summaryrefslogtreecommitdiff
path: root/src/intel/tools/gen_batch_decoder.c
blob: a0d6dbd3e589a9666d9bf49b234d71231267e2d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
/*
 * Copyright © 2017 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include "common/gen_decoder.h"
#include "gen_disasm.h"

#include <string.h>

void
gen_batch_decode_ctx_init(struct gen_batch_decode_ctx *ctx,
                          const struct gen_device_info *devinfo,
                          FILE *fp, enum gen_batch_decode_flags flags,
                          const char *xml_path,
                          struct gen_batch_decode_bo (*get_bo)(void *,
                                                               uint64_t),
                          void *user_data)
{
   memset(ctx, 0, sizeof(*ctx));

   ctx->get_bo = get_bo;
   ctx->user_data = user_data;
   ctx->fp = fp;
   ctx->flags = flags;

   if (xml_path == NULL)
      ctx->spec = gen_spec_load(devinfo);
   else
      ctx->spec = gen_spec_load_from_path(devinfo, xml_path);
   ctx->disasm = gen_disasm_create(devinfo);
}

void
gen_batch_decode_ctx_finish(struct gen_batch_decode_ctx *ctx)
{
   gen_spec_destroy(ctx->spec);
   gen_disasm_destroy(ctx->disasm);
}

#define CSI "\e["
#define RED_COLOR    CSI "31m"
#define BLUE_HEADER  CSI "0;44m"
#define GREEN_HEADER CSI "1;42m"
#define NORMAL       CSI "0m"

#define ARRAY_LENGTH(a) (sizeof (a) / sizeof (a)[0])

static void
ctx_print_group(struct gen_batch_decode_ctx *ctx,
                struct gen_group *group,
                uint64_t address, const void *map)
{
   gen_print_group(ctx->fp, group, address, map, 0,
                   (ctx->flags & GEN_BATCH_DECODE_IN_COLOR) != 0);
}

static struct gen_batch_decode_bo
ctx_get_bo(struct gen_batch_decode_ctx *ctx, uint64_t addr)
{
   if (gen_spec_get_gen(ctx->spec) >= gen_make_gen(8,0)) {
      /* On Broadwell and above, we have 48-bit addresses which consume two
       * dwords.  Some packets require that these get stored in a "canonical
       * form" which means that bit 47 is sign-extended through the upper
       * bits. In order to correctly handle those aub dumps, we need to mask
       * off the top 16 bits.
       */
      addr &= (~0ull >> 16);
   }

   struct gen_batch_decode_bo bo = ctx->get_bo(ctx->user_data, addr);

   if (gen_spec_get_gen(ctx->spec) >= gen_make_gen(8,0))
      bo.addr &= (~0ull >> 16);

   /* We may actually have an offset into the bo */
   if (bo.map != NULL) {
      assert(bo.addr <= addr);
      uint64_t offset = addr - bo.addr;
      bo.map += offset;
      bo.addr += offset;
      bo.size -= offset;
   }

   return bo;
}

static void
ctx_disassemble_program(struct gen_batch_decode_ctx *ctx,
                        uint32_t ksp, const char *type)
{
   if (!ctx->instruction_base.map)
      return;

   printf("\nReferenced %s:\n", type);
   gen_disasm_disassemble(ctx->disasm,
                          (void *)ctx->instruction_base.map, ksp,
                          ctx->fp);
}

/* Heuristic to determine whether a uint32_t is probably actually a float
 * (http://stackoverflow.com/a/2953466)
 */

static bool
probably_float(uint32_t bits)
{
   int exp = ((bits & 0x7f800000U) >> 23) - 127;
   uint32_t mant = bits & 0x007fffff;

   /* +- 0.0 */
   if (exp == -127 && mant == 0)
      return true;

   /* +- 1 billionth to 1 billion */
   if (-30 <= exp && exp <= 30)
      return true;

   /* some value with only a few binary digits */
   if ((mant & 0x0000ffff) == 0)
      return true;

   return false;
}

static void
ctx_print_buffer(struct gen_batch_decode_ctx *ctx,
                 struct gen_batch_decode_bo bo,
                 uint32_t read_length,
                 uint32_t pitch)
{
   const uint32_t *dw_end = bo.map + MIN2(bo.size, read_length);

   unsigned line_count = 0;
   for (const uint32_t *dw = bo.map; dw < dw_end; dw++) {
      if (line_count * 4 == pitch || line_count == 8) {
         fprintf(ctx->fp, "\n");
         line_count = 0;
      }
      fprintf(ctx->fp, line_count == 0 ? "  " : " ");

      if ((ctx->flags & GEN_BATCH_DECODE_FLOATS) && probably_float(*dw))
         fprintf(ctx->fp, "  %8.2f", *(float *) dw);
      else
         fprintf(ctx->fp, "  0x%08x", *dw);

      line_count++;
   }
   fprintf(ctx->fp, "\n");
}

static void
handle_state_base_address(struct gen_batch_decode_ctx *ctx, const uint32_t *p)
{
   struct gen_group *inst = gen_spec_find_instruction(ctx->spec, p);

   struct gen_field_iterator iter;
   gen_field_iterator_init(&iter, inst, p, 0, false);

   while (gen_field_iterator_next(&iter)) {
      if (strcmp(iter.name, "Surface State Base Address") == 0) {
         ctx->surface_base = ctx_get_bo(ctx, iter.raw_value);
      } else if (strcmp(iter.name, "Dynamic State Base Address") == 0) {
         ctx->dynamic_base = ctx_get_bo(ctx, iter.raw_value);
      } else if (strcmp(iter.name, "Instruction Base Address") == 0) {
         ctx->instruction_base = ctx_get_bo(ctx, iter.raw_value);
      }
   }
}

static void
dump_binding_table(struct gen_batch_decode_ctx *ctx, uint32_t offset, int count)
{
   struct gen_group *strct =
      gen_spec_find_struct(ctx->spec, "RENDER_SURFACE_STATE");
   if (strct == NULL) {
      fprintf(ctx->fp, "did not find RENDER_SURFACE_STATE info\n");
      return;
   }

   /* If we don't know the actual count, guess. */
   if (count < 0)
      count = 8;

   if (ctx->surface_base.map == NULL) {
      fprintf(ctx->fp, "  binding table unavailable\n");
      return;
   }

   if (offset % 32 != 0 || offset >= UINT16_MAX ||
       offset >= ctx->surface_base.size) {
      fprintf(ctx->fp, "  invalid binding table pointer\n");
      return;
   }

   const uint32_t *pointers = ctx->surface_base.map + offset;
   for (int i = 0; i < count; i++) {
      if (pointers[i] == 0)
         continue;

      if (pointers[i] % 32 != 0 ||
          (pointers[i] + strct->dw_length * 4) >= ctx->surface_base.size) {
         fprintf(ctx->fp, "pointer %u: %08x <not valid>\n", i, pointers[i]);
         continue;
      }

      fprintf(ctx->fp, "pointer %u: %08x\n", i, pointers[i]);
      ctx_print_group(ctx, strct, ctx->surface_base.addr + pointers[i],
                      ctx->surface_base.map + pointers[i]);
   }
}

static void
dump_samplers(struct gen_batch_decode_ctx *ctx, uint32_t offset, int count)
{
   struct gen_group *strct = gen_spec_find_struct(ctx->spec, "SAMPLER_STATE");

   /* If we don't know the actual count, guess. */
   if (count < 0)
      count = 4;

   if (ctx->dynamic_base.map == NULL) {
      fprintf(ctx->fp, "  samplers unavailable\n");
      return;
   }

   if (offset % 32 != 0 || offset >= ctx->dynamic_base.size) {
      fprintf(ctx->fp, "  invalid sampler state pointer\n");
      return;
   }

   uint64_t state_addr = ctx->dynamic_base.addr + offset;
   const void *state_map = ctx->dynamic_base.map + offset;
   for (int i = 0; i < count; i++) {
      fprintf(ctx->fp, "sampler state %d\n", i);
      ctx_print_group(ctx, strct, state_addr, state_map);
      state_addr += 16;
      state_map += 16;
   }
}

static void
handle_media_interface_descriptor_load(struct gen_batch_decode_ctx *ctx,
                                       const uint32_t *p)
{
   if (ctx->dynamic_base.map == NULL)
      return;

   struct gen_group *inst = gen_spec_find_instruction(ctx->spec, p);
   struct gen_group *desc =
      gen_spec_find_struct(ctx->spec, "INTERFACE_DESCRIPTOR_DATA");

   struct gen_field_iterator iter;
   gen_field_iterator_init(&iter, inst, p, 0, false);
   uint32_t descriptor_offset = 0;
   int descriptor_count = 0;
   while (gen_field_iterator_next(&iter)) {
      if (strcmp(iter.name, "Interface Descriptor Data Start Address") == 0) {
         descriptor_offset = strtol(iter.value, NULL, 16);
      } else if (strcmp(iter.name, "Interface Descriptor Total Length") == 0) {
         descriptor_count =
            strtol(iter.value, NULL, 16) / (desc->dw_length * 4);
      }
   }

   uint64_t desc_addr = ctx->dynamic_base.addr + descriptor_offset;
   const uint32_t *desc_map = ctx->dynamic_base.map + descriptor_offset;
   for (int i = 0; i < descriptor_count; i++) {
      fprintf(ctx->fp, "descriptor %d: %08x\n", i, descriptor_offset);

      ctx_print_group(ctx, desc, desc_addr, desc_map);

      gen_field_iterator_init(&iter, desc, desc_map, 0, false);
      uint64_t ksp;
      uint32_t sampler_offset, sampler_count;
      uint32_t binding_table_offset, binding_entry_count;
      while (gen_field_iterator_next(&iter)) {
         if (strcmp(iter.name, "Kernel Start Pointer") == 0) {
            ksp = strtoll(iter.value, NULL, 16);
         } else if (strcmp(iter.name, "Sampler State Pointer") == 0) {
            sampler_offset = strtol(iter.value, NULL, 16);
         } else if (strcmp(iter.name, "Sampler Count") == 0) {
            sampler_count = strtol(iter.value, NULL, 10);
         } else if (strcmp(iter.name, "Binding Table Pointer") == 0) {
            binding_table_offset = strtol(iter.value, NULL, 16);
         } else if (strcmp(iter.name, "Binding Table Entry Count") == 0) {
            binding_entry_count = strtol(iter.value, NULL, 10);
         }
      }

      ctx_disassemble_program(ctx, ksp, "compute shader");
      printf("\n");

      dump_samplers(ctx, sampler_offset, sampler_count);
      dump_binding_table(ctx, binding_table_offset, binding_entry_count);

      desc_map += desc->dw_length;
      desc_addr += desc->dw_length * 4;
   }
}

static void
handle_3dstate_vertex_buffers(struct gen_batch_decode_ctx *ctx,
                              const uint32_t *p)
{
   struct gen_group *inst = gen_spec_find_instruction(ctx->spec, p);
   struct gen_group *vbs = gen_spec_find_struct(ctx->spec, "VERTEX_BUFFER_STATE");

   struct gen_batch_decode_bo vb = {};
   uint32_t vb_size = 0;
   int index = -1;
   int pitch = -1;
   bool ready = false;

   struct gen_field_iterator iter;
   gen_field_iterator_init(&iter, inst, p, 0, false);
   while (gen_field_iterator_next(&iter)) {
      if (iter.struct_desc != vbs)
         continue;

      struct gen_field_iterator vbs_iter;
      gen_field_iterator_init(&vbs_iter, vbs, &iter.p[iter.start_bit / 32], 0, false);
      while (gen_field_iterator_next(&vbs_iter)) {
         if (strcmp(vbs_iter.name, "Vertex Buffer Index") == 0) {
            index = vbs_iter.raw_value;
         } else if (strcmp(vbs_iter.name, "Buffer Pitch") == 0) {
            pitch = vbs_iter.raw_value;
         } else if (strcmp(vbs_iter.name, "Buffer Starting Address") == 0) {
            vb = ctx_get_bo(ctx, vbs_iter.raw_value);
         } else if (strcmp(vbs_iter.name, "Buffer Size") == 0) {
            vb_size = vbs_iter.raw_value;
            ready = true;
         } else if (strcmp(vbs_iter.name, "End Address") == 0) {
            if (vb.map && vbs_iter.raw_value >= vb.addr)
               vb_size = vbs_iter.raw_value - vb.addr;
            else
               vb_size = 0;
            ready = true;
         }

         if (!ready)
            continue;

         fprintf(ctx->fp, "vertex buffer %d, size %d\n", index, vb_size);

         if (vb.map == NULL) {
            fprintf(ctx->fp, "  buffer contents unavailable\n");
            continue;
         }

         if (vb.map == 0 || vb_size == 0)
            continue;

         ctx_print_buffer(ctx, vb, vb_size, pitch);

         vb.map = NULL;
         vb_size = 0;
         index = -1;
         pitch = -1;
         ready = false;
      }
   }
}

static void
handle_3dstate_index_buffer(struct gen_batch_decode_ctx *ctx,
                            const uint32_t *p)
{
   struct gen_group *inst = gen_spec_find_instruction(ctx->spec, p);

   struct gen_batch_decode_bo ib = {};
   uint32_t ib_size = 0;
   uint32_t format = 0;

   struct gen_field_iterator iter;
   gen_field_iterator_init(&iter, inst, p, 0, false);
   while (gen_field_iterator_next(&iter)) {
      if (strcmp(iter.name, "Index Format") == 0) {
         format = iter.raw_value;
      } else if (strcmp(iter.name, "Buffer Starting Address") == 0) {
         ib = ctx_get_bo(ctx, iter.raw_value);
      } else if (strcmp(iter.name, "Buffer Size") == 0) {
         ib_size = iter.raw_value;
      }
   }

   if (ib.map == NULL) {
      fprintf(ctx->fp, "  buffer contents unavailable\n");
      return;
   }

   const void *m = ib.map;
   const void *ib_end = ib.map + MIN2(ib.size, ib_size);
   for (int i = 0; m < ib_end && i < 10; i++) {
      switch (format) {
      case 0:
         fprintf(ctx->fp, "%3d ", *(uint8_t *)m);
         m += 1;
         break;
      case 1:
         fprintf(ctx->fp, "%3d ", *(uint16_t *)m);
         m += 2;
         break;
      case 2:
         fprintf(ctx->fp, "%3d ", *(uint32_t *)m);
         m += 4;
         break;
      }
   }

   if (m < ib_end)
      fprintf(ctx->fp, "...");
   fprintf(ctx->fp, "\n");
}

static void
decode_single_ksp(struct gen_batch_decode_ctx *ctx, const uint32_t *p)
{
   struct gen_group *inst = gen_spec_find_instruction(ctx->spec, p);

   uint64_t ksp = 0;
   bool is_simd8 = false; /* vertex shaders on Gen8+ only */
   bool is_enabled = true;

   struct gen_field_iterator iter;
   gen_field_iterator_init(&iter, inst, p, 0, false);
   while (gen_field_iterator_next(&iter)) {
      if (strcmp(iter.name, "Kernel Start Pointer") == 0) {
         ksp = iter.raw_value;
      } else if (strcmp(iter.name, "SIMD8 Dispatch Enable") == 0) {
         is_simd8 = iter.raw_value;
      } else if (strcmp(iter.name, "Dispatch Mode") == 0) {
         is_simd8 = strcmp(iter.value, "SIMD8") == 0;
      } else if (strcmp(iter.name, "Dispatch Enable") == 0) {
         is_simd8 = strcmp(iter.value, "SIMD8") == 0;
      } else if (strcmp(iter.name, "Enable") == 0) {
         is_enabled = iter.raw_value;
      }
   }

   const char *type =
      strcmp(inst->name,   "VS_STATE") == 0 ? "vertex shader" :
      strcmp(inst->name,   "GS_STATE") == 0 ? "geometry shader" :
      strcmp(inst->name,   "SF_STATE") == 0 ? "strips and fans shader" :
      strcmp(inst->name, "CLIP_STATE") == 0 ? "clip shader" :
      strcmp(inst->name, "3DSTATE_DS") == 0 ? "tessellation evaluation shader" :
      strcmp(inst->name, "3DSTATE_HS") == 0 ? "tessellation control shader" :
      strcmp(inst->name, "3DSTATE_VS") == 0 ? (is_simd8 ? "SIMD8 vertex shader" : "vec4 vertex shader") :
      strcmp(inst->name, "3DSTATE_GS") == 0 ? (is_simd8 ? "SIMD8 geometry shader" : "vec4 geometry shader") :
      NULL;

   if (is_enabled) {
      ctx_disassemble_program(ctx, ksp, type);
      printf("\n");
   }
}

static void
decode_ps_kernels(struct gen_batch_decode_ctx *ctx, const uint32_t *p)
{
   struct gen_group *inst = gen_spec_find_instruction(ctx->spec, p);

   uint64_t ksp[3] = {0, 0, 0};
   bool enabled[3] = {false, false, false};

   struct gen_field_iterator iter;
   gen_field_iterator_init(&iter, inst, p, 0, false);
   while (gen_field_iterator_next(&iter)) {
      if (strncmp(iter.name, "Kernel Start Pointer ",
                  strlen("Kernel Start Pointer ")) == 0) {
         int idx = iter.name[strlen("Kernel Start Pointer ")] - '0';
         ksp[idx] = strtol(iter.value, NULL, 16);
      } else if (strcmp(iter.name, "8 Pixel Dispatch Enable") == 0) {
         enabled[0] = strcmp(iter.value, "true") == 0;
      } else if (strcmp(iter.name, "16 Pixel Dispatch Enable") == 0) {
         enabled[1] = strcmp(iter.value, "true") == 0;
      } else if (strcmp(iter.name, "32 Pixel Dispatch Enable") == 0) {
         enabled[2] = strcmp(iter.value, "true") == 0;
      }
   }

   /* Reorder KSPs to be [8, 16, 32] instead of the hardware order. */
   if (enabled[0] + enabled[1] + enabled[2] == 1) {
      if (enabled[1]) {
         ksp[1] = ksp[0];
         ksp[0] = 0;
      } else if (enabled[2]) {
         ksp[2] = ksp[0];
         ksp[0] = 0;
      }
   } else {
      uint64_t tmp = ksp[1];
      ksp[1] = ksp[2];
      ksp[2] = tmp;
   }

   if (enabled[0])
      ctx_disassemble_program(ctx, ksp[0], "SIMD8 fragment shader");
   if (enabled[1])
      ctx_disassemble_program(ctx, ksp[1], "SIMD16 fragment shader");
   if (enabled[2])
      ctx_disassemble_program(ctx, ksp[2], "SIMD32 fragment shader");
   fprintf(ctx->fp, "\n");
}

static void
decode_3dstate_constant(struct gen_batch_decode_ctx *ctx, const uint32_t *p)
{
   struct gen_group *inst = gen_spec_find_instruction(ctx->spec, p);

   uint32_t read_length[4];
   struct gen_batch_decode_bo buffer[4];
   memset(buffer, 0, sizeof(buffer));

   int rlidx = 0, bidx = 0;

   struct gen_field_iterator iter;
   gen_field_iterator_init(&iter, inst, p, 0, false);
   while (gen_field_iterator_next(&iter)) {
      if (strcmp(iter.name, "Read Length") == 0) {
         read_length[rlidx++] = iter.raw_value;
      } else if (strcmp(iter.name, "Buffer") == 0) {
         buffer[bidx++] = ctx_get_bo(ctx, iter.raw_value);
      }
   }

   for (int i = 0; i < 4; i++) {
      if (read_length[i] == 0 || buffer[i].map == NULL)
         continue;

      unsigned size = read_length[i] * 32;
      fprintf(ctx->fp, "constant buffer %d, size %u\n", i, size);

      ctx_print_buffer(ctx, buffer[i], size, 0);
   }
}

static void
decode_3dstate_binding_table_pointers(struct gen_batch_decode_ctx *ctx,
                                      const uint32_t *p)
{
   dump_binding_table(ctx, p[1], -1);
}

static void
decode_3dstate_sampler_state_pointers(struct gen_batch_decode_ctx *ctx,
                                      const uint32_t *p)
{
   dump_samplers(ctx, p[1], -1);
}

static void
decode_3dstate_sampler_state_pointers_gen6(struct gen_batch_decode_ctx *ctx,
                                           const uint32_t *p)
{
   dump_samplers(ctx, p[1], -1);
   dump_samplers(ctx, p[2], -1);
   dump_samplers(ctx, p[3], -1);
}

static bool
str_ends_with(const char *str, const char *end)
{
   int offset = strlen(str) - strlen(end);
   if (offset < 0)
      return false;

   return strcmp(str + offset, end) == 0;
}

static void
decode_dynamic_state_pointers(struct gen_batch_decode_ctx *ctx,
                              const char *struct_type, const uint32_t *p,
                              int count)
{
   if (ctx->dynamic_base.map == NULL) {
      fprintf(ctx->fp, "  dynamic %s state unavailable\n", struct_type);
      return;
   }

   struct gen_group *inst = gen_spec_find_instruction(ctx->spec, p);
   struct gen_group *state = gen_spec_find_struct(ctx->spec, struct_type);

   uint32_t state_offset;

   struct gen_field_iterator iter;
   gen_field_iterator_init(&iter, inst, p, 0, false);
   while (gen_field_iterator_next(&iter)) {
      if (str_ends_with(iter.name, "Pointer")) {
         state_offset = iter.raw_value;
         break;
      }
   }

   uint32_t state_addr = ctx->dynamic_base.addr + state_offset;
   const uint32_t *state_map = ctx->dynamic_base.map + state_offset;
   for (int i = 0; i < count; i++) {
      fprintf(ctx->fp, "%s %d\n", struct_type, i);
      ctx_print_group(ctx, state, state_offset, state_map);

      state_addr += state->dw_length * 4;
      state_map += state->dw_length;
   }
}

static void
decode_3dstate_viewport_state_pointers_cc(struct gen_batch_decode_ctx *ctx,
                                          const uint32_t *p)
{
   decode_dynamic_state_pointers(ctx, "CC_VIEWPORT", p, 4);
}

static void
decode_3dstate_viewport_state_pointers_sf_clip(struct gen_batch_decode_ctx *ctx,
                                               const uint32_t *p)
{
   decode_dynamic_state_pointers(ctx, "SF_CLIP_VIEWPORT", p, 4);
}

static void
decode_3dstate_blend_state_pointers(struct gen_batch_decode_ctx *ctx,
                                    const uint32_t *p)
{
   decode_dynamic_state_pointers(ctx, "BLEND_STATE", p, 1);
}

static void
decode_3dstate_cc_state_pointers(struct gen_batch_decode_ctx *ctx,
                                 const uint32_t *p)
{
   decode_dynamic_state_pointers(ctx, "COLOR_CALC_STATE", p, 1);
}

static void
decode_3dstate_scissor_state_pointers(struct gen_batch_decode_ctx *ctx,
                                      const uint32_t *p)
{
   decode_dynamic_state_pointers(ctx, "SCISSOR_RECT", p, 1);
}

static void
decode_load_register_imm(struct gen_batch_decode_ctx *ctx, const uint32_t *p)
{
   struct gen_group *reg = gen_spec_find_register(ctx->spec, p[1]);

   if (reg != NULL) {
      fprintf(ctx->fp, "register %s (0x%x): 0x%x\n",
              reg->name, reg->register_offset, p[2]);
      ctx_print_group(ctx, reg, reg->register_offset, &p[2]);
   }
}

struct custom_decoder {
   const char *cmd_name;
   void (*decode)(struct gen_batch_decode_ctx *ctx, const uint32_t *p);
} custom_decoders[] = {
   { "STATE_BASE_ADDRESS", handle_state_base_address },
   { "MEDIA_INTERFACE_DESCRIPTOR_LOAD", handle_media_interface_descriptor_load },
   { "3DSTATE_VERTEX_BUFFERS", handle_3dstate_vertex_buffers },
   { "3DSTATE_INDEX_BUFFER", handle_3dstate_index_buffer },
   { "3DSTATE_VS", decode_single_ksp },
   { "3DSTATE_GS", decode_single_ksp },
   { "3DSTATE_DS", decode_single_ksp },
   { "3DSTATE_HS", decode_single_ksp },
   { "3DSTATE_PS", decode_ps_kernels },
   { "3DSTATE_CONSTANT_VS", decode_3dstate_constant },
   { "3DSTATE_CONSTANT_GS", decode_3dstate_constant },
   { "3DSTATE_CONSTANT_PS", decode_3dstate_constant },
   { "3DSTATE_CONSTANT_HS", decode_3dstate_constant },
   { "3DSTATE_CONSTANT_DS", decode_3dstate_constant },

   { "3DSTATE_BINDING_TABLE_POINTERS_VS", decode_3dstate_binding_table_pointers },
   { "3DSTATE_BINDING_TABLE_POINTERS_HS", decode_3dstate_binding_table_pointers },
   { "3DSTATE_BINDING_TABLE_POINTERS_DS", decode_3dstate_binding_table_pointers },
   { "3DSTATE_BINDING_TABLE_POINTERS_GS", decode_3dstate_binding_table_pointers },
   { "3DSTATE_BINDING_TABLE_POINTERS_PS", decode_3dstate_binding_table_pointers },

   { "3DSTATE_SAMPLER_STATE_POINTERS_VS", decode_3dstate_sampler_state_pointers },
   { "3DSTATE_SAMPLER_STATE_POINTERS_HS", decode_3dstate_sampler_state_pointers },
   { "3DSTATE_SAMPLER_STATE_POINTERS_DS", decode_3dstate_sampler_state_pointers },
   { "3DSTATE_SAMPLER_STATE_POINTERS_GS", decode_3dstate_sampler_state_pointers },
   { "3DSTATE_SAMPLER_STATE_POINTERS_PS", decode_3dstate_sampler_state_pointers },
   { "3DSTATE_SAMPLER_STATE_POINTERS", decode_3dstate_sampler_state_pointers_gen6 },

   { "3DSTATE_VIEWPORT_STATE_POINTERS_CC", decode_3dstate_viewport_state_pointers_cc },
   { "3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", decode_3dstate_viewport_state_pointers_sf_clip },
   { "3DSTATE_BLEND_STATE_POINTERS", decode_3dstate_blend_state_pointers },
   { "3DSTATE_CC_STATE_POINTERS", decode_3dstate_cc_state_pointers },
   { "3DSTATE_SCISSOR_STATE_POINTERS", decode_3dstate_scissor_state_pointers },
   { "MI_LOAD_REGISTER_IMM", decode_load_register_imm }
};

static inline uint64_t
get_address(struct gen_spec *spec, const uint32_t *p)
{
   /* Addresses are always guaranteed to be page-aligned and sometimes
    * hardware packets have extra stuff stuffed in the bottom 12 bits.
    */
   uint64_t addr = p[0] & ~0xfffu;

   if (gen_spec_get_gen(spec) >= gen_make_gen(8,0)) {
      /* On Broadwell and above, we have 48-bit addresses which consume two
       * dwords.  Some packets require that these get stored in a "canonical
       * form" which means that bit 47 is sign-extended through the upper
       * bits. In order to correctly handle those aub dumps, we need to mask
       * off the top 16 bits.
       */
      addr |= ((uint64_t)p[1] & 0xffff) << 32;
   }

   return addr;
}

void
gen_print_batch(struct gen_batch_decode_ctx *ctx,
                const uint32_t *batch, uint32_t batch_size,
                uint64_t batch_addr)
{
   const uint32_t *p, *end = batch + batch_size;
   int length;
   struct gen_group *inst;

   for (p = batch; p < end; p += length) {
      inst = gen_spec_find_instruction(ctx->spec, p);
      length = gen_group_get_length(inst, p);
      assert(inst == NULL || length > 0);
      length = MAX2(1, length);

      const char *reset_color = ctx->flags & GEN_BATCH_DECODE_IN_COLOR ? NORMAL : "";

      uint64_t offset;
      if (ctx->flags & GEN_BATCH_DECODE_OFFSETS)
         offset = batch_addr + ((char *)p - (char *)batch);
      else
         offset = 0;

      if (inst == NULL) {
         fprintf(ctx->fp, "%s0x%08"PRIx64": unknown instruction %08x%s\n",
                 (ctx->flags & GEN_BATCH_DECODE_IN_COLOR) ? RED_COLOR : "",
                 offset, p[0], reset_color);
         continue;
      }

      const char *color;
      const char *inst_name = gen_group_get_name(inst);
      if (ctx->flags & GEN_BATCH_DECODE_IN_COLOR) {
         reset_color = NORMAL;
         if (ctx->flags & GEN_BATCH_DECODE_FULL) {
            if (strcmp(inst_name, "MI_BATCH_BUFFER_START") == 0 ||
                strcmp(inst_name, "MI_BATCH_BUFFER_END") == 0)
               color = GREEN_HEADER;
            else
               color = BLUE_HEADER;
         } else {
            color = NORMAL;
         }
      } else {
         color = "";
         reset_color = "";
      }

      fprintf(ctx->fp, "%s0x%08"PRIx64":  0x%08x:  %-80s%s\n",
              color, offset, p[0], inst_name, reset_color);

      if (ctx->flags & GEN_BATCH_DECODE_FULL) {
         ctx_print_group(ctx, inst, offset, p);

         for (int i = 0; i < ARRAY_LENGTH(custom_decoders); i++) {
            if (strcmp(inst_name, custom_decoders[i].cmd_name) == 0) {
               custom_decoders[i].decode(ctx, p);
               break;
            }
         }
      }

      if (strcmp(inst_name, "MI_BATCH_BUFFER_START") == 0) {
         struct gen_batch_decode_bo next_batch;
         bool second_level;
         struct gen_field_iterator iter;
         gen_field_iterator_init(&iter, inst, p, 0, false);
         while (gen_field_iterator_next(&iter)) {
            if (strcmp(iter.name, "Batch Buffer Start Address") == 0) {
               next_batch = ctx_get_bo(ctx, iter.raw_value);
            } else if (strcmp(iter.name, "Second Level Batch Buffer") == 0) {
               second_level = iter.raw_value;
            }
         }

         if (next_batch.map == NULL) {
            fprintf(ctx->fp, "Secondary batch at 0x%08"PRIx64" unavailable",
                    next_batch.addr);
         }

         if (second_level) {
            /* MI_BATCH_BUFFER_START with "2nd Level Batch Buffer" set acts
             * like a subroutine call.  Commands that come afterwards get
             * processed once the 2nd level batch buffer returns with
             * MI_BATCH_BUFFER_END.
             */
            if (next_batch.map) {
               gen_print_batch(ctx, next_batch.map, next_batch.size,
                               next_batch.addr);
            }
         } else {
            /* MI_BATCH_BUFFER_START with "2nd Level Batch Buffer" unset acts
             * like a goto.  Nothing after it will ever get processed.  In
             * order to prevent the recursion from growing, we just reset the
             * loop and continue;
             */
            if (next_batch.map) {
               p = next_batch.map;
               end = next_batch.map + next_batch.size;
               length = 0;
               continue;
            } else {
               /* Nothing we can do */
               break;
            }
         }
      } else if (strcmp(inst_name, "MI_BATCH_BUFFER_END") == 0) {
         break;
      }
   }
}