        }

        /* TODO: arg_1/2 */
}

static void
mir_pack_swizzle_tex(midgard_instruction *ins)
{
        for (unsigned i = 0; i < 2; ++i) {
                unsigned packed = 0;

                for (unsigned c = 0; c < 4; ++c) {
                        unsigned v = ins->swizzle[i][c];

                        /* Check vec4 */
                        assert(v <= 3);

                        packed |= v << (2 * c);
                }

                if (i == 0)
                        ins->texture.swizzle = packed;
                else
                        ins->texture.in_reg_swizzle = packed;
        }

        /* TODO: bias component */
}

/* Up to 3 { ALU, LDST } bundles can execute in parallel with a texture op.
 * Given a texture op, lookahead to see how many such bundles we can flag for
 * OoO execution */

static bool
mir_can_run_ooo(midgard_block *block, midgard_bundle *bundle,
                unsigned dependency)
{
        /* Don't read out of bounds */
        if (bundle >= (midgard_bundle *) ((char *) block->bundles.data + block->bundles.size))
                return false;

        /* Texture ops can't execute with other texture ops */
        if (!IS_ALU(bundle->tag) && bundle->tag != TAG_LOAD_STORE_4)
                return false;

        /* Ensure there is no read-after-write dependency */

        for (unsigned i = 0; i < bundle->instruction_count; ++i) {
                midgard_instruction *ins = bundle->instructions[i];

                mir_foreach_src(ins, s) {
                        if (ins->src[s] == dependency)
                                return false;
                }
        }

        /* Otherwise, we're okay */
        return true;
}

static void
mir_pack_tex_ooo(midgard_block *block, midgard_bundle *bundle, midgard_instruction *ins)
{
        unsigned count = 0;

        for (count = 0; count < 3; ++count) {
                if (!mir_can_run_ooo(block, bundle + count + 1, ins->dest))
                        break;
        }

        ins->texture.out_of_order = count;
}

/* Load store masks are 4-bits. Load/store ops pack for that. vec4 is the
 * natural mask width; vec8 is constrained to be in pairs, vec2 is duplicated. TODO: 8-bit?
 */

static void
mir_pack_ldst_mask(midgard_instruction *ins)
{
        unsigned sz = nir_alu_type_get_type_size(ins->dest_type);
        unsigned packed = ins->mask;

        if (sz == 64) {
                packed = ((ins->mask & 0x2) ? (0x8 | 0x4) : 0) |
                         ((ins->mask & 0x1) ? (0x2 | 0x1) : 0);
        } else if (sz == 16) {
                packed = 0;

                for (unsigned i = 0; i < 4; ++i) {
                        /* Make sure we're duplicated */
                        bool u = (ins->mask & (1 << (2*i + 0))) != 0;
                        ASSERTED bool v = (ins->mask & (1 << (2*i + 1))) != 0;
                        assert(u == v);

                        packed |= (u << i);
                }
        } else {
                assert(sz == 32);
        }

        ins->load_store.mask = packed;
}

static void
mir_lower_inverts(midgard_instruction *ins)
{
        bool inv[3] = {
                ins->src_invert[0],
                ins->src_invert[1],
                ins->src_invert[2]
        };

        switch (ins->op) {
        case midgard_alu_op_iand:
                /* a & ~b = iandnot(a, b) */
                /* ~a & ~b = ~(a | b) = inor(a, b) */

                if (inv[0] && inv[1])
                        ins->op = midgard_alu_op_inor;
                else if (inv[1])
                        ins->op = midgard_alu_op_iandnot;

                break;
        case midgard_alu_op_ior:
                /*  a | ~b = iornot(a, b) */
                /* ~a | ~b = ~(a & b) = inand(a, b) */

                if (inv[0] && inv[1])
                        ins->op = midgard_alu_op_inand;
                else if (inv[1])
                        ins->op = midgard_alu_op_iornot;

                break;

        case midgard_alu_op_ixor:
                /* ~a ^ b = a ^ ~b = ~(a ^ b) = inxor(a, b) */
                /* ~a ^ ~b = a ^ b */

                if (inv[0] ^ inv[1])
                        ins->op = midgard_alu_op_inxor;

                break;

        default:
                break;
        }
}

/* Opcodes with ROUNDS are the base (rte/0) type so we can just add */

static void
mir_lower_roundmode(midgard_instruction *ins)
{
        if (alu_opcode_props[ins->op].props & MIDGARD_ROUNDS) {
                assert(ins->roundmode <= 0x3);
                ins->op += ins->roundmode;
        }
}

static midgard_load_store_word
load_store_from_instr(midgard_instruction *ins)
{
        midgard_load_store_word ldst = ins->load_store;
        ldst.op = ins->op;

        if (OP_IS_STORE(ldst.op)) {
                ldst.reg = SSA_REG_FROM_FIXED(ins->src[0]) & 1;
        } else {
                ldst.reg = SSA_REG_FROM_FIXED(ins->dest);
        }

        /* Atomic opcode swizzles have a special meaning:
         *   - The first two bits say which component of the implicit register should be used
         *   - The next two bits say if the implicit register is r26 or r27 */
        if (OP_IS_ATOMIC(ins->op)) {
                ldst.swizzle = 0;
                ldst.swizzle |= ins->swizzle[3][0] & 3;
                ldst.swizzle |= (SSA_REG_FROM_FIXED(ins->src[3]) & 1 ? 1 : 0) << 2;
        }

        if (ins->src[1] != ~0) {
                unsigned src = SSA_REG_FROM_FIXED(ins->src[1]);
                unsigned sz = nir_alu_type_get_type_size(ins->src_types[1]);
                ldst.arg_1 |= midgard_ldst_reg(src, ins->swizzle[1][0], sz);
        }

        if (ins->src[2] != ~0) {
                unsigned src = SSA_REG_FROM_FIXED(ins->src[2]);
                unsigned sz = nir_alu_type_get_type_size(ins->src_types[2]);
                ldst.arg_2 |= midgard_ldst_reg(src, ins->swizzle[2][0], sz);
        }

        return ldst;
}

static midgard_texture_word
texture_word_from_instr(midgard_instruction *ins)
{
        midgard_texture_word tex = ins->texture;
        tex.op = ins->op;

        unsigned src1 = ins->src[1] == ~0 ? REGISTER_UNUSED : SSA_REG_FROM_FIXED(ins->src[1]);
        tex.in_reg_select = src1 & 1;

        unsigned dest = ins->dest == ~0 ? REGISTER_UNUSED : SSA_REG_FROM_FIXED(ins->dest);
        tex.out_reg_select = dest & 1;

        if (ins->src[2] != ~0) {
                midgard_tex_register_select sel = {
                        .select = SSA_REG_FROM_FIXED(ins->src[2]) & 1,
                        .full = 1,
                        .component = ins->swizzle[2][0]
                };
                uint8_t packed;
                memcpy(&packed, &sel, sizeof(packed));
                tex.bias = packed;
        }

        if (ins->src[3] != ~0) {
                unsigned x = ins->swizzle[3][0];
                unsigned y = x + 1;
                unsigned z = x + 2;

                /* Check range, TODO: half-registers */
                assert(z < 4);

                unsigned offset_reg = SSA_REG_FROM_FIXED(ins->src[3]);
                tex.offset =
                        (1)                   | /* full */
                        (offset_reg & 1) << 1 | /* select */
                        (0 << 2)              | /* upper */
                        (x << 3)              | /* swizzle */
                        (y << 5)              | /* swizzle */
                        (z << 7);               /* swizzle */
        }

        return tex;
}

static midgard_vector_alu
vector_alu_from_instr(midgard_instruction *ins)
{
        midgard_vector_alu alu = {
                .op = ins->op,
                .outmod = ins->outmod,
                .reg_mode = reg_mode_for_bitsize(max_bitsize_for_alu(ins))
        };

        if (ins->has_inline_constant) {
                /* Encode inline 16-bit constant. See disassembler for
                 * where the algorithm is from */

                int lower_11 = ins->inline_constant & ((1 << 12) - 1);
                uint16_t imm = ((lower_11 >> 8) & 0x7) |
                               ((lower_11 & 0xFF) << 3);

                alu.src2 = imm << 2;
        }

        return alu;
}

static midgard_branch_extended
midgard_create_branch_extended( midgard_condition cond,
                                midgard_jmp_writeout_op op,
                                unsigned dest_tag,
                                signed quadword_offset)
{
        /* The condition code is actually a LUT describing a function to
         * combine multiple condition codes. However, we only support a single
         * condition code at the moment, so we just duplicate over a bunch of
         * times. */

        uint16_t duplicated_cond =
                (cond << 14) |
                (cond << 12) |
                (cond << 10) |
                (cond << 8) |
                (cond << 6) |
                (cond << 4) |
                (cond << 2) |
                (cond << 0);

        midgard_branch_extended branch = {
                .op = op,
                .dest_tag = dest_tag,
                .offset = quadword_offset,
                .cond = duplicated_cond
        };

        return branch;
}

static void
emit_branch(midgard_instruction *ins,
            compiler_context *ctx,
            midgard_block *block,
            midgard_bundle *bundle,
            struct util_dynarray *emission)
{
        /* Parse some basic branch info */
        bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
        bool is_conditional = ins->branch.conditional;
        bool is_inverted = ins->branch.invert_conditional;
        bool is_discard = ins->branch.target_type == TARGET_DISCARD;
        bool is_tilebuf_wait = ins->branch.target_type == TARGET_TILEBUF_WAIT;
        bool is_special = is_discard || is_tilebuf_wait;
        bool is_writeout = ins->writeout;

        /* Determine the block we're jumping to */
        int target_number = ins->branch.target_block;

        /* Report the destination tag */
        int dest_tag = is_discard ? 0 :
                is_tilebuf_wait ? bundle->tag :
                midgard_get_first_tag_from_block(ctx, target_number);

        /* Count up the number of quadwords we're
         * jumping over = number of quadwords until
         * (br_block_idx, target_number) */

        int quadword_offset = 0;

        if (is_discard) {
                /* Fixed encoding, not actually an offset */
                quadword_offset = 0x2;
        } else if (is_tilebuf_wait) {
                quadword_offset = -1;
        } else if (target_number > block->base.name) {
                /* Jump forward */

                for (int idx = block->base.name+1; idx < target_number; ++idx) {
                        midgard_block *blk = mir_get_block(ctx, idx);
                        assert(blk);

                        quadword_offset += blk->quadword_count;
                }
        } else {
                /* Jump backwards */

                for (int idx = block->base.name; idx >= target_number; --idx) {
                        midgard_block *blk = mir_get_block(ctx, idx);
                        assert(blk);

                        quadword_offset -= blk->quadword_count;
                }
        }

        /* Unconditional extended branches (far jumps)
         * have issues, so we always use a conditional
         * branch, setting the condition to always for
         * unconditional. For compact unconditional
         * branches, cond isn't used so it doesn't
         * matter what we pick. */

        midgard_condition cond =
                !is_conditional ? midgard_condition_always :
                is_inverted ? midgard_condition_false :
                midgard_condition_true;

        midgard_jmp_writeout_op op =
                is_discard ? midgard_jmp_writeout_op_discard :
                is_tilebuf_wait ? midgard_jmp_writeout_op_tilebuffer_pending :
                is_writeout ? midgard_jmp_writeout_op_writeout :
                (is_compact && !is_conditional) ?
                midgard_jmp_writeout_op_branch_uncond :
                midgard_jmp_writeout_op_branch_cond;

        if (is_compact) {
                unsigned size = sizeof(midgard_branch_cond);

                if (is_conditional || is_special) {
                        midgard_branch_cond branch = {
                                .op = op,
                                .dest_tag = dest_tag,
                                .offset = quadword_offset,
                                .cond = cond
                        };
                        memcpy(util_dynarray_grow_bytes(emission, size, 1), &branch, size);
                } else {
                        assert(op == midgard_jmp_writeout_op_branch_uncond);
                        midgard_branch_uncond branch = {
                                .op = op,
                                .dest_tag = dest_tag,
                                .offset = quadword_offset,
                                .unknown = 1
                        };
                        assert(branch.offset == quadword_offset);
                        memcpy(util_dynarray_grow_bytes(emission, size, 1), &branch, size);
                }
        } else { /* `ins->compact_branch`,  misnomer */
                unsigned size = sizeof(midgard_branch_extended);

                midgard_branch_extended branch =
                        midgard_create_branch_extended(
                                        cond, op,
                                        dest_tag,
                                        quadword_offset);

                memcpy(util_dynarray_grow_bytes(emission, size, 1), &branch, size);
        }
}

static void
emit_alu_bundle(compiler_context *ctx,
                midgard_block *block,
                midgard_bundle *bundle,
                struct util_dynarray *emission,
                unsigned lookahead)
{
        /* Emit the control word */
        util_dynarray_append(emission, uint32_t, bundle->control | lookahead);

        /* Next up, emit register words */
        for (unsigned i = 0; i < bundle->instruction_count; ++i) {
                midgard_instruction *ins = bundle->instructions[i];

                /* Check if this instruction has registers */
                if (ins->compact_branch) continue;

                unsigned src2_reg = REGISTER_UNUSED;
                if (ins->has_inline_constant)
                        src2_reg = ins->inline_constant >> 11;
                else if (ins->src[1] != ~0)
                        src2_reg = SSA_REG_FROM_FIXED(ins->src[1]);

                /* Otherwise, just emit the registers */
                uint16_t reg_word = 0;
                midgard_reg_info registers = {
                        .src1_reg = (ins->src[0] == ~0 ?
                                        REGISTER_UNUSED :
                                        SSA_REG_FROM_FIXED(ins->src[0])),
                        .src2_reg = src2_reg,
                        .src2_imm = ins->has_inline_constant,
                        .out_reg = (ins->dest == ~0 ?
                                        REGISTER_UNUSED :
                                        SSA_REG_FROM_FIXED(ins->dest)),
                };
                memcpy(&reg_word, &registers, sizeof(uint16_t));
                util_dynarray_append(emission, uint16_t, reg_word);
        }

        /* Now, we emit the body itself */
        for (unsigned i = 0; i < bundle->instruction_count; ++i) {
                midgard_instruction *ins = bundle->instructions[i];

                if (!ins->compact_branch) {
                        mir_lower_inverts(ins);
                        mir_lower_roundmode(ins);
                }

                if (midgard_is_branch_unit(ins->unit)) {
                        emit_branch(ins, ctx, block, bundle, emission);
                } else if (ins->unit & UNITS_ANY_VECTOR) {
                        midgard_vector_alu source = vector_alu_from_instr(ins);
                        mir_pack_mask_alu(ins, &source);
                        mir_pack_vector_srcs(ins, &source);
                        unsigned size = sizeof(source);
                        memcpy(util_dynarray_grow_bytes(emission, size, 1), &source, size);
                } else {
                        midgard_scalar_alu source = vector_to_scalar_alu(vector_alu_from_instr(ins), ins);
                        unsigned size = sizeof(source);
                        memcpy(util_dynarray_grow_bytes(emission, size, 1), &source, size);
                }
        }

        /* Emit padding (all zero) */
        memset(util_dynarray_grow_bytes(emission, bundle->padding, 1), 0, bundle->padding);

        /* Tack on constants */

        if (bundle->has_embedded_constants)
                util_dynarray_append(emission, midgard_constants, bundle->constants);
}

/* Shift applied to the immediate used as an offset. Probably this is papering
 * over some other semantic distinction else well, but it unifies things in the
 * compiler so I don't mind. */

static unsigned
mir_ldst_imm_shift(midgard_load_store_op op)
{
        if (OP_IS_UBO_READ(op))
                return 3;
        else
                return 1;
}

static enum mali_sampler_type
midgard_sampler_type(nir_alu_type t) {
        switch (nir_alu_type_get_base_type(t))
        {
        case nir_type_float:
                return MALI_SAMPLER_FLOAT;
        case nir_type_int:
                return MALI_SAMPLER_SIGNED;
        case nir_type_uint:
                return MALI_SAMPLER_UNSIGNED;
        default:
                unreachable("Unknown sampler type");
        }
}

/* After everything is scheduled, emit whole bundles at a time */

void
emit_binary_bundle(compiler_context *ctx,
                   midgard_block *block,
                   midgard_bundle *bundle,
                   struct util_dynarray *emission,
                   int next_tag)
{
        int lookahead = next_tag << 4;

        switch (bundle->tag) {
        case TAG_ALU_4:
        case TAG_ALU_8:
        case TAG_ALU_12:
        case TAG_ALU_16:
        case TAG_ALU_4 + 4:
        case TAG_ALU_8 + 4:
        case TAG_ALU_12 + 4:
        case TAG_ALU_16 + 4:
                emit_alu_bundle(ctx, block, bundle, emission, lookahead);
                break;

        case TAG_LOAD_STORE_4: {
                /* One or two composing instructions */

                uint64_t current64, next64 = LDST_NOP;

                /* Copy masks */

                for (unsigned i = 0; i < bundle->instruction_count; ++i) {
                        mir_pack_ldst_mask(bundle->instructions[i]);

                        /* Atomic ops don't use this swizzle the same way as other ops */
                        if (!OP_IS_ATOMIC(bundle->instructions[i]->op))
                                mir_pack_swizzle_ldst(bundle->instructions[i]);

                        /* Apply a constant offset */
                        unsigned offset = bundle->instructions[i]->constants.u32[0];

                        if (offset) {
                                unsigned shift = mir_ldst_imm_shift(bundle->instructions[i]->op);
                                unsigned upper_shift = 10 - shift;

                                bundle->instructions[i]->load_store.varying_parameters |= (offset & ((1 << upper_shift) - 1)) << shift;
                                bundle->instructions[i]->load_store.address |= (offset >> upper_shift);
                        }
                }

                midgard_load_store_word ldst0 =
                        load_store_from_instr(bundle->instructions[0]);
                memcpy(&current64, &ldst0, sizeof(current64));

                if (bundle->instruction_count == 2) {
                        midgard_load_store_word ldst1 =
                                load_store_from_instr(bundle->instructions[1]);
                        memcpy(&next64, &ldst1, sizeof(next64));
                }

                midgard_load_store instruction = {
                        .type = bundle->tag,
                        .next_type = next_tag,
                        .word1 = current64,
                        .word2 = next64
                };

                util_dynarray_append(emission, midgard_load_store, instruction);

                break;
        }

        case TAG_TEXTURE_4:
        case TAG_TEXTURE_4_VTX:
        case TAG_TEXTURE_4_BARRIER: {
                /* Texture instructions are easy, since there is no pipelining
                 * nor VLIW to worry about. We may need to set .cont/.last
                 * flags. */

                midgard_instruction *ins = bundle->instructions[0];

                ins->texture.type = bundle->tag;
                ins->texture.next_type = next_tag;

                /* Nothing else to pack for barriers */
                if (ins->op == TEXTURE_OP_BARRIER) {
                        ins->texture.cont = ins->texture.last = 1;
                        ins->texture.op = ins->op;
                        util_dynarray_append(emission, midgard_texture_word, ins->texture);
                        return;
                }

                signed override = mir_upper_override(ins, 32);

                ins->texture.mask = override > 0 ?
                        ins->mask >> override :
                        ins->mask;

                mir_pack_swizzle_tex(ins);

                if (!(ctx->quirks & MIDGARD_NO_OOO))
                        mir_pack_tex_ooo(block, bundle, ins);

                unsigned osz = nir_alu_type_get_type_size(ins->dest_type);
                unsigned isz = nir_alu_type_get_type_size(ins->src_types[1]);

                assert(osz == 32 || osz == 16);
                assert(isz == 32 || isz == 16);

                ins->texture.out_full = (osz == 32);
                ins->texture.out_upper = override > 0;
                ins->texture.in_reg_full = (isz == 32);
                ins->texture.sampler_type = midgard_sampler_type(ins->dest_type);
                ins->texture.outmod = ins->outmod;

                if (mir_op_computes_derivatives(ctx->stage, ins->op)) {
                        ins->texture.cont = !ins->helper_terminate;
                        ins->texture.last = ins->helper_terminate || ins->helper_execute;
                } else {
                        ins->texture.cont = ins->texture.last = 1;
                }

                midgard_texture_word texture = texture_word_from_instr(ins);
                util_dynarray_append(emission, midgard_texture_word, texture);
                break;
        }

        default:
                unreachable("Unknown midgard instruction type\n");
        }
}