summaryrefslogtreecommitdiff
path: root/src/intel/compiler/brw_fs_copy_propagation.cpp
blob: a76e0f3a6b5a1f4feb10ccc6d48f9a863bad7d7a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

/** @file brw_fs_copy_propagation.cpp
 *
 * Support for global copy propagation in two passes: A local pass that does
 * intra-block copy (and constant) propagation, and a global pass that uses
 * dataflow analysis on the copies available at the end of each block to re-do
 * local copy propagation with more copies available.
 *
 * See Muchnick's Advanced Compiler Design and Implementation, section
 * 12.5 (p356).
 */

#define ACP_HASH_SIZE 16

#include "util/bitset.h"
#include "brw_fs.h"
#include "brw_fs_live_variables.h"
#include "brw_cfg.h"
#include "brw_eu.h"

using namespace brw;

namespace { /* avoid conflict with opt_copy_propagation_elements */
struct acp_entry : public exec_node {
   fs_reg dst;
   fs_reg src;
   uint8_t size_written;
   uint8_t size_read;
   enum opcode opcode;
   bool saturate;
};

struct block_data {
   /**
    * Which entries in the fs_copy_prop_dataflow acp table are live at the
    * start of this block.  This is the useful output of the analysis, since
    * it lets us plug those into the local copy propagation on the second
    * pass.
    */
   BITSET_WORD *livein;

   /**
    * Which entries in the fs_copy_prop_dataflow acp table are live at the end
    * of this block.  This is done in initial setup from the per-block acps
    * returned by the first local copy prop pass.
    */
   BITSET_WORD *liveout;

   /**
    * Which entries in the fs_copy_prop_dataflow acp table are generated by
    * instructions in this block which reach the end of the block without
    * being killed.
    */
   BITSET_WORD *copy;

   /**
    * Which entries in the fs_copy_prop_dataflow acp table are killed over the
    * course of this block.
    */
   BITSET_WORD *kill;

   /**
    * Which entries in the fs_copy_prop_dataflow acp table are guaranteed to
    * have a fully uninitialized destination at the end of this block.
    */
   BITSET_WORD *undef;
};

class fs_copy_prop_dataflow
{
public:
   fs_copy_prop_dataflow(void *mem_ctx, cfg_t *cfg,
                         const fs_live_variables *live,
                         exec_list *out_acp[ACP_HASH_SIZE]);

   void setup_initial_values();
   void run();

   void dump_block_data() const UNUSED;

   void *mem_ctx;
   cfg_t *cfg;
   const fs_live_variables *live;

   acp_entry **acp;
   int num_acp;
   int bitset_words;

  struct block_data *bd;
};
} /* anonymous namespace */

fs_copy_prop_dataflow::fs_copy_prop_dataflow(void *mem_ctx, cfg_t *cfg,
                                             const fs_live_variables *live,
                                             exec_list *out_acp[ACP_HASH_SIZE])
   : mem_ctx(mem_ctx), cfg(cfg), live(live)
{
   bd = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);

   num_acp = 0;
   foreach_block (block, cfg) {
      for (int i = 0; i < ACP_HASH_SIZE; i++) {
         num_acp += out_acp[block->num][i].length();
      }
   }

   acp = rzalloc_array(mem_ctx, struct acp_entry *, num_acp);

   bitset_words = BITSET_WORDS(num_acp);

   int next_acp = 0;
   foreach_block (block, cfg) {
      bd[block->num].livein = rzalloc_array(bd, BITSET_WORD, bitset_words);
      bd[block->num].liveout = rzalloc_array(bd, BITSET_WORD, bitset_words);
      bd[block->num].copy = rzalloc_array(bd, BITSET_WORD, bitset_words);
      bd[block->num].kill = rzalloc_array(bd, BITSET_WORD, bitset_words);
      bd[block->num].undef = rzalloc_array(bd, BITSET_WORD, bitset_words);

      for (int i = 0; i < ACP_HASH_SIZE; i++) {
         foreach_in_list(acp_entry, entry, &out_acp[block->num][i]) {
            acp[next_acp] = entry;

            /* opt_copy_propagation_local populates out_acp with copies created
             * in a block which are still live at the end of the block.  This
             * is exactly what we want in the COPY set.
             */
            BITSET_SET(bd[block->num].copy, next_acp);

            next_acp++;
         }
      }
   }

   assert(next_acp == num_acp);

   setup_initial_values();
   run();
}

/**
 * Set up initial values for each of the data flow sets, prior to running
 * the fixed-point algorithm.
 */
void
fs_copy_prop_dataflow::setup_initial_values()
{
   /* Initialize the COPY and KILL sets. */
   foreach_block (block, cfg) {
      foreach_inst_in_block(fs_inst, inst, block) {
         if (inst->dst.file != VGRF)
            continue;

         /* Mark ACP entries which are killed by this instruction. */
         for (int i = 0; i < num_acp; i++) {
            if (regions_overlap(inst->dst, inst->size_written,
                                acp[i]->dst, acp[i]->size_written) ||
                regions_overlap(inst->dst, inst->size_written,
                                acp[i]->src, acp[i]->size_read)) {
               BITSET_SET(bd[block->num].kill, i);
            }
         }
      }
   }

   /* Populate the initial values for the livein and liveout sets.  For the
    * block at the start of the program, livein = 0 and liveout = copy.
    * For the others, set liveout and livein to ~0 (the universal set).
    */
   foreach_block (block, cfg) {
      if (block->parents.is_empty()) {
         for (int i = 0; i < bitset_words; i++) {
            bd[block->num].livein[i] = 0u;
            bd[block->num].liveout[i] = bd[block->num].copy[i];
         }
      } else {
         for (int i = 0; i < bitset_words; i++) {
            bd[block->num].liveout[i] = ~0u;
            bd[block->num].livein[i] = ~0u;
         }
      }
   }

   /* Initialize the undef set. */
   foreach_block (block, cfg) {
      for (int i = 0; i < num_acp; i++) {
         BITSET_SET(bd[block->num].undef, i);
         for (unsigned off = 0; off < acp[i]->size_written; off += REG_SIZE) {
            if (BITSET_TEST(live->block_data[block->num].defout,
                            live->var_from_reg(byte_offset(acp[i]->dst, off))))
               BITSET_CLEAR(bd[block->num].undef, i);
         }
      }
   }
}

/**
 * Walk the set of instructions in the block, marking which entries in the acp
 * are killed by the block.
 */
void
fs_copy_prop_dataflow::run()
{
   bool progress;

   do {
      progress = false;

      foreach_block (block, cfg) {
         if (block->parents.is_empty())
            continue;

         for (int i = 0; i < bitset_words; i++) {
            const BITSET_WORD old_liveout = bd[block->num].liveout[i];
            BITSET_WORD livein_from_any_block = 0;

            /* Update livein for this block.  If a copy is live out of all
             * parent blocks, it's live coming in to this block.
             */
            bd[block->num].livein[i] = ~0u;
            foreach_list_typed(bblock_link, parent_link, link, &block->parents) {
               bblock_t *parent = parent_link->block;
               /* Consider ACP entries with a known-undefined destination to
                * be available from the parent.  This is valid because we're
                * free to set the undefined variable equal to the source of
                * the ACP entry without breaking the application's
                * expectations, since the variable is undefined.
                */
               bd[block->num].livein[i] &= (bd[parent->num].liveout[i] |
                                            bd[parent->num].undef[i]);
               livein_from_any_block |= bd[parent->num].liveout[i];
            }

            /* Limit to the set of ACP entries that can possibly be available
             * at the start of the block, since propagating from a variable
             * which is guaranteed to be undefined (rather than potentially
             * undefined for some dynamic control-flow paths) doesn't seem
             * particularly useful.
             */
            bd[block->num].livein[i] &= livein_from_any_block;

            /* Update liveout for this block. */
            bd[block->num].liveout[i] =
               bd[block->num].copy[i] | (bd[block->num].livein[i] &
                                         ~bd[block->num].kill[i]);

            if (old_liveout != bd[block->num].liveout[i])
               progress = true;
         }
      }
   } while (progress);
}

void
fs_copy_prop_dataflow::dump_block_data() const
{
   foreach_block (block, cfg) {
      fprintf(stderr, "Block %d [%d, %d] (parents ", block->num,
             block->start_ip, block->end_ip);
      foreach_list_typed(bblock_link, link, link, &block->parents) {
         bblock_t *parent = link->block;
         fprintf(stderr, "%d ", parent->num);
      }
      fprintf(stderr, "):\n");
      fprintf(stderr, "       livein = 0x");
      for (int i = 0; i < bitset_words; i++)
         fprintf(stderr, "%08x", bd[block->num].livein[i]);
      fprintf(stderr, ", liveout = 0x");
      for (int i = 0; i < bitset_words; i++)
         fprintf(stderr, "%08x", bd[block->num].liveout[i]);
      fprintf(stderr, ",\n       copy   = 0x");
      for (int i = 0; i < bitset_words; i++)
         fprintf(stderr, "%08x", bd[block->num].copy[i]);
      fprintf(stderr, ", kill    = 0x");
      for (int i = 0; i < bitset_words; i++)
         fprintf(stderr, "%08x", bd[block->num].kill[i]);
      fprintf(stderr, "\n");
   }
}

static bool
is_logic_op(enum opcode opcode)
{
   return (opcode == BRW_OPCODE_AND ||
           opcode == BRW_OPCODE_OR  ||
           opcode == BRW_OPCODE_XOR ||
           opcode == BRW_OPCODE_NOT);
}

static bool
can_take_stride(fs_inst *inst, unsigned arg, unsigned stride,
                const gen_device_info *devinfo)
{
   if (stride > 4)
      return false;

   /* Bail if the channels of the source need to be aligned to the byte offset
    * of the corresponding channel of the destination, and the provided stride
    * would break this restriction.
    */
   if (has_dst_aligned_region_restriction(devinfo, inst) &&
       !(type_sz(inst->src[arg].type) * stride ==
           type_sz(inst->dst.type) * inst->dst.stride ||
         stride == 0))
      return false;

   /* 3-source instructions can only be Align16, which restricts what strides
    * they can take. They can only take a stride of 1 (the usual case), or 0
    * with a special "repctrl" bit. But the repctrl bit doesn't work for
    * 64-bit datatypes, so if the source type is 64-bit then only a stride of
    * 1 is allowed. From the Broadwell PRM, Volume 7 "3D Media GPGPU", page
    * 944:
    *
    *    This is applicable to 32b datatypes and 16b datatype. 64b datatypes
    *    cannot use the replicate control.
    */
   if (inst->is_3src(devinfo)) {
      if (type_sz(inst->src[arg].type) > 4)
         return stride == 1;
      else
         return stride == 1 || stride == 0;
   }

   /* From the Broadwell PRM, Volume 2a "Command Reference - Instructions",
    * page 391 ("Extended Math Function"):
    *
    *     The following restrictions apply for align1 mode: Scalar source is
    *     supported. Source and destination horizontal stride must be the
    *     same.
    *
    * From the Haswell PRM Volume 2b "Command Reference - Instructions", page
    * 134 ("Extended Math Function"):
    *
    *    Scalar source is supported. Source and destination horizontal stride
    *    must be 1.
    *
    * and similar language exists for IVB and SNB. Pre-SNB, math instructions
    * are sends, so the sources are moved to MRF's and there are no
    * restrictions.
    */
   if (inst->is_math()) {
      if (devinfo->gen == 6 || devinfo->gen == 7) {
         assert(inst->dst.stride == 1);
         return stride == 1 || stride == 0;
      } else if (devinfo->gen >= 8) {
         return stride == inst->dst.stride || stride == 0;
      }
   }

   return true;
}

bool
fs_visitor::try_copy_propagate(fs_inst *inst, int arg, acp_entry *entry)
{
   if (inst->src[arg].file != VGRF)
      return false;

   if (entry->src.file == IMM)
      return false;
   assert(entry->src.file == VGRF || entry->src.file == UNIFORM ||
          entry->src.file == ATTR);

   if (entry->opcode == SHADER_OPCODE_LOAD_PAYLOAD &&
       inst->opcode == SHADER_OPCODE_LOAD_PAYLOAD)
      return false;

   assert(entry->dst.file == VGRF);
   if (inst->src[arg].nr != entry->dst.nr)
      return false;

   /* Bail if inst is reading a range that isn't contained in the range
    * that entry is writing.
    */
   if (!region_contained_in(inst->src[arg], inst->size_read(arg),
                            entry->dst, entry->size_written))
      return false;

   /* we can't generally copy-propagate UD negations because we
    * can end up accessing the resulting values as signed integers
    * instead. See also resolve_ud_negate() and comment in
    * fs_generator::generate_code.
    */
   if (entry->src.type == BRW_REGISTER_TYPE_UD &&
       entry->src.negate)
      return false;

   bool has_source_modifiers = entry->src.abs || entry->src.negate;

   if ((has_source_modifiers || entry->src.file == UNIFORM ||
        !entry->src.is_contiguous()) &&
       !inst->can_do_source_mods(devinfo))
      return false;

   if (has_source_modifiers &&
       inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_WRITE)
      return false;

   /* Bail if the result of composing both strides would exceed the
    * hardware limit.
    */
   if (!can_take_stride(inst, arg, entry->src.stride * inst->src[arg].stride,
                        devinfo))
      return false;

   /* Bail if the instruction type is larger than the execution type of the
    * copy, what implies that each channel is reading multiple channels of the
    * destination of the copy, and simply replacing the sources would give a
    * program with different semantics.
    */
   if (type_sz(entry->dst.type) < type_sz(inst->src[arg].type))
      return false;

   /* Bail if the result of composing both strides cannot be expressed
    * as another stride. This avoids, for example, trying to transform
    * this:
    *
    *     MOV (8) rX<1>UD rY<0;1,0>UD
    *     FOO (8) ...     rX<8;8,1>UW
    *
    * into this:
    *
    *     FOO (8) ...     rY<0;1,0>UW
    *
    * Which would have different semantics.
    */
   if (entry->src.stride != 1 &&
       (inst->src[arg].stride *
        type_sz(inst->src[arg].type)) % type_sz(entry->src.type) != 0)
      return false;

   /* Since semantics of source modifiers are type-dependent we need to
    * ensure that the meaning of the instruction remains the same if we
    * change the type. If the sizes of the types are different the new
    * instruction will read a different amount of data than the original
    * and the semantics will always be different.
    */
   if (has_source_modifiers &&
       entry->dst.type != inst->src[arg].type &&
       (!inst->can_change_types() ||
        type_sz(entry->dst.type) != type_sz(inst->src[arg].type)))
      return false;

   if (devinfo->gen >= 8 && (entry->src.negate || entry->src.abs) &&
       is_logic_op(inst->opcode)) {
      return false;
   }

   if (entry->saturate) {
      switch(inst->opcode) {
      case BRW_OPCODE_SEL:
         if ((inst->conditional_mod != BRW_CONDITIONAL_GE &&
              inst->conditional_mod != BRW_CONDITIONAL_L) ||
             inst->src[1].file != IMM ||
             inst->src[1].f < 0.0 ||
             inst->src[1].f > 1.0) {
            return false;
         }
         break;
      default:
         return false;
      }
   }

   inst->src[arg].file = entry->src.file;
   inst->src[arg].nr = entry->src.nr;
   inst->src[arg].stride *= entry->src.stride;
   inst->saturate = inst->saturate || entry->saturate;

   /* Compute the offset of inst->src[arg] relative to entry->dst */
   const unsigned rel_offset = inst->src[arg].offset - entry->dst.offset;

   /* Compute the first component of the copy that the instruction is
    * reading, and the base byte offset within that component.
    */
   assert(entry->dst.offset % REG_SIZE == 0 && entry->dst.stride == 1);
   const unsigned component = rel_offset / type_sz(entry->dst.type);
   const unsigned suboffset = rel_offset % type_sz(entry->dst.type);

   /* Calculate the byte offset at the origin of the copy of the given
    * component and suboffset.
    */
   inst->src[arg].offset = suboffset +
      component * entry->src.stride * type_sz(entry->src.type) +
      entry->src.offset;

   if (has_source_modifiers) {
      if (entry->dst.type != inst->src[arg].type) {
         /* We are propagating source modifiers from a MOV with a different
          * type.  If we got here, then we can just change the source and
          * destination types of the instruction and keep going.
          */
         assert(inst->can_change_types());
         for (int i = 0; i < inst->sources; i++) {
            inst->src[i].type = entry->dst.type;
         }
         inst->dst.type = entry->dst.type;
      }

      if (!inst->src[arg].abs) {
         inst->src[arg].abs = entry->src.abs;
         inst->src[arg].negate ^= entry->src.negate;
      }
   }

   return true;
}


bool
fs_visitor::try_constant_propagate(fs_inst *inst, acp_entry *entry)
{
   bool progress = false;

   if (entry->src.file != IMM)
      return false;
   if (type_sz(entry->src.type) > 4)
      return false;
   if (entry->saturate)
      return false;

   for (int i = inst->sources - 1; i >= 0; i--) {
      if (inst->src[i].file != VGRF)
         continue;

      assert(entry->dst.file == VGRF);
      if (inst->src[i].nr != entry->dst.nr)
         continue;

      /* Bail if inst is reading a range that isn't contained in the range
       * that entry is writing.
       */
      if (!region_contained_in(inst->src[i], inst->size_read(i),
                               entry->dst, entry->size_written))
         continue;

      /* If the type sizes don't match each channel of the instruction is
       * either extracting a portion of the constant (which could be handled
       * with some effort but the code below doesn't) or reading multiple
       * channels of the source at once.
       */
      if (type_sz(inst->src[i].type) != type_sz(entry->dst.type))
         continue;

      fs_reg val = entry->src;
      val.type = inst->src[i].type;

      if (inst->src[i].abs) {
         if ((devinfo->gen >= 8 && is_logic_op(inst->opcode)) ||
             !brw_abs_immediate(val.type, &val.as_brw_reg())) {
            continue;
         }
      }

      if (inst->src[i].negate) {
         if ((devinfo->gen >= 8 && is_logic_op(inst->opcode)) ||
             !brw_negate_immediate(val.type, &val.as_brw_reg())) {
            continue;
         }
      }

      switch (inst->opcode) {
      case BRW_OPCODE_MOV:
      case SHADER_OPCODE_LOAD_PAYLOAD:
      case FS_OPCODE_PACK:
         inst->src[i] = val;
         progress = true;
         break;

      case SHADER_OPCODE_INT_QUOTIENT:
      case SHADER_OPCODE_INT_REMAINDER:
         /* FINISHME: Promote non-float constants and remove this. */
         if (devinfo->gen < 8)
            break;
         /* fallthrough */
      case SHADER_OPCODE_POW:
         /* Allow constant propagation into src1 (except on Gen 6 which
          * doesn't support scalar source math), and let constant combining
          * promote the constant on Gen < 8.
          */
         if (devinfo->gen == 6)
            break;
         /* fallthrough */
      case BRW_OPCODE_BFI1:
      case BRW_OPCODE_ASR:
      case BRW_OPCODE_SHL:
      case BRW_OPCODE_SHR:
      case BRW_OPCODE_SUBB:
         if (i == 1) {
            inst->src[i] = val;
            progress = true;
         }
         break;

      case BRW_OPCODE_MACH:
      case BRW_OPCODE_MUL:
      case SHADER_OPCODE_MULH:
      case BRW_OPCODE_ADD:
      case BRW_OPCODE_OR:
      case BRW_OPCODE_AND:
      case BRW_OPCODE_XOR:
      case BRW_OPCODE_ADDC:
         if (i == 1) {
            inst->src[i] = val;
            progress = true;
         } else if (i == 0 && inst->src[1].file != IMM) {
            /* Fit this constant in by commuting the operands.
             * Exception: we can't do this for 32-bit integer MUL/MACH
             * because it's asymmetric.
             *
             * The BSpec says for Broadwell that
             *
             *    "When multiplying DW x DW, the dst cannot be accumulator."
             *
             * Integer MUL with a non-accumulator destination will be lowered
             * by lower_integer_multiplication(), so don't restrict it.
             */
            if (((inst->opcode == BRW_OPCODE_MUL &&
                  inst->dst.is_accumulator()) ||
                 inst->opcode == BRW_OPCODE_MACH) &&
                (inst->src[1].type == BRW_REGISTER_TYPE_D ||
                 inst->src[1].type == BRW_REGISTER_TYPE_UD))
               break;
            inst->src[0] = inst->src[1];
            inst->src[1] = val;
            progress = true;
         }
         break;

      case BRW_OPCODE_CMP:
      case BRW_OPCODE_IF:
         if (i == 1) {
            inst->src[i] = val;
            progress = true;
         } else if (i == 0 && inst->src[1].file != IMM) {
            enum brw_conditional_mod new_cmod;

            new_cmod = brw_swap_cmod(inst->conditional_mod);
            if (new_cmod != BRW_CONDITIONAL_NONE) {
               /* Fit this constant in by swapping the operands and
                * flipping the test
                */
               inst->src[0] = inst->src[1];
               inst->src[1] = val;
               inst->conditional_mod = new_cmod;
               progress = true;
            }
         }
         break;

      case BRW_OPCODE_SEL:
         if (i == 1) {
            inst->src[i] = val;
            progress = true;
         } else if (i == 0 && inst->src[1].file != IMM) {
            inst->src[0] = inst->src[1];
            inst->src[1] = val;

            /* If this was predicated, flipping operands means
             * we also need to flip the predicate.
             */
            if (inst->conditional_mod == BRW_CONDITIONAL_NONE) {
               inst->predicate_inverse =
                  !inst->predicate_inverse;
            }
            progress = true;
         }
         break;

      case SHADER_OPCODE_UNTYPED_ATOMIC:
      case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT:
      case SHADER_OPCODE_UNTYPED_SURFACE_READ:
      case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
      case SHADER_OPCODE_TYPED_ATOMIC:
      case SHADER_OPCODE_TYPED_SURFACE_READ:
      case SHADER_OPCODE_TYPED_SURFACE_WRITE:
      case SHADER_OPCODE_BYTE_SCATTERED_WRITE:
      case SHADER_OPCODE_BYTE_SCATTERED_READ:
         /* We only propagate into the surface argument of the
          * instruction. Everything else goes through LOAD_PAYLOAD.
          */
         if (i == 1) {
            inst->src[i] = val;
            progress = true;
         }
         break;

      case FS_OPCODE_FB_WRITE_LOGICAL:
         /* The stencil and omask sources of FS_OPCODE_FB_WRITE_LOGICAL are
          * bit-cast using a strided region so they cannot be immediates.
          */
         if (i != FB_WRITE_LOGICAL_SRC_SRC_STENCIL &&
             i != FB_WRITE_LOGICAL_SRC_OMASK) {
            inst->src[i] = val;
            progress = true;
         }
         break;

      case SHADER_OPCODE_TEX_LOGICAL:
      case SHADER_OPCODE_TXD_LOGICAL:
      case SHADER_OPCODE_TXF_LOGICAL:
      case SHADER_OPCODE_TXL_LOGICAL:
      case SHADER_OPCODE_TXS_LOGICAL:
      case FS_OPCODE_TXB_LOGICAL:
      case SHADER_OPCODE_TXF_CMS_LOGICAL:
      case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
      case SHADER_OPCODE_TXF_UMS_LOGICAL:
      case SHADER_OPCODE_TXF_MCS_LOGICAL:
      case SHADER_OPCODE_LOD_LOGICAL:
      case SHADER_OPCODE_TG4_LOGICAL:
      case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
      case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
      case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
      case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
      case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
      case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
      case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
      case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
      case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
      case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
         inst->src[i] = val;
         progress = true;
         break;

      case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
      case SHADER_OPCODE_BROADCAST:
         inst->src[i] = val;
         progress = true;
         break;

      case BRW_OPCODE_MAD:
      case BRW_OPCODE_LRP:
         inst->src[i] = val;
         progress = true;
         break;

      default:
         break;
      }
   }

   return progress;
}

static bool
can_propagate_from(fs_inst *inst)
{
   return (inst->opcode == BRW_OPCODE_MOV &&
           inst->dst.file == VGRF &&
           ((inst->src[0].file == VGRF &&
             !regions_overlap(inst->dst, inst->size_written,
                              inst->src[0], inst->size_read(0))) ||
            inst->src[0].file == ATTR ||
            inst->src[0].file == UNIFORM ||
            inst->src[0].file == IMM) &&
           inst->src[0].type == inst->dst.type &&
           !inst->is_partial_write());
}

/* Walks a basic block and does copy propagation on it using the acp
 * list.
 */
bool
fs_visitor::opt_copy_propagation_local(void *copy_prop_ctx, bblock_t *block,
                                       exec_list *acp)
{
   bool progress = false;

   foreach_inst_in_block(fs_inst, inst, block) {
      /* Try propagating into this instruction. */
      for (int i = 0; i < inst->sources; i++) {
         if (inst->src[i].file != VGRF)
            continue;

         foreach_in_list(acp_entry, entry, &acp[inst->src[i].nr % ACP_HASH_SIZE]) {
            if (try_constant_propagate(inst, entry))
               progress = true;
            else if (try_copy_propagate(inst, i, entry))
               progress = true;
         }
      }

      /* kill the destination from the ACP */
      if (inst->dst.file == VGRF) {
         foreach_in_list_safe(acp_entry, entry, &acp[inst->dst.nr % ACP_HASH_SIZE]) {
            if (regions_overlap(entry->dst, entry->size_written,
                                inst->dst, inst->size_written))
               entry->remove();
         }

         /* Oops, we only have the chaining hash based on the destination, not
          * the source, so walk across the entire table.
          */
         for (int i = 0; i < ACP_HASH_SIZE; i++) {
            foreach_in_list_safe(acp_entry, entry, &acp[i]) {
               /* Make sure we kill the entry if this instruction overwrites
                * _any_ of the registers that it reads
                */
               if (regions_overlap(entry->src, entry->size_read,
                                   inst->dst, inst->size_written))
                  entry->remove();
            }
	 }
      }

      /* If this instruction's source could potentially be folded into the
       * operand of another instruction, add it to the ACP.
       */
      if (can_propagate_from(inst)) {
         acp_entry *entry = ralloc(copy_prop_ctx, acp_entry);
         entry->dst = inst->dst;
         entry->src = inst->src[0];
         entry->size_written = inst->size_written;
         entry->size_read = inst->size_read(0);
         entry->opcode = inst->opcode;
         entry->saturate = inst->saturate;
         acp[entry->dst.nr % ACP_HASH_SIZE].push_tail(entry);
      } else if (inst->opcode == SHADER_OPCODE_LOAD_PAYLOAD &&
                 inst->dst.file == VGRF) {
         int offset = 0;
         for (int i = 0; i < inst->sources; i++) {
            int effective_width = i < inst->header_size ? 8 : inst->exec_size;
            assert(effective_width * type_sz(inst->src[i].type) % REG_SIZE == 0);
            const unsigned size_written = effective_width *
                                          type_sz(inst->src[i].type);
            if (inst->src[i].file == VGRF) {
               acp_entry *entry = rzalloc(copy_prop_ctx, acp_entry);
               entry->dst = byte_offset(inst->dst, offset);
               entry->src = inst->src[i];
               entry->size_written = size_written;
               entry->size_read = inst->size_read(i);
               entry->opcode = inst->opcode;
               if (!entry->dst.equals(inst->src[i])) {
                  acp[entry->dst.nr % ACP_HASH_SIZE].push_tail(entry);
               } else {
                  ralloc_free(entry);
               }
            }
            offset += size_written;
         }
      }
   }

   return progress;
}

bool
fs_visitor::opt_copy_propagation()
{
   bool progress = false;
   void *copy_prop_ctx = ralloc_context(NULL);
   exec_list *out_acp[cfg->num_blocks];

   for (int i = 0; i < cfg->num_blocks; i++)
      out_acp[i] = new exec_list [ACP_HASH_SIZE];

   calculate_live_intervals();

   /* First, walk through each block doing local copy propagation and getting
    * the set of copies available at the end of the block.
    */
   foreach_block (block, cfg) {
      progress = opt_copy_propagation_local(copy_prop_ctx, block,
                                            out_acp[block->num]) || progress;
   }

   /* Do dataflow analysis for those available copies. */
   fs_copy_prop_dataflow dataflow(copy_prop_ctx, cfg, live_intervals, out_acp);

   /* Next, re-run local copy propagation, this time with the set of copies
    * provided by the dataflow analysis available at the start of a block.
    */
   foreach_block (block, cfg) {
      exec_list in_acp[ACP_HASH_SIZE];

      for (int i = 0; i < dataflow.num_acp; i++) {
         if (BITSET_TEST(dataflow.bd[block->num].livein, i)) {
            struct acp_entry *entry = dataflow.acp[i];
            in_acp[entry->dst.nr % ACP_HASH_SIZE].push_tail(entry);
         }
      }

      progress = opt_copy_propagation_local(copy_prop_ctx, block, in_acp) ||
                 progress;
   }

   for (int i = 0; i < cfg->num_blocks; i++)
      delete [] out_acp[i];
   ralloc_free(copy_prop_ctx);

   if (progress)
      invalidate_live_intervals();

   return progress;
}