summaryrefslogtreecommitdiff
path: root/src/intel/compiler/brw_vec4_visitor.cpp
blob: 6459b8b79eaf4c756d9798f279ac5fe06d822b92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
/*
 * Copyright © 2011 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include "brw_vec4.h"
#include "brw_cfg.h"
#include "brw_eu.h"
#include "util/u_math.h"

namespace brw {

vec4_instruction::vec4_instruction(enum opcode opcode, const dst_reg &dst,
                                   const src_reg &src0, const src_reg &src1,
                                   const src_reg &src2)
{
   this->opcode = opcode;
   this->dst = dst;
   this->src[0] = src0;
   this->src[1] = src1;
   this->src[2] = src2;
   this->saturate = false;
   this->force_writemask_all = false;
   this->no_dd_clear = false;
   this->no_dd_check = false;
   this->writes_accumulator = false;
   this->conditional_mod = BRW_CONDITIONAL_NONE;
   this->predicate = BRW_PREDICATE_NONE;
   this->predicate_inverse = false;
   this->target = 0;
   this->shadow_compare = false;
   this->eot = false;
   this->ir = NULL;
   this->urb_write_flags = BRW_URB_WRITE_NO_FLAGS;
   this->header_size = 0;
   this->flag_subreg = 0;
   this->mlen = 0;
   this->base_mrf = 0;
   this->offset = 0;
   this->exec_size = 8;
   this->group = 0;
   this->size_written = (dst.file == BAD_FILE ?
                         0 : this->exec_size * type_sz(dst.type));
   this->annotation = NULL;
}

vec4_instruction *
vec4_visitor::emit(vec4_instruction *inst)
{
   inst->ir = this->base_ir;
   inst->annotation = this->current_annotation;

   this->instructions.push_tail(inst);

   return inst;
}

vec4_instruction *
vec4_visitor::emit_before(bblock_t *block, vec4_instruction *inst,
                          vec4_instruction *new_inst)
{
   new_inst->ir = inst->ir;
   new_inst->annotation = inst->annotation;

   inst->insert_before(block, new_inst);

   return inst;
}

vec4_instruction *
vec4_visitor::emit(enum opcode opcode, const dst_reg &dst, const src_reg &src0,
                   const src_reg &src1, const src_reg &src2)
{
   return emit(new(mem_ctx) vec4_instruction(opcode, dst, src0, src1, src2));
}


vec4_instruction *
vec4_visitor::emit(enum opcode opcode, const dst_reg &dst, const src_reg &src0,
                   const src_reg &src1)
{
   return emit(new(mem_ctx) vec4_instruction(opcode, dst, src0, src1));
}

vec4_instruction *
vec4_visitor::emit(enum opcode opcode, const dst_reg &dst, const src_reg &src0)
{
   return emit(new(mem_ctx) vec4_instruction(opcode, dst, src0));
}

vec4_instruction *
vec4_visitor::emit(enum opcode opcode, const dst_reg &dst)
{
   return emit(new(mem_ctx) vec4_instruction(opcode, dst));
}

vec4_instruction *
vec4_visitor::emit(enum opcode opcode)
{
   return emit(new(mem_ctx) vec4_instruction(opcode, dst_reg()));
}

#define ALU1(op)							\
   vec4_instruction *							\
   vec4_visitor::op(const dst_reg &dst, const src_reg &src0)		\
   {									\
      return new(mem_ctx) vec4_instruction(BRW_OPCODE_##op, dst, src0); \
   }

#define ALU2(op)							\
   vec4_instruction *							\
   vec4_visitor::op(const dst_reg &dst, const src_reg &src0,		\
                    const src_reg &src1)				\
   {									\
      return new(mem_ctx) vec4_instruction(BRW_OPCODE_##op, dst,        \
                                           src0, src1);                 \
   }

#define ALU2_ACC(op)							\
   vec4_instruction *							\
   vec4_visitor::op(const dst_reg &dst, const src_reg &src0,		\
                    const src_reg &src1)				\
   {									\
      vec4_instruction *inst = new(mem_ctx) vec4_instruction(           \
                       BRW_OPCODE_##op, dst, src0, src1);		\
      inst->writes_accumulator = true;                                  \
      return inst;                                                      \
   }

#define ALU3(op)							\
   vec4_instruction *							\
   vec4_visitor::op(const dst_reg &dst, const src_reg &src0,		\
                    const src_reg &src1, const src_reg &src2)		\
   {									\
      assert(devinfo->gen >= 6);						\
      return new(mem_ctx) vec4_instruction(BRW_OPCODE_##op, dst,	\
					   src0, src1, src2);		\
   }

ALU1(NOT)
ALU1(MOV)
ALU1(FRC)
ALU1(RNDD)
ALU1(RNDE)
ALU1(RNDZ)
ALU1(F32TO16)
ALU1(F16TO32)
ALU2(ADD)
ALU2(MUL)
ALU2_ACC(MACH)
ALU2(AND)
ALU2(OR)
ALU2(XOR)
ALU2(DP3)
ALU2(DP4)
ALU2(DPH)
ALU2(SHL)
ALU2(SHR)
ALU2(ASR)
ALU3(LRP)
ALU1(BFREV)
ALU3(BFE)
ALU2(BFI1)
ALU3(BFI2)
ALU1(FBH)
ALU1(FBL)
ALU1(CBIT)
ALU3(MAD)
ALU2_ACC(ADDC)
ALU2_ACC(SUBB)
ALU2(MAC)
ALU1(DIM)

/** Gen4 predicated IF. */
vec4_instruction *
vec4_visitor::IF(enum brw_predicate predicate)
{
   vec4_instruction *inst;

   inst = new(mem_ctx) vec4_instruction(BRW_OPCODE_IF);
   inst->predicate = predicate;

   return inst;
}

/** Gen6 IF with embedded comparison. */
vec4_instruction *
vec4_visitor::IF(src_reg src0, src_reg src1,
                 enum brw_conditional_mod condition)
{
   assert(devinfo->gen == 6);

   vec4_instruction *inst;

   resolve_ud_negate(&src0);
   resolve_ud_negate(&src1);

   inst = new(mem_ctx) vec4_instruction(BRW_OPCODE_IF, dst_null_d(),
					src0, src1);
   inst->conditional_mod = condition;

   return inst;
}

/**
 * CMP: Sets the low bit of the destination channels with the result
 * of the comparison, while the upper bits are undefined, and updates
 * the flag register with the packed 16 bits of the result.
 */
vec4_instruction *
vec4_visitor::CMP(dst_reg dst, src_reg src0, src_reg src1,
                  enum brw_conditional_mod condition)
{
   vec4_instruction *inst;

   /* Take the instruction:
    *
    * CMP null<d> src0<f> src1<f>
    *
    * Original gen4 does type conversion to the destination type before
    * comparison, producing garbage results for floating point comparisons.
    *
    * The destination type doesn't matter on newer generations, so we set the
    * type to match src0 so we can compact the instruction.
    */
   dst.type = src0.type;

   resolve_ud_negate(&src0);
   resolve_ud_negate(&src1);

   inst = new(mem_ctx) vec4_instruction(BRW_OPCODE_CMP, dst, src0, src1);
   inst->conditional_mod = condition;

   return inst;
}

vec4_instruction *
vec4_visitor::SCRATCH_READ(const dst_reg &dst, const src_reg &index)
{
   vec4_instruction *inst;

   inst = new(mem_ctx) vec4_instruction(SHADER_OPCODE_GEN4_SCRATCH_READ,
					dst, index);
   inst->base_mrf = FIRST_SPILL_MRF(devinfo->gen) + 1;
   inst->mlen = 2;

   return inst;
}

vec4_instruction *
vec4_visitor::SCRATCH_WRITE(const dst_reg &dst, const src_reg &src,
                            const src_reg &index)
{
   vec4_instruction *inst;

   inst = new(mem_ctx) vec4_instruction(SHADER_OPCODE_GEN4_SCRATCH_WRITE,
					dst, src, index);
   inst->base_mrf = FIRST_SPILL_MRF(devinfo->gen);
   inst->mlen = 3;

   return inst;
}

src_reg
vec4_visitor::fix_3src_operand(const src_reg &src)
{
   /* Using vec4 uniforms in SIMD4x2 programs is difficult. You'd like to be
    * able to use vertical stride of zero to replicate the vec4 uniform, like
    *
    *    g3<0;4,1>:f - [0, 4][1, 5][2, 6][3, 7]
    *
    * But you can't, since vertical stride is always four in three-source
    * instructions. Instead, insert a MOV instruction to do the replication so
    * that the three-source instruction can consume it.
    */

   /* The MOV is only needed if the source is a uniform or immediate. */
   if (src.file != UNIFORM && src.file != IMM)
      return src;

   if (src.file == UNIFORM && brw_is_single_value_swizzle(src.swizzle))
      return src;

   dst_reg expanded = dst_reg(this, glsl_type::vec4_type);
   expanded.type = src.type;
   emit(VEC4_OPCODE_UNPACK_UNIFORM, expanded, src);
   return src_reg(expanded);
}

src_reg
vec4_visitor::resolve_source_modifiers(const src_reg &src)
{
   if (!src.abs && !src.negate)
      return src;

   dst_reg resolved = dst_reg(this, glsl_type::ivec4_type);
   resolved.type = src.type;
   emit(MOV(resolved, src));

   return src_reg(resolved);
}

src_reg
vec4_visitor::fix_math_operand(const src_reg &src)
{
   if (devinfo->gen < 6 || devinfo->gen >= 8 || src.file == BAD_FILE)
      return src;

   /* The gen6 math instruction ignores the source modifiers --
    * swizzle, abs, negate, and at least some parts of the register
    * region description.
    *
    * Rather than trying to enumerate all these cases, *always* expand the
    * operand to a temp GRF for gen6.
    *
    * For gen7, keep the operand as-is, except if immediate, which gen7 still
    * can't use.
    */

   if (devinfo->gen == 7 && src.file != IMM)
      return src;

   dst_reg expanded = dst_reg(this, glsl_type::vec4_type);
   expanded.type = src.type;
   emit(MOV(expanded, src));
   return src_reg(expanded);
}

vec4_instruction *
vec4_visitor::emit_math(enum opcode opcode,
                        const dst_reg &dst,
                        const src_reg &src0, const src_reg &src1)
{
   vec4_instruction *math =
      emit(opcode, dst, fix_math_operand(src0), fix_math_operand(src1));

   if (devinfo->gen == 6 && dst.writemask != WRITEMASK_XYZW) {
      /* MATH on Gen6 must be align1, so we can't do writemasks. */
      math->dst = dst_reg(this, glsl_type::vec4_type);
      math->dst.type = dst.type;
      math = emit(MOV(dst, src_reg(math->dst)));
   } else if (devinfo->gen < 6) {
      math->base_mrf = 1;
      math->mlen = src1.file == BAD_FILE ? 1 : 2;
   }

   return math;
}

void
vec4_visitor::emit_pack_half_2x16(dst_reg dst, src_reg src0)
{
   if (devinfo->gen < 7) {
      unreachable("ir_unop_pack_half_2x16 should be lowered");
   }

   assert(dst.type == BRW_REGISTER_TYPE_UD);
   assert(src0.type == BRW_REGISTER_TYPE_F);

   /* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
    *
    *   Because this instruction does not have a 16-bit floating-point type,
    *   the destination data type must be Word (W).
    *
    *   The destination must be DWord-aligned and specify a horizontal stride
    *   (HorzStride) of 2. The 16-bit result is stored in the lower word of
    *   each destination channel and the upper word is not modified.
    *
    * The above restriction implies that the f32to16 instruction must use
    * align1 mode, because only in align1 mode is it possible to specify
    * horizontal stride.  We choose here to defy the hardware docs and emit
    * align16 instructions.
    *
    * (I [chadv] did attempt to emit align1 instructions for VS f32to16
    * instructions. I was partially successful in that the code passed all
    * tests.  However, the code was dubiously correct and fragile, and the
    * tests were not harsh enough to probe that frailty. Not trusting the
    * code, I chose instead to remain in align16 mode in defiance of the hw
    * docs).
    *
    * I've [chadv] experimentally confirmed that, on gen7 hardware and the
    * simulator, emitting a f32to16 in align16 mode with UD as destination
    * data type is safe. The behavior differs from that specified in the PRM
    * in that the upper word of each destination channel is cleared to 0.
    */

   dst_reg tmp_dst(this, glsl_type::uvec2_type);
   src_reg tmp_src(tmp_dst);

#if 0
   /* Verify the undocumented behavior on which the following instructions
    * rely.  If f32to16 fails to clear the upper word of the X and Y channels,
    * then the result of the bit-or instruction below will be incorrect.
    *
    * You should inspect the disasm output in order to verify that the MOV is
    * not optimized away.
    */
   emit(MOV(tmp_dst, brw_imm_ud(0x12345678u)));
#endif

   /* Give tmp the form below, where "." means untouched.
    *
    *     w z          y          x w z          y          x
    *   |.|.|0x0000hhhh|0x0000llll|.|.|0x0000hhhh|0x0000llll|
    *
    * That the upper word of each write-channel be 0 is required for the
    * following bit-shift and bit-or instructions to work. Note that this
    * relies on the undocumented hardware behavior mentioned above.
    */
   tmp_dst.writemask = WRITEMASK_XY;
   emit(F32TO16(tmp_dst, src0));

   /* Give the write-channels of dst the form:
    *   0xhhhh0000
    */
   tmp_src.swizzle = BRW_SWIZZLE_YYYY;
   emit(SHL(dst, tmp_src, brw_imm_ud(16u)));

   /* Finally, give the write-channels of dst the form of packHalf2x16's
    * output:
    *   0xhhhhllll
    */
   tmp_src.swizzle = BRW_SWIZZLE_XXXX;
   emit(OR(dst, src_reg(dst), tmp_src));
}

void
vec4_visitor::emit_unpack_half_2x16(dst_reg dst, src_reg src0)
{
   if (devinfo->gen < 7) {
      unreachable("ir_unop_unpack_half_2x16 should be lowered");
   }

   assert(dst.type == BRW_REGISTER_TYPE_F);
   assert(src0.type == BRW_REGISTER_TYPE_UD);

   /* From the Ivybridge PRM, Vol4, Part3, Section 6.26 f16to32:
    *
    *   Because this instruction does not have a 16-bit floating-point type,
    *   the source data type must be Word (W). The destination type must be
    *   F (Float).
    *
    * To use W as the source data type, we must adjust horizontal strides,
    * which is only possible in align1 mode. All my [chadv] attempts at
    * emitting align1 instructions for unpackHalf2x16 failed to pass the
    * Piglit tests, so I gave up.
    *
    * I've verified that, on gen7 hardware and the simulator, it is safe to
    * emit f16to32 in align16 mode with UD as source data type.
    */

   dst_reg tmp_dst(this, glsl_type::uvec2_type);
   src_reg tmp_src(tmp_dst);

   tmp_dst.writemask = WRITEMASK_X;
   emit(AND(tmp_dst, src0, brw_imm_ud(0xffffu)));

   tmp_dst.writemask = WRITEMASK_Y;
   emit(SHR(tmp_dst, src0, brw_imm_ud(16u)));

   dst.writemask = WRITEMASK_XY;
   emit(F16TO32(dst, tmp_src));
}

void
vec4_visitor::emit_unpack_unorm_4x8(const dst_reg &dst, src_reg src0)
{
   /* Instead of splitting the 32-bit integer, shifting, and ORing it back
    * together, we can shift it by <0, 8, 16, 24>. The packed integer immediate
    * is not suitable to generate the shift values, but we can use the packed
    * vector float and a type-converting MOV.
    */
   dst_reg shift(this, glsl_type::uvec4_type);
   emit(MOV(shift, brw_imm_vf4(0x00, 0x60, 0x70, 0x78)));

   dst_reg shifted(this, glsl_type::uvec4_type);
   src0.swizzle = BRW_SWIZZLE_XXXX;
   emit(SHR(shifted, src0, src_reg(shift)));

   shifted.type = BRW_REGISTER_TYPE_UB;
   dst_reg f(this, glsl_type::vec4_type);
   emit(VEC4_OPCODE_MOV_BYTES, f, src_reg(shifted));

   emit(MUL(dst, src_reg(f), brw_imm_f(1.0f / 255.0f)));
}

void
vec4_visitor::emit_unpack_snorm_4x8(const dst_reg &dst, src_reg src0)
{
   /* Instead of splitting the 32-bit integer, shifting, and ORing it back
    * together, we can shift it by <0, 8, 16, 24>. The packed integer immediate
    * is not suitable to generate the shift values, but we can use the packed
    * vector float and a type-converting MOV.
    */
   dst_reg shift(this, glsl_type::uvec4_type);
   emit(MOV(shift, brw_imm_vf4(0x00, 0x60, 0x70, 0x78)));

   dst_reg shifted(this, glsl_type::uvec4_type);
   src0.swizzle = BRW_SWIZZLE_XXXX;
   emit(SHR(shifted, src0, src_reg(shift)));

   shifted.type = BRW_REGISTER_TYPE_B;
   dst_reg f(this, glsl_type::vec4_type);
   emit(VEC4_OPCODE_MOV_BYTES, f, src_reg(shifted));

   dst_reg scaled(this, glsl_type::vec4_type);
   emit(MUL(scaled, src_reg(f), brw_imm_f(1.0f / 127.0f)));

   dst_reg max(this, glsl_type::vec4_type);
   emit_minmax(BRW_CONDITIONAL_GE, max, src_reg(scaled), brw_imm_f(-1.0f));
   emit_minmax(BRW_CONDITIONAL_L, dst, src_reg(max), brw_imm_f(1.0f));
}

void
vec4_visitor::emit_pack_unorm_4x8(const dst_reg &dst, const src_reg &src0)
{
   dst_reg saturated(this, glsl_type::vec4_type);
   vec4_instruction *inst = emit(MOV(saturated, src0));
   inst->saturate = true;

   dst_reg scaled(this, glsl_type::vec4_type);
   emit(MUL(scaled, src_reg(saturated), brw_imm_f(255.0f)));

   dst_reg rounded(this, glsl_type::vec4_type);
   emit(RNDE(rounded, src_reg(scaled)));

   dst_reg u(this, glsl_type::uvec4_type);
   emit(MOV(u, src_reg(rounded)));

   src_reg bytes(u);
   emit(VEC4_OPCODE_PACK_BYTES, dst, bytes);
}

void
vec4_visitor::emit_pack_snorm_4x8(const dst_reg &dst, const src_reg &src0)
{
   dst_reg max(this, glsl_type::vec4_type);
   emit_minmax(BRW_CONDITIONAL_GE, max, src0, brw_imm_f(-1.0f));

   dst_reg min(this, glsl_type::vec4_type);
   emit_minmax(BRW_CONDITIONAL_L, min, src_reg(max), brw_imm_f(1.0f));

   dst_reg scaled(this, glsl_type::vec4_type);
   emit(MUL(scaled, src_reg(min), brw_imm_f(127.0f)));

   dst_reg rounded(this, glsl_type::vec4_type);
   emit(RNDE(rounded, src_reg(scaled)));

   dst_reg i(this, glsl_type::ivec4_type);
   emit(MOV(i, src_reg(rounded)));

   src_reg bytes(i);
   emit(VEC4_OPCODE_PACK_BYTES, dst, bytes);
}

/*
 * Returns the minimum number of vec4 (as_vec4 == true) or dvec4 (as_vec4 ==
 * false) elements needed to pack a type.
 */
static int
type_size_xvec4(const struct glsl_type *type, bool as_vec4)
{
   unsigned int i;
   int size;

   switch (type->base_type) {
   case GLSL_TYPE_UINT:
   case GLSL_TYPE_INT:
   case GLSL_TYPE_FLOAT:
   case GLSL_TYPE_FLOAT16:
   case GLSL_TYPE_BOOL:
   case GLSL_TYPE_DOUBLE:
   case GLSL_TYPE_UINT16:
   case GLSL_TYPE_INT16:
   case GLSL_TYPE_UINT8:
   case GLSL_TYPE_INT8:
   case GLSL_TYPE_UINT64:
   case GLSL_TYPE_INT64:
      if (type->is_matrix()) {
         const glsl_type *col_type = type->column_type();
         unsigned col_slots =
            (as_vec4 && col_type->is_dual_slot()) ? 2 : 1;
         return type->matrix_columns * col_slots;
      } else {
         /* Regardless of size of vector, it gets a vec4. This is bad
          * packing for things like floats, but otherwise arrays become a
          * mess.  Hopefully a later pass over the code can pack scalars
          * down if appropriate.
          */
         return (as_vec4 && type->is_dual_slot()) ? 2 : 1;
      }
   case GLSL_TYPE_ARRAY:
      assert(type->length > 0);
      return type_size_xvec4(type->fields.array, as_vec4) * type->length;
   case GLSL_TYPE_STRUCT:
      size = 0;
      for (i = 0; i < type->length; i++) {
	 size += type_size_xvec4(type->fields.structure[i].type, as_vec4);
      }
      return size;
   case GLSL_TYPE_SUBROUTINE:
      return 1;

   case GLSL_TYPE_SAMPLER:
      /* Samplers take up no register space, since they're baked in at
       * link time.
       */
      return 0;
   case GLSL_TYPE_ATOMIC_UINT:
      return 0;
   case GLSL_TYPE_IMAGE:
      return DIV_ROUND_UP(BRW_IMAGE_PARAM_SIZE, 4);
   case GLSL_TYPE_VOID:
   case GLSL_TYPE_ERROR:
   case GLSL_TYPE_INTERFACE:
   case GLSL_TYPE_FUNCTION:
      unreachable("not reached");
   }

   return 0;
}

/**
 * Returns the minimum number of vec4 elements needed to pack a type.
 *
 * For simple types, it will return 1 (a single vec4); for matrices, the
 * number of columns; for array and struct, the sum of the vec4_size of
 * each of its elements; and for sampler and atomic, zero.
 *
 * This method is useful to calculate how much register space is needed to
 * store a particular type.
 */
extern "C" int
type_size_vec4(const struct glsl_type *type)
{
   return type_size_xvec4(type, true);
}

/**
 * Returns the minimum number of dvec4 elements needed to pack a type.
 *
 * For simple types, it will return 1 (a single dvec4); for matrices, the
 * number of columns; for array and struct, the sum of the dvec4_size of
 * each of its elements; and for sampler and atomic, zero.
 *
 * This method is useful to calculate how much register space is needed to
 * store a particular type.
 *
 * Measuring double-precision vertex inputs as dvec4 is required because
 * ARB_vertex_attrib_64bit states that these uses the same number of locations
 * than the single-precision version. That is, two consecutives dvec4 would be
 * located in location "x" and location "x+1", not "x+2".
 *
 * In order to map vec4/dvec4 vertex inputs in the proper ATTRs,
 * remap_vs_attrs() will take in account both the location and also if the
 * type fits in one or two vec4 slots.
 */
extern "C" int
type_size_dvec4(const struct glsl_type *type)
{
   return type_size_xvec4(type, false);
}

src_reg::src_reg(class vec4_visitor *v, const struct glsl_type *type)
{
   init();

   this->file = VGRF;
   this->nr = v->alloc.allocate(type_size_vec4(type));

   if (type->is_array() || type->is_record()) {
      this->swizzle = BRW_SWIZZLE_NOOP;
   } else {
      this->swizzle = brw_swizzle_for_size(type->vector_elements);
   }

   this->type = brw_type_for_base_type(type);
}

src_reg::src_reg(class vec4_visitor *v, const struct glsl_type *type, int size)
{
   assert(size > 0);

   init();

   this->file = VGRF;
   this->nr = v->alloc.allocate(type_size_vec4(type) * size);

   this->swizzle = BRW_SWIZZLE_NOOP;

   this->type = brw_type_for_base_type(type);
}

dst_reg::dst_reg(class vec4_visitor *v, const struct glsl_type *type)
{
   init();

   this->file = VGRF;
   this->nr = v->alloc.allocate(type_size_vec4(type));

   if (type->is_array() || type->is_record()) {
      this->writemask = WRITEMASK_XYZW;
   } else {
      this->writemask = (1 << type->vector_elements) - 1;
   }

   this->type = brw_type_for_base_type(type);
}

vec4_instruction *
vec4_visitor::emit_minmax(enum brw_conditional_mod conditionalmod, dst_reg dst,
                          src_reg src0, src_reg src1)
{
   vec4_instruction *inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
   inst->conditional_mod = conditionalmod;
   return inst;
}

vec4_instruction *
vec4_visitor::emit_lrp(const dst_reg &dst,
                       const src_reg &x, const src_reg &y, const src_reg &a)
{
   if (devinfo->gen >= 6 && devinfo->gen <= 10) {
      /* Note that the instruction's argument order is reversed from GLSL
       * and the IR.
       */
     return emit(LRP(dst, fix_3src_operand(a), fix_3src_operand(y),
                     fix_3src_operand(x)));
   } else {
      /* Earlier generations don't support three source operations, so we
       * need to emit x*(1-a) + y*a.
       */
      dst_reg y_times_a           = dst_reg(this, glsl_type::vec4_type);
      dst_reg one_minus_a         = dst_reg(this, glsl_type::vec4_type);
      dst_reg x_times_one_minus_a = dst_reg(this, glsl_type::vec4_type);
      y_times_a.writemask           = dst.writemask;
      one_minus_a.writemask         = dst.writemask;
      x_times_one_minus_a.writemask = dst.writemask;

      emit(MUL(y_times_a, y, a));
      emit(ADD(one_minus_a, negate(a), brw_imm_f(1.0f)));
      emit(MUL(x_times_one_minus_a, x, src_reg(one_minus_a)));
      return emit(ADD(dst, src_reg(x_times_one_minus_a), src_reg(y_times_a)));
   }
}

/**
 * Emits the instructions needed to perform a pull constant load. before_block
 * and before_inst can be NULL in which case the instruction will be appended
 * to the end of the instruction list.
 */
void
vec4_visitor::emit_pull_constant_load_reg(dst_reg dst,
                                          src_reg surf_index,
                                          src_reg offset_reg,
                                          bblock_t *before_block,
                                          vec4_instruction *before_inst)
{
   assert((before_inst == NULL && before_block == NULL) ||
          (before_inst && before_block));

   vec4_instruction *pull;

   if (devinfo->gen >= 9) {
      /* Gen9+ needs a message header in order to use SIMD4x2 mode */
      src_reg header(this, glsl_type::uvec4_type, 2);

      pull = new(mem_ctx)
         vec4_instruction(VS_OPCODE_SET_SIMD4X2_HEADER_GEN9,
                          dst_reg(header));

      if (before_inst)
         emit_before(before_block, before_inst, pull);
      else
         emit(pull);

      dst_reg index_reg = retype(byte_offset(dst_reg(header), REG_SIZE),
                                 offset_reg.type);
      pull = MOV(writemask(index_reg, WRITEMASK_X), offset_reg);

      if (before_inst)
         emit_before(before_block, before_inst, pull);
      else
         emit(pull);

      pull = new(mem_ctx) vec4_instruction(VS_OPCODE_PULL_CONSTANT_LOAD_GEN7,
                                           dst,
                                           surf_index,
                                           header);
      pull->mlen = 2;
      pull->header_size = 1;
   } else if (devinfo->gen >= 7) {
      dst_reg grf_offset = dst_reg(this, glsl_type::uint_type);

      grf_offset.type = offset_reg.type;

      pull = MOV(grf_offset, offset_reg);

      if (before_inst)
         emit_before(before_block, before_inst, pull);
      else
         emit(pull);

      pull = new(mem_ctx) vec4_instruction(VS_OPCODE_PULL_CONSTANT_LOAD_GEN7,
                                           dst,
                                           surf_index,
                                           src_reg(grf_offset));
      pull->mlen = 1;
   } else {
      pull = new(mem_ctx) vec4_instruction(VS_OPCODE_PULL_CONSTANT_LOAD,
                                           dst,
                                           surf_index,
                                           offset_reg);
      pull->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
      pull->mlen = 1;
   }

   if (before_inst)
      emit_before(before_block, before_inst, pull);
   else
      emit(pull);
}

src_reg
vec4_visitor::emit_uniformize(const src_reg &src)
{
   const src_reg chan_index(this, glsl_type::uint_type);
   const dst_reg dst = retype(dst_reg(this, glsl_type::uint_type),
                              src.type);

   emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, dst_reg(chan_index))
      ->force_writemask_all = true;
   emit(SHADER_OPCODE_BROADCAST, dst, src, chan_index)
      ->force_writemask_all = true;

   return src_reg(dst);
}

src_reg
vec4_visitor::emit_mcs_fetch(const glsl_type *coordinate_type,
                             src_reg coordinate, src_reg surface)
{
   vec4_instruction *inst =
      new(mem_ctx) vec4_instruction(SHADER_OPCODE_TXF_MCS,
                                    dst_reg(this, glsl_type::uvec4_type));
   inst->base_mrf = 2;
   inst->src[1] = surface;
   inst->src[2] = surface;

   int param_base;

   if (devinfo->gen >= 9) {
      /* Gen9+ needs a message header in order to use SIMD4x2 mode */
      vec4_instruction *header_inst = new(mem_ctx)
         vec4_instruction(VS_OPCODE_SET_SIMD4X2_HEADER_GEN9,
                          dst_reg(MRF, inst->base_mrf));

      emit(header_inst);

      inst->mlen = 2;
      inst->header_size = 1;
      param_base = inst->base_mrf + 1;
   } else {
      inst->mlen = 1;
      param_base = inst->base_mrf;
   }

   /* parameters are: u, v, r, lod; lod will always be zero due to api restrictions */
   int coord_mask = (1 << coordinate_type->vector_elements) - 1;
   int zero_mask = 0xf & ~coord_mask;

   emit(MOV(dst_reg(MRF, param_base, coordinate_type, coord_mask),
            coordinate));

   emit(MOV(dst_reg(MRF, param_base, coordinate_type, zero_mask),
            brw_imm_d(0)));

   emit(inst);
   return src_reg(inst->dst);
}

bool
vec4_visitor::is_high_sampler(src_reg sampler)
{
   if (devinfo->gen < 8 && !devinfo->is_haswell)
      return false;

   return sampler.file != IMM || sampler.ud >= 16;
}

void
vec4_visitor::emit_texture(ir_texture_opcode op,
                           dst_reg dest,
                           const glsl_type *dest_type,
                           src_reg coordinate,
                           int coord_components,
                           src_reg shadow_comparator,
                           src_reg lod, src_reg lod2,
                           src_reg sample_index,
                           uint32_t constant_offset,
                           src_reg offset_value,
                           src_reg mcs,
                           uint32_t surface,
                           src_reg surface_reg,
                           src_reg sampler_reg)
{
   enum opcode opcode;
   switch (op) {
   case ir_tex: opcode = SHADER_OPCODE_TXL; break;
   case ir_txl: opcode = SHADER_OPCODE_TXL; break;
   case ir_txd: opcode = SHADER_OPCODE_TXD; break;
   case ir_txf: opcode = SHADER_OPCODE_TXF; break;
   case ir_txf_ms: opcode = (devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W :
                             SHADER_OPCODE_TXF_CMS); break;
   case ir_txs: opcode = SHADER_OPCODE_TXS; break;
   case ir_tg4: opcode = offset_value.file != BAD_FILE
                         ? SHADER_OPCODE_TG4_OFFSET : SHADER_OPCODE_TG4; break;
   case ir_query_levels: opcode = SHADER_OPCODE_TXS; break;
   case ir_texture_samples: opcode = SHADER_OPCODE_SAMPLEINFO; break;
   case ir_txb:
      unreachable("TXB is not valid for vertex shaders.");
   case ir_lod:
      unreachable("LOD is not valid for vertex shaders.");
   case ir_samples_identical: {
      /* There are some challenges implementing this for vec4, and it seems
       * unlikely to be used anyway.  For now, just return false ways.
       */
      emit(MOV(dest, brw_imm_ud(0u)));
      return;
   }
   default:
      unreachable("Unrecognized tex op");
   }

   vec4_instruction *inst = new(mem_ctx) vec4_instruction(opcode, dest);

   inst->offset = constant_offset;

   /* The message header is necessary for:
    * - Gen4 (always)
    * - Gen9+ for selecting SIMD4x2
    * - Texel offsets
    * - Gather channel selection
    * - Sampler indices too large to fit in a 4-bit value.
    * - Sampleinfo message - takes no parameters, but mlen = 0 is illegal
    */
   inst->header_size =
      (devinfo->gen < 5 || devinfo->gen >= 9 ||
       inst->offset != 0 || op == ir_tg4 ||
       op == ir_texture_samples ||
       is_high_sampler(sampler_reg)) ? 1 : 0;
   inst->base_mrf = 2;
   inst->mlen = inst->header_size;
   inst->dst.writemask = WRITEMASK_XYZW;
   inst->shadow_compare = shadow_comparator.file != BAD_FILE;

   inst->src[1] = surface_reg;
   inst->src[2] = sampler_reg;

   /* MRF for the first parameter */
   int param_base = inst->base_mrf + inst->header_size;

   if (op == ir_txs || op == ir_query_levels) {
      int writemask = devinfo->gen == 4 ? WRITEMASK_W : WRITEMASK_X;
      emit(MOV(dst_reg(MRF, param_base, lod.type, writemask), lod));
      inst->mlen++;
   } else if (op == ir_texture_samples) {
      inst->dst.writemask = WRITEMASK_X;
   } else {
      /* Load the coordinate */
      /* FINISHME: gl_clamp_mask and saturate */
      int coord_mask = (1 << coord_components) - 1;
      int zero_mask = 0xf & ~coord_mask;

      emit(MOV(dst_reg(MRF, param_base, coordinate.type, coord_mask),
               coordinate));
      inst->mlen++;

      if (zero_mask != 0) {
         emit(MOV(dst_reg(MRF, param_base, coordinate.type, zero_mask),
                  brw_imm_d(0)));
      }
      /* Load the shadow comparator */
      if (shadow_comparator.file != BAD_FILE && op != ir_txd && (op != ir_tg4 || offset_value.file == BAD_FILE)) {
	 emit(MOV(dst_reg(MRF, param_base + 1, shadow_comparator.type,
			  WRITEMASK_X),
		  shadow_comparator));
	 inst->mlen++;
      }

      /* Load the LOD info */
      if (op == ir_tex || op == ir_txl) {
	 int mrf, writemask;
	 if (devinfo->gen >= 5) {
	    mrf = param_base + 1;
	    if (shadow_comparator.file != BAD_FILE) {
	       writemask = WRITEMASK_Y;
	       /* mlen already incremented */
	    } else {
	       writemask = WRITEMASK_X;
	       inst->mlen++;
	    }
	 } else /* devinfo->gen == 4 */ {
	    mrf = param_base;
	    writemask = WRITEMASK_W;
	 }
	 emit(MOV(dst_reg(MRF, mrf, lod.type, writemask), lod));
      } else if (op == ir_txf) {
         emit(MOV(dst_reg(MRF, param_base, lod.type, WRITEMASK_W), lod));
      } else if (op == ir_txf_ms) {
         emit(MOV(dst_reg(MRF, param_base + 1, sample_index.type, WRITEMASK_X),
                  sample_index));
         if (opcode == SHADER_OPCODE_TXF_CMS_W) {
            /* MCS data is stored in the first two channels of ‘mcs’, but we
             * need to get it into the .y and .z channels of the second vec4
             * of params.
             */
            mcs.swizzle = BRW_SWIZZLE4(0, 0, 1, 1);
            emit(MOV(dst_reg(MRF, param_base + 1,
                             glsl_type::uint_type, WRITEMASK_YZ),
                     mcs));
         } else if (devinfo->gen >= 7) {
            /* MCS data is in the first channel of `mcs`, but we need to get it into
             * the .y channel of the second vec4 of params, so replicate .x across
             * the whole vec4 and then mask off everything except .y
             */
            mcs.swizzle = BRW_SWIZZLE_XXXX;
            emit(MOV(dst_reg(MRF, param_base + 1, glsl_type::uint_type, WRITEMASK_Y),
                     mcs));
         }
         inst->mlen++;
      } else if (op == ir_txd) {
         const brw_reg_type type = lod.type;

	 if (devinfo->gen >= 5) {
	    lod.swizzle = BRW_SWIZZLE4(SWIZZLE_X,SWIZZLE_X,SWIZZLE_Y,SWIZZLE_Y);
	    lod2.swizzle = BRW_SWIZZLE4(SWIZZLE_X,SWIZZLE_X,SWIZZLE_Y,SWIZZLE_Y);
	    emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_XZ), lod));
	    emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_YW), lod2));
	    inst->mlen++;

	    if (dest_type->vector_elements == 3 || shadow_comparator.file != BAD_FILE) {
	       lod.swizzle = BRW_SWIZZLE_ZZZZ;
	       lod2.swizzle = BRW_SWIZZLE_ZZZZ;
	       emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_X), lod));
	       emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_Y), lod2));
	       inst->mlen++;

               if (shadow_comparator.file != BAD_FILE) {
                  emit(MOV(dst_reg(MRF, param_base + 2,
                                   shadow_comparator.type, WRITEMASK_Z),
                           shadow_comparator));
               }
	    }
	 } else /* devinfo->gen == 4 */ {
	    emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_XYZ), lod));
	    emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_XYZ), lod2));
	    inst->mlen += 2;
	 }
      } else if (op == ir_tg4 && offset_value.file != BAD_FILE) {
         if (shadow_comparator.file != BAD_FILE) {
            emit(MOV(dst_reg(MRF, param_base, shadow_comparator.type, WRITEMASK_W),
                     shadow_comparator));
         }

         emit(MOV(dst_reg(MRF, param_base + 1, glsl_type::ivec2_type, WRITEMASK_XY),
                  offset_value));
         inst->mlen++;
      }
   }

   emit(inst);

   /* fixup num layers (z) for cube arrays: hardware returns faces * layers;
    * spec requires layers.
    */
   if (op == ir_txs && devinfo->gen < 7) {
      /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
      emit_minmax(BRW_CONDITIONAL_GE, writemask(inst->dst, WRITEMASK_Z),
                  src_reg(inst->dst), brw_imm_d(1));
   }

   if (devinfo->gen == 6 && op == ir_tg4) {
      emit_gen6_gather_wa(key_tex->gen6_gather_wa[surface], inst->dst);
   }

   if (op == ir_query_levels) {
      /* # levels is in .w */
      src_reg swizzled(dest);
      swizzled.swizzle = BRW_SWIZZLE4(SWIZZLE_W, SWIZZLE_W,
                                      SWIZZLE_W, SWIZZLE_W);
      emit(MOV(dest, swizzled));
   }
}

/**
 * Apply workarounds for Gen6 gather with UINT/SINT
 */
void
vec4_visitor::emit_gen6_gather_wa(uint8_t wa, dst_reg dst)
{
   if (!wa)
      return;

   int width = (wa & WA_8BIT) ? 8 : 16;
   dst_reg dst_f = dst;
   dst_f.type = BRW_REGISTER_TYPE_F;

   /* Convert from UNORM to UINT */
   emit(MUL(dst_f, src_reg(dst_f), brw_imm_f((float)((1 << width) - 1))));
   emit(MOV(dst, src_reg(dst_f)));

   if (wa & WA_SIGN) {
      /* Reinterpret the UINT value as a signed INT value by
       * shifting the sign bit into place, then shifting back
       * preserving sign.
       */
      emit(SHL(dst, src_reg(dst), brw_imm_d(32 - width)));
      emit(ASR(dst, src_reg(dst), brw_imm_d(32 - width)));
   }
}

void
vec4_visitor::gs_emit_vertex(int /* stream_id */)
{
   unreachable("not reached");
}

void
vec4_visitor::gs_end_primitive()
{
   unreachable("not reached");
}

void
vec4_visitor::emit_ndc_computation()
{
   if (output_reg[VARYING_SLOT_POS][0].file == BAD_FILE)
      return;

   /* Get the position */
   src_reg pos = src_reg(output_reg[VARYING_SLOT_POS][0]);

   /* Build ndc coords, which are (x/w, y/w, z/w, 1/w) */
   dst_reg ndc = dst_reg(this, glsl_type::vec4_type);
   output_reg[BRW_VARYING_SLOT_NDC][0] = ndc;
   output_num_components[BRW_VARYING_SLOT_NDC][0] = 4;

   current_annotation = "NDC";
   dst_reg ndc_w = ndc;
   ndc_w.writemask = WRITEMASK_W;
   src_reg pos_w = pos;
   pos_w.swizzle = BRW_SWIZZLE4(SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W);
   emit_math(SHADER_OPCODE_RCP, ndc_w, pos_w);

   dst_reg ndc_xyz = ndc;
   ndc_xyz.writemask = WRITEMASK_XYZ;

   emit(MUL(ndc_xyz, pos, src_reg(ndc_w)));
}

void
vec4_visitor::emit_psiz_and_flags(dst_reg reg)
{
   if (devinfo->gen < 6 &&
       ((prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) ||
        output_reg[VARYING_SLOT_CLIP_DIST0][0].file != BAD_FILE ||
        devinfo->has_negative_rhw_bug)) {
      dst_reg header1 = dst_reg(this, glsl_type::uvec4_type);
      dst_reg header1_w = header1;
      header1_w.writemask = WRITEMASK_W;

      emit(MOV(header1, brw_imm_ud(0u)));

      if (prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) {
	 src_reg psiz = src_reg(output_reg[VARYING_SLOT_PSIZ][0]);

	 current_annotation = "Point size";
	 emit(MUL(header1_w, psiz, brw_imm_f((float)(1 << 11))));
	 emit(AND(header1_w, src_reg(header1_w), brw_imm_d(0x7ff << 8)));
      }

      if (output_reg[VARYING_SLOT_CLIP_DIST0][0].file != BAD_FILE) {
         current_annotation = "Clipping flags";
         dst_reg flags0 = dst_reg(this, glsl_type::uint_type);

         emit(CMP(dst_null_f(), src_reg(output_reg[VARYING_SLOT_CLIP_DIST0][0]), brw_imm_f(0.0f), BRW_CONDITIONAL_L));
         emit(VS_OPCODE_UNPACK_FLAGS_SIMD4X2, flags0, brw_imm_d(0));
         emit(OR(header1_w, src_reg(header1_w), src_reg(flags0)));
      }

      if (output_reg[VARYING_SLOT_CLIP_DIST1][0].file != BAD_FILE) {
         dst_reg flags1 = dst_reg(this, glsl_type::uint_type);
         emit(CMP(dst_null_f(), src_reg(output_reg[VARYING_SLOT_CLIP_DIST1][0]), brw_imm_f(0.0f), BRW_CONDITIONAL_L));
         emit(VS_OPCODE_UNPACK_FLAGS_SIMD4X2, flags1, brw_imm_d(0));
         emit(SHL(flags1, src_reg(flags1), brw_imm_d(4)));
         emit(OR(header1_w, src_reg(header1_w), src_reg(flags1)));
      }

      /* i965 clipping workaround:
       * 1) Test for -ve rhw
       * 2) If set,
       *      set ndc = (0,0,0,0)
       *      set ucp[6] = 1
       *
       * Later, clipping will detect ucp[6] and ensure the primitive is
       * clipped against all fixed planes.
       */
      if (devinfo->has_negative_rhw_bug &&
          output_reg[BRW_VARYING_SLOT_NDC][0].file != BAD_FILE) {
         src_reg ndc_w = src_reg(output_reg[BRW_VARYING_SLOT_NDC][0]);
         ndc_w.swizzle = BRW_SWIZZLE_WWWW;
         emit(CMP(dst_null_f(), ndc_w, brw_imm_f(0.0f), BRW_CONDITIONAL_L));
         vec4_instruction *inst;
         inst = emit(OR(header1_w, src_reg(header1_w), brw_imm_ud(1u << 6)));
         inst->predicate = BRW_PREDICATE_NORMAL;
         output_reg[BRW_VARYING_SLOT_NDC][0].type = BRW_REGISTER_TYPE_F;
         inst = emit(MOV(output_reg[BRW_VARYING_SLOT_NDC][0], brw_imm_f(0.0f)));
         inst->predicate = BRW_PREDICATE_NORMAL;
      }

      emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), src_reg(header1)));
   } else if (devinfo->gen < 6) {
      emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u)));
   } else {
      emit(MOV(retype(reg, BRW_REGISTER_TYPE_D), brw_imm_d(0)));
      if (output_reg[VARYING_SLOT_PSIZ][0].file != BAD_FILE) {
         dst_reg reg_w = reg;
         reg_w.writemask = WRITEMASK_W;
         src_reg reg_as_src = src_reg(output_reg[VARYING_SLOT_PSIZ][0]);
         reg_as_src.type = reg_w.type;
         reg_as_src.swizzle = brw_swizzle_for_size(1);
         emit(MOV(reg_w, reg_as_src));
      }
      if (output_reg[VARYING_SLOT_LAYER][0].file != BAD_FILE) {
         dst_reg reg_y = reg;
         reg_y.writemask = WRITEMASK_Y;
         reg_y.type = BRW_REGISTER_TYPE_D;
         output_reg[VARYING_SLOT_LAYER][0].type = reg_y.type;
         emit(MOV(reg_y, src_reg(output_reg[VARYING_SLOT_LAYER][0])));
      }
      if (output_reg[VARYING_SLOT_VIEWPORT][0].file != BAD_FILE) {
         dst_reg reg_z = reg;
         reg_z.writemask = WRITEMASK_Z;
         reg_z.type = BRW_REGISTER_TYPE_D;
         output_reg[VARYING_SLOT_VIEWPORT][0].type = reg_z.type;
         emit(MOV(reg_z, src_reg(output_reg[VARYING_SLOT_VIEWPORT][0])));
      }
   }
}

vec4_instruction *
vec4_visitor::emit_generic_urb_slot(dst_reg reg, int varying, int component)
{
   assert(varying < VARYING_SLOT_MAX);

   unsigned num_comps = output_num_components[varying][component];
   if (num_comps == 0)
      return NULL;

   assert(output_reg[varying][component].type == reg.type);
   current_annotation = output_reg_annotation[varying];
   if (output_reg[varying][component].file != BAD_FILE) {
      src_reg src = src_reg(output_reg[varying][component]);
      src.swizzle = BRW_SWZ_COMP_OUTPUT(component);
      reg.writemask =
         brw_writemask_for_component_packing(num_comps, component);
      return emit(MOV(reg, src));
   }
   return NULL;
}

void
vec4_visitor::emit_urb_slot(dst_reg reg, int varying)
{
   reg.type = BRW_REGISTER_TYPE_F;
   output_reg[varying][0].type = reg.type;

   switch (varying) {
   case VARYING_SLOT_PSIZ:
   {
      /* PSIZ is always in slot 0, and is coupled with other flags. */
      current_annotation = "indices, point width, clip flags";
      emit_psiz_and_flags(reg);
      break;
   }
   case BRW_VARYING_SLOT_NDC:
      current_annotation = "NDC";
      if (output_reg[BRW_VARYING_SLOT_NDC][0].file != BAD_FILE)
         emit(MOV(reg, src_reg(output_reg[BRW_VARYING_SLOT_NDC][0])));
      break;
   case VARYING_SLOT_POS:
      current_annotation = "gl_Position";
      if (output_reg[VARYING_SLOT_POS][0].file != BAD_FILE)
         emit(MOV(reg, src_reg(output_reg[VARYING_SLOT_POS][0])));
      break;
   case VARYING_SLOT_EDGE: {
      /* This is present when doing unfilled polygons.  We're supposed to copy
       * the edge flag from the user-provided vertex array
       * (glEdgeFlagPointer), or otherwise we'll copy from the current value
       * of that attribute (starts as 1.0f).  This is then used in clipping to
       * determine which edges should be drawn as wireframe.
       */
      current_annotation = "edge flag";
      int edge_attr = util_bitcount64(nir->info.inputs_read &
                                        BITFIELD64_MASK(VERT_ATTRIB_EDGEFLAG));
      emit(MOV(reg, src_reg(dst_reg(ATTR, edge_attr,
                                    glsl_type::float_type, WRITEMASK_XYZW))));
      break;
   }
   case BRW_VARYING_SLOT_PAD:
      /* No need to write to this slot */
      break;
   default:
      for (int i = 0; i < 4; i++) {
         emit_generic_urb_slot(reg, varying, i);
      }
      break;
   }
}

static unsigned
align_interleaved_urb_mlen(const struct gen_device_info *devinfo, unsigned mlen)
{
   if (devinfo->gen >= 6) {
      /* URB data written (does not include the message header reg) must
       * be a multiple of 256 bits, or 2 VS registers.  See vol5c.5,
       * section 5.4.3.2.2: URB_INTERLEAVED.
       *
       * URB entries are allocated on a multiple of 1024 bits, so an
       * extra 128 bits written here to make the end align to 256 is
       * no problem.
       */
      if ((mlen % 2) != 1)
	 mlen++;
   }

   return mlen;
}


/**
 * Generates the VUE payload plus the necessary URB write instructions to
 * output it.
 *
 * The VUE layout is documented in Volume 2a.
 */
void
vec4_visitor::emit_vertex()
{
   /* MRF 0 is reserved for the debugger, so start with message header
    * in MRF 1.
    */
   int base_mrf = 1;
   int mrf = base_mrf;
   /* In the process of generating our URB write message contents, we
    * may need to unspill a register or load from an array.  Those
    * reads would use MRFs 14-15.
    */
   int max_usable_mrf = FIRST_SPILL_MRF(devinfo->gen);

   /* The following assertion verifies that max_usable_mrf causes an
    * even-numbered amount of URB write data, which will meet gen6's
    * requirements for length alignment.
    */
   assert ((max_usable_mrf - base_mrf) % 2 == 0);

   /* First mrf is the g0-based message header containing URB handles and
    * such.
    */
   emit_urb_write_header(mrf++);

   if (devinfo->gen < 6) {
      emit_ndc_computation();
   }

   /* We may need to split this up into several URB writes, so do them in a
    * loop.
    */
   int slot = 0;
   bool complete = false;
   do {
      /* URB offset is in URB row increments, and each of our MRFs is half of
       * one of those, since we're doing interleaved writes.
       */
      int offset = slot / 2;

      mrf = base_mrf + 1;
      for (; slot < prog_data->vue_map.num_slots; ++slot) {
         emit_urb_slot(dst_reg(MRF, mrf++),
                       prog_data->vue_map.slot_to_varying[slot]);

         /* If this was max_usable_mrf, we can't fit anything more into this
          * URB WRITE. Same thing if we reached the maximum length available.
          */
         if (mrf > max_usable_mrf ||
             align_interleaved_urb_mlen(devinfo, mrf - base_mrf + 1) > BRW_MAX_MSG_LENGTH) {
            slot++;
            break;
         }
      }

      complete = slot >= prog_data->vue_map.num_slots;
      current_annotation = "URB write";
      vec4_instruction *inst = emit_urb_write_opcode(complete);
      inst->base_mrf = base_mrf;
      inst->mlen = align_interleaved_urb_mlen(devinfo, mrf - base_mrf);
      inst->offset += offset;
   } while(!complete);
}


src_reg
vec4_visitor::get_scratch_offset(bblock_t *block, vec4_instruction *inst,
				 src_reg *reladdr, int reg_offset)
{
   /* Because we store the values to scratch interleaved like our
    * vertex data, we need to scale the vec4 index by 2.
    */
   int message_header_scale = 2;

   /* Pre-gen6, the message header uses byte offsets instead of vec4
    * (16-byte) offset units.
    */
   if (devinfo->gen < 6)
      message_header_scale *= 16;

   if (reladdr) {
      /* A vec4 is 16 bytes and a dvec4 is 32 bytes so for doubles we have
       * to multiply the reladdr by 2. Notice that the reg_offset part
       * is in units of 16 bytes and is used to select the low/high 16-byte
       * chunk of a full dvec4, so we don't want to multiply that part.
       */
      src_reg index = src_reg(this, glsl_type::int_type);
      if (type_sz(inst->dst.type) < 8) {
         emit_before(block, inst, ADD(dst_reg(index), *reladdr,
                                      brw_imm_d(reg_offset)));
         emit_before(block, inst, MUL(dst_reg(index), index,
                                      brw_imm_d(message_header_scale)));
      } else {
         emit_before(block, inst, MUL(dst_reg(index), *reladdr,
                                      brw_imm_d(message_header_scale * 2)));
         emit_before(block, inst, ADD(dst_reg(index), index,
                                      brw_imm_d(reg_offset * message_header_scale)));
      }
      return index;
   } else {
      return brw_imm_d(reg_offset * message_header_scale);
   }
}

/**
 * Emits an instruction before @inst to load the value named by @orig_src
 * from scratch space at @base_offset to @temp.
 *
 * @base_offset is measured in 32-byte units (the size of a register).
 */
void
vec4_visitor::emit_scratch_read(bblock_t *block, vec4_instruction *inst,
				dst_reg temp, src_reg orig_src,
				int base_offset)
{
   assert(orig_src.offset % REG_SIZE == 0);
   int reg_offset = base_offset + orig_src.offset / REG_SIZE;
   src_reg index = get_scratch_offset(block, inst, orig_src.reladdr,
                                      reg_offset);

   if (type_sz(orig_src.type) < 8) {
      emit_before(block, inst, SCRATCH_READ(temp, index));
   } else {
      dst_reg shuffled = dst_reg(this, glsl_type::dvec4_type);
      dst_reg shuffled_float = retype(shuffled, BRW_REGISTER_TYPE_F);
      emit_before(block, inst, SCRATCH_READ(shuffled_float, index));
      index = get_scratch_offset(block, inst, orig_src.reladdr, reg_offset + 1);
      vec4_instruction *last_read =
         SCRATCH_READ(byte_offset(shuffled_float, REG_SIZE), index);
      emit_before(block, inst, last_read);
      shuffle_64bit_data(temp, src_reg(shuffled), false, block, last_read);
   }
}

/**
 * Emits an instruction after @inst to store the value to be written
 * to @orig_dst to scratch space at @base_offset, from @temp.
 *
 * @base_offset is measured in 32-byte units (the size of a register).
 */
void
vec4_visitor::emit_scratch_write(bblock_t *block, vec4_instruction *inst,
                                 int base_offset)
{
   assert(inst->dst.offset % REG_SIZE == 0);
   int reg_offset = base_offset + inst->dst.offset / REG_SIZE;
   src_reg index = get_scratch_offset(block, inst, inst->dst.reladdr,
                                      reg_offset);

   /* Create a temporary register to store *inst's result in.
    *
    * We have to be careful in MOVing from our temporary result register in
    * the scratch write.  If we swizzle from channels of the temporary that
    * weren't initialized, it will confuse live interval analysis, which will
    * make spilling fail to make progress.
    */
   bool is_64bit = type_sz(inst->dst.type) == 8;
   const glsl_type *alloc_type =
      is_64bit ? glsl_type::dvec4_type : glsl_type::vec4_type;
   const src_reg temp = swizzle(retype(src_reg(this, alloc_type),
                                       inst->dst.type),
                                brw_swizzle_for_mask(inst->dst.writemask));

   if (!is_64bit) {
      dst_reg dst = dst_reg(brw_writemask(brw_vec8_grf(0, 0),
				          inst->dst.writemask));
      vec4_instruction *write = SCRATCH_WRITE(dst, temp, index);
      if (inst->opcode != BRW_OPCODE_SEL)
         write->predicate = inst->predicate;
      write->ir = inst->ir;
      write->annotation = inst->annotation;
      inst->insert_after(block, write);
   } else {
      dst_reg shuffled = dst_reg(this, alloc_type);
      vec4_instruction *last =
         shuffle_64bit_data(shuffled, temp, true, block, inst);
      src_reg shuffled_float = src_reg(retype(shuffled, BRW_REGISTER_TYPE_F));

      uint8_t mask = 0;
      if (inst->dst.writemask & WRITEMASK_X)
         mask |= WRITEMASK_XY;
      if (inst->dst.writemask & WRITEMASK_Y)
         mask |= WRITEMASK_ZW;
      if (mask) {
         dst_reg dst = dst_reg(brw_writemask(brw_vec8_grf(0, 0), mask));

         vec4_instruction *write = SCRATCH_WRITE(dst, shuffled_float, index);
         if (inst->opcode != BRW_OPCODE_SEL)
            write->predicate = inst->predicate;
         write->ir = inst->ir;
         write->annotation = inst->annotation;
         last->insert_after(block, write);
      }

      mask = 0;
      if (inst->dst.writemask & WRITEMASK_Z)
         mask |= WRITEMASK_XY;
      if (inst->dst.writemask & WRITEMASK_W)
         mask |= WRITEMASK_ZW;
      if (mask) {
         dst_reg dst = dst_reg(brw_writemask(brw_vec8_grf(0, 0), mask));

         src_reg index = get_scratch_offset(block, inst, inst->dst.reladdr,
                                            reg_offset + 1);
         vec4_instruction *write =
            SCRATCH_WRITE(dst, byte_offset(shuffled_float, REG_SIZE), index);
         if (inst->opcode != BRW_OPCODE_SEL)
            write->predicate = inst->predicate;
         write->ir = inst->ir;
         write->annotation = inst->annotation;
         last->insert_after(block, write);
      }
   }

   inst->dst.file = temp.file;
   inst->dst.nr = temp.nr;
   inst->dst.offset %= REG_SIZE;
   inst->dst.reladdr = NULL;
}

/**
 * Checks if \p src and/or \p src.reladdr require a scratch read, and if so,
 * adds the scratch read(s) before \p inst. The function also checks for
 * recursive reladdr scratch accesses, issuing the corresponding scratch
 * loads and rewriting reladdr references accordingly.
 *
 * \return \p src if it did not require a scratch load, otherwise, the
 * register holding the result of the scratch load that the caller should
 * use to rewrite src.
 */
src_reg
vec4_visitor::emit_resolve_reladdr(int scratch_loc[], bblock_t *block,
                                   vec4_instruction *inst, src_reg src)
{
   /* Resolve recursive reladdr scratch access by calling ourselves
    * with src.reladdr
    */
   if (src.reladdr)
      *src.reladdr = emit_resolve_reladdr(scratch_loc, block, inst,
                                          *src.reladdr);

   /* Now handle scratch access on src */
   if (src.file == VGRF && scratch_loc[src.nr] != -1) {
      dst_reg temp = dst_reg(this, type_sz(src.type) == 8 ?
         glsl_type::dvec4_type : glsl_type::vec4_type);
      emit_scratch_read(block, inst, temp, src, scratch_loc[src.nr]);
      src.nr = temp.nr;
      src.offset %= REG_SIZE;
      src.reladdr = NULL;
   }

   return src;
}

/**
 * We can't generally support array access in GRF space, because a
 * single instruction's destination can only span 2 contiguous
 * registers.  So, we send all GRF arrays that get variable index
 * access to scratch space.
 */
void
vec4_visitor::move_grf_array_access_to_scratch()
{
   int scratch_loc[this->alloc.count];
   memset(scratch_loc, -1, sizeof(scratch_loc));

   /* First, calculate the set of virtual GRFs that need to be punted
    * to scratch due to having any array access on them, and where in
    * scratch.
    */
   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
      if (inst->dst.file == VGRF && inst->dst.reladdr) {
         if (scratch_loc[inst->dst.nr] == -1) {
            scratch_loc[inst->dst.nr] = last_scratch;
            last_scratch += this->alloc.sizes[inst->dst.nr];
         }

         for (src_reg *iter = inst->dst.reladdr;
              iter->reladdr;
              iter = iter->reladdr) {
            if (iter->file == VGRF && scratch_loc[iter->nr] == -1) {
               scratch_loc[iter->nr] = last_scratch;
               last_scratch += this->alloc.sizes[iter->nr];
            }
         }
      }

      for (int i = 0 ; i < 3; i++) {
         for (src_reg *iter = &inst->src[i];
              iter->reladdr;
              iter = iter->reladdr) {
            if (iter->file == VGRF && scratch_loc[iter->nr] == -1) {
               scratch_loc[iter->nr] = last_scratch;
               last_scratch += this->alloc.sizes[iter->nr];
            }
         }
      }
   }

   /* Now, for anything that will be accessed through scratch, rewrite
    * it to load/store.  Note that this is a _safe list walk, because
    * we may generate a new scratch_write instruction after the one
    * we're processing.
    */
   foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
      /* Set up the annotation tracking for new generated instructions. */
      base_ir = inst->ir;
      current_annotation = inst->annotation;

      /* First handle scratch access on the dst. Notice we have to handle
       * the case where the dst's reladdr also points to scratch space.
       */
      if (inst->dst.reladdr)
         *inst->dst.reladdr = emit_resolve_reladdr(scratch_loc, block, inst,
                                                   *inst->dst.reladdr);

      /* Now that we have handled any (possibly recursive) reladdr scratch
       * accesses for dst we can safely do the scratch write for dst itself
       */
      if (inst->dst.file == VGRF && scratch_loc[inst->dst.nr] != -1)
         emit_scratch_write(block, inst, scratch_loc[inst->dst.nr]);

      /* Now handle scratch access on any src. In this case, since inst->src[i]
       * already is a src_reg, we can just call emit_resolve_reladdr with
       * inst->src[i] and it will take care of handling scratch loads for
       * both src and src.reladdr (recursively).
       */
      for (int i = 0 ; i < 3; i++) {
         inst->src[i] = emit_resolve_reladdr(scratch_loc, block, inst,
                                             inst->src[i]);
      }
   }
}

/**
 * Emits an instruction before @inst to load the value named by @orig_src
 * from the pull constant buffer (surface) at @base_offset to @temp.
 */
void
vec4_visitor::emit_pull_constant_load(bblock_t *block, vec4_instruction *inst,
                                      dst_reg temp, src_reg orig_src,
                                      int base_offset, src_reg indirect)
{
   assert(orig_src.offset % 16 == 0);
   const unsigned index = prog_data->base.binding_table.pull_constants_start;

   /* For 64bit loads we need to emit two 32-bit load messages and we also
    * we need to shuffle the 32-bit data result into proper 64-bit data. To do
    * that we emit the 32-bit loads into a temporary and we shuffle the result
    * into the original destination.
    */
   dst_reg orig_temp = temp;
   bool is_64bit = type_sz(orig_src.type) == 8;
   if (is_64bit) {
      assert(type_sz(temp.type) == 8);
      dst_reg temp_df = dst_reg(this, glsl_type::dvec4_type);
      temp = retype(temp_df, BRW_REGISTER_TYPE_F);
   }

   src_reg src = orig_src;
   for (int i = 0; i < (is_64bit ? 2 : 1); i++) {
      int reg_offset = base_offset + src.offset / 16;

      src_reg offset;
      if (indirect.file != BAD_FILE) {
         offset = src_reg(this, glsl_type::uint_type);
         emit_before(block, inst, ADD(dst_reg(offset), indirect,
                                      brw_imm_ud(reg_offset * 16)));
      } else if (devinfo->gen >= 8) {
         /* Store the offset in a GRF so we can send-from-GRF. */
         offset = src_reg(this, glsl_type::uint_type);
         emit_before(block, inst, MOV(dst_reg(offset),
                                      brw_imm_ud(reg_offset * 16)));
      } else {
         offset = brw_imm_d(reg_offset * 16);
      }

      emit_pull_constant_load_reg(byte_offset(temp, i * REG_SIZE),
                                  brw_imm_ud(index),
                                  offset,
                                  block, inst);

      src = byte_offset(src, 16);
   }

   if (is_64bit) {
      temp = retype(temp, BRW_REGISTER_TYPE_DF);
      shuffle_64bit_data(orig_temp, src_reg(temp), false, block, inst);
   }
}

/**
 * Implements array access of uniforms by inserting a
 * PULL_CONSTANT_LOAD instruction.
 *
 * Unlike temporary GRF array access (where we don't support it due to
 * the difficulty of doing relative addressing on instruction
 * destinations), we could potentially do array access of uniforms
 * that were loaded in GRF space as push constants.  In real-world
 * usage we've seen, though, the arrays being used are always larger
 * than we could load as push constants, so just always move all
 * uniform array access out to a pull constant buffer.
 */
void
vec4_visitor::move_uniform_array_access_to_pull_constants()
{
   /* The vulkan dirver doesn't support pull constants other than UBOs so
    * everything has to be pushed regardless.
    */
   if (!compiler->supports_pull_constants) {
      split_uniform_registers();
      return;
   }

   /* Allocate the pull_params array */
   assert(stage_prog_data->nr_pull_params == 0);
   stage_prog_data->pull_param = ralloc_array(mem_ctx, uint32_t,
                                              this->uniforms * 4);

   int pull_constant_loc[this->uniforms];
   memset(pull_constant_loc, -1, sizeof(pull_constant_loc));

   /* First, walk through the instructions and determine which things need to
    * be pulled.  We mark something as needing to be pulled by setting
    * pull_constant_loc to 0.
    */
   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
      /* We only care about MOV_INDIRECT of a uniform */
      if (inst->opcode != SHADER_OPCODE_MOV_INDIRECT ||
          inst->src[0].file != UNIFORM)
         continue;

      int uniform_nr = inst->src[0].nr + inst->src[0].offset / 16;

      for (unsigned j = 0; j < DIV_ROUND_UP(inst->src[2].ud, 16); j++)
         pull_constant_loc[uniform_nr + j] = 0;
   }

   /* Next, we walk the list of uniforms and assign real pull constant
    * locations and set their corresponding entries in pull_param.
    */
   for (int j = 0; j < this->uniforms; j++) {
      if (pull_constant_loc[j] < 0)
         continue;

      pull_constant_loc[j] = stage_prog_data->nr_pull_params / 4;

      for (int i = 0; i < 4; i++) {
         stage_prog_data->pull_param[stage_prog_data->nr_pull_params++]
            = stage_prog_data->param[j * 4 + i];
      }
   }

   /* Finally, we can walk through the instructions and lower MOV_INDIRECT
    * instructions to actual uniform pulls.
    */
   foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
      /* We only care about MOV_INDIRECT of a uniform */
      if (inst->opcode != SHADER_OPCODE_MOV_INDIRECT ||
          inst->src[0].file != UNIFORM)
         continue;

      int uniform_nr = inst->src[0].nr + inst->src[0].offset / 16;

      assert(inst->src[0].swizzle == BRW_SWIZZLE_NOOP);

      emit_pull_constant_load(block, inst, inst->dst, inst->src[0],
                              pull_constant_loc[uniform_nr], inst->src[1]);
      inst->remove(block);
   }

   /* Now there are no accesses of the UNIFORM file with a reladdr, so
    * no need to track them as larger-than-vec4 objects.  This will be
    * relied on in cutting out unused uniform vectors from push
    * constants.
    */
   split_uniform_registers();
}

void
vec4_visitor::resolve_ud_negate(src_reg *reg)
{
   if (reg->type != BRW_REGISTER_TYPE_UD ||
       !reg->negate)
      return;

   src_reg temp = src_reg(this, glsl_type::uvec4_type);
   emit(BRW_OPCODE_MOV, dst_reg(temp), *reg);
   *reg = temp;
}

vec4_visitor::vec4_visitor(const struct brw_compiler *compiler,
                           void *log_data,
                           const struct brw_sampler_prog_key_data *key_tex,
                           struct brw_vue_prog_data *prog_data,
                           const nir_shader *shader,
			   void *mem_ctx,
                           bool no_spills,
                           int shader_time_index)
   : backend_shader(compiler, log_data, mem_ctx, shader, &prog_data->base),
     key_tex(key_tex),
     prog_data(prog_data),
     fail_msg(NULL),
     first_non_payload_grf(0),
     need_all_constants_in_pull_buffer(false),
     no_spills(no_spills),
     shader_time_index(shader_time_index),
     last_scratch(0)
{
   this->failed = false;

   this->base_ir = NULL;
   this->current_annotation = NULL;
   memset(this->output_reg_annotation, 0, sizeof(this->output_reg_annotation));

   memset(this->output_num_components, 0, sizeof(this->output_num_components));

   this->virtual_grf_start = NULL;
   this->virtual_grf_end = NULL;
   this->live_intervals = NULL;

   this->max_grf = devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;

   this->uniforms = 0;
}


void
vec4_visitor::fail(const char *format, ...)
{
   va_list va;
   char *msg;

   if (failed)
      return;

   failed = true;

   va_start(va, format);
   msg = ralloc_vasprintf(mem_ctx, format, va);
   va_end(va);
   msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);

   this->fail_msg = msg;

   if (debug_enabled) {
      fprintf(stderr, "%s",  msg);
   }
}

} /* namespace brw */