summaryrefslogtreecommitdiff
path: root/src/intel/blorp/blorp_clear.c
blob: 369e18726f2aeea2c9ab7682ac99a815ba0adc67 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
/*
 * Copyright © 2013 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include "util/ralloc.h"

#include "main/macros.h" /* Needed for MAX3 and MAX2 for format_rgb9e5 */
#include "util/format_rgb9e5.h"

#include "blorp_priv.h"
#include "compiler/brw_eu_defines.h"

#include "compiler/nir/nir_builder.h"

#define FILE_DEBUG_FLAG DEBUG_BLORP

struct brw_blorp_const_color_prog_key
{
   enum blorp_shader_type shader_type; /* Must be BLORP_SHADER_TYPE_CLEAR */
   bool use_simd16_replicated_data;
   bool pad[3];
};

static bool
blorp_params_get_clear_kernel(struct blorp_context *blorp,
                              struct blorp_params *params,
                              bool use_replicated_data)
{
   const struct brw_blorp_const_color_prog_key blorp_key = {
      .shader_type = BLORP_SHADER_TYPE_CLEAR,
      .use_simd16_replicated_data = use_replicated_data,
   };

   if (blorp->lookup_shader(blorp, &blorp_key, sizeof(blorp_key),
                            &params->wm_prog_kernel, &params->wm_prog_data))
      return true;

   void *mem_ctx = ralloc_context(NULL);

   nir_builder b;
   nir_builder_init_simple_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT, NULL);
   b.shader->info.name = ralloc_strdup(b.shader, "BLORP-clear");

   nir_variable *v_color =
      BLORP_CREATE_NIR_INPUT(b.shader, clear_color, glsl_vec4_type());

   nir_variable *frag_color = nir_variable_create(b.shader, nir_var_shader_out,
                                                  glsl_vec4_type(),
                                                  "gl_FragColor");
   frag_color->data.location = FRAG_RESULT_COLOR;

   nir_copy_var(&b, frag_color, v_color);

   struct brw_wm_prog_key wm_key;
   brw_blorp_init_wm_prog_key(&wm_key);

   struct brw_wm_prog_data prog_data;
   unsigned program_size;
   const unsigned *program =
      blorp_compile_fs(blorp, mem_ctx, b.shader, &wm_key, use_replicated_data,
                       &prog_data, &program_size);

   bool result =
      blorp->upload_shader(blorp, &blorp_key, sizeof(blorp_key),
                           program, program_size,
                           &prog_data.base, sizeof(prog_data),
                           &params->wm_prog_kernel, &params->wm_prog_data);

   ralloc_free(mem_ctx);
   return result;
}

struct layer_offset_vs_key {
   enum blorp_shader_type shader_type;
   unsigned num_inputs;
};

/* In the case of doing attachment clears, we are using a surface state that
 * is handed to us so we can't set (and don't even know) the base array layer.
 * In order to do a layered clear in this scenario, we need some way of adding
 * the base array layer to the instance id.  Unfortunately, our hardware has
 * no real concept of "base instance", so we have to do it manually in a
 * vertex shader.
 */
static bool
blorp_params_get_layer_offset_vs(struct blorp_context *blorp,
                                 struct blorp_params *params)
{
   struct layer_offset_vs_key blorp_key = {
      .shader_type = BLORP_SHADER_TYPE_LAYER_OFFSET_VS,
   };

   if (params->wm_prog_data)
      blorp_key.num_inputs = params->wm_prog_data->num_varying_inputs;

   if (blorp->lookup_shader(blorp, &blorp_key, sizeof(blorp_key),
                            &params->vs_prog_kernel, &params->vs_prog_data))
      return true;

   void *mem_ctx = ralloc_context(NULL);

   nir_builder b;
   nir_builder_init_simple_shader(&b, mem_ctx, MESA_SHADER_VERTEX, NULL);
   b.shader->info.name = ralloc_strdup(b.shader, "BLORP-layer-offset-vs");

   const struct glsl_type *uvec4_type = glsl_vector_type(GLSL_TYPE_UINT, 4);

   /* First we deal with the header which has instance and base instance */
   nir_variable *a_header = nir_variable_create(b.shader, nir_var_shader_in,
                                                uvec4_type, "header");
   a_header->data.location = VERT_ATTRIB_GENERIC0;

   nir_variable *v_layer = nir_variable_create(b.shader, nir_var_shader_out,
                                               glsl_int_type(), "layer_id");
   v_layer->data.location = VARYING_SLOT_LAYER;

   /* Compute the layer id */
   nir_ssa_def *header = nir_load_var(&b, a_header);
   nir_ssa_def *base_layer = nir_channel(&b, header, 0);
   nir_ssa_def *instance = nir_channel(&b, header, 1);
   nir_store_var(&b, v_layer, nir_iadd(&b, instance, base_layer), 0x1);

   /* Then we copy the vertex from the next slot to VARYING_SLOT_POS */
   nir_variable *a_vertex = nir_variable_create(b.shader, nir_var_shader_in,
                                                glsl_vec4_type(), "a_vertex");
   a_vertex->data.location = VERT_ATTRIB_GENERIC1;

   nir_variable *v_pos = nir_variable_create(b.shader, nir_var_shader_out,
                                             glsl_vec4_type(), "v_pos");
   v_pos->data.location = VARYING_SLOT_POS;

   nir_copy_var(&b, v_pos, a_vertex);

   /* Then we copy everything else */
   for (unsigned i = 0; i < blorp_key.num_inputs; i++) {
      nir_variable *a_in = nir_variable_create(b.shader, nir_var_shader_in,
                                               uvec4_type, "input");
      a_in->data.location = VERT_ATTRIB_GENERIC2 + i;

      nir_variable *v_out = nir_variable_create(b.shader, nir_var_shader_out,
                                                uvec4_type, "output");
      v_out->data.location = VARYING_SLOT_VAR0 + i;

      nir_copy_var(&b, v_out, a_in);
   }

   struct brw_vs_prog_data vs_prog_data;
   memset(&vs_prog_data, 0, sizeof(vs_prog_data));

   unsigned program_size;
   const unsigned *program =
      blorp_compile_vs(blorp, mem_ctx, b.shader, &vs_prog_data, &program_size);

   bool result =
      blorp->upload_shader(blorp, &blorp_key, sizeof(blorp_key),
                           program, program_size,
                           &vs_prog_data.base.base, sizeof(vs_prog_data),
                           &params->vs_prog_kernel, &params->vs_prog_data);

   ralloc_free(mem_ctx);
   return result;
}

/* The x0, y0, x1, and y1 parameters must already be populated with the render
 * area of the framebuffer to be cleared.
 */
static void
get_fast_clear_rect(const struct isl_device *dev,
                    const struct isl_surf *aux_surf,
                    unsigned *x0, unsigned *y0,
                    unsigned *x1, unsigned *y1)
{
   unsigned int x_align, y_align;
   unsigned int x_scaledown, y_scaledown;

   /* Only single sampled surfaces need to (and actually can) be resolved. */
   if (aux_surf->usage == ISL_SURF_USAGE_CCS_BIT) {
      /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
       * Target(s)", beneath the "Fast Color Clear" bullet (p327):
       *
       *     Clear pass must have a clear rectangle that must follow
       *     alignment rules in terms of pixels and lines as shown in the
       *     table below. Further, the clear-rectangle height and width
       *     must be multiple of the following dimensions. If the height
       *     and width of the render target being cleared do not meet these
       *     requirements, an MCS buffer can be created such that it
       *     follows the requirement and covers the RT.
       *
       * The alignment size in the table that follows is related to the
       * alignment size that is baked into the CCS surface format but with X
       * alignment multiplied by 16 and Y alignment multiplied by 32.
       */
      x_align = isl_format_get_layout(aux_surf->format)->bw;
      y_align = isl_format_get_layout(aux_surf->format)->bh;

      x_align *= 16;

      /* SKL+ line alignment requirement for Y-tiled are half those of the prior
       * generations.
       */
      if (dev->info->gen >= 9)
         y_align *= 16;
      else
         y_align *= 32;

      /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
       * Target(s)", beneath the "Fast Color Clear" bullet (p327):
       *
       *     In order to optimize the performance MCS buffer (when bound to
       *     1X RT) clear similarly to MCS buffer clear for MSRT case,
       *     clear rect is required to be scaled by the following factors
       *     in the horizontal and vertical directions:
       *
       * The X and Y scale down factors in the table that follows are each
       * equal to half the alignment value computed above.
       */
      x_scaledown = x_align / 2;
      y_scaledown = y_align / 2;

      /* From BSpec: 3D-Media-GPGPU Engine > 3D Pipeline > Pixel > Pixel
       * Backend > MCS Buffer for Render Target(s) [DevIVB+] > Table "Color
       * Clear of Non-MultiSampled Render Target Restrictions":
       *
       *   Clear rectangle must be aligned to two times the number of
       *   pixels in the table shown below due to 16x16 hashing across the
       *   slice.
       */
      x_align *= 2;
      y_align *= 2;
   } else {
      assert(aux_surf->usage == ISL_SURF_USAGE_MCS_BIT);

      /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
       * Target(s)", beneath the "MSAA Compression" bullet (p326):
       *
       *     Clear pass for this case requires that scaled down primitive
       *     is sent down with upper left co-ordinate to coincide with
       *     actual rectangle being cleared. For MSAA, clear rectangle’s
       *     height and width need to as show in the following table in
       *     terms of (width,height) of the RT.
       *
       *     MSAA  Width of Clear Rect  Height of Clear Rect
       *      2X     Ceil(1/8*width)      Ceil(1/2*height)
       *      4X     Ceil(1/8*width)      Ceil(1/2*height)
       *      8X     Ceil(1/2*width)      Ceil(1/2*height)
       *     16X         width            Ceil(1/2*height)
       *
       * The text "with upper left co-ordinate to coincide with actual
       * rectangle being cleared" is a little confusing--it seems to imply
       * that to clear a rectangle from (x,y) to (x+w,y+h), one needs to
       * feed the pipeline using the rectangle (x,y) to
       * (x+Ceil(w/N),y+Ceil(h/2)), where N is either 2 or 8 depending on
       * the number of samples.  Experiments indicate that this is not
       * quite correct; actually, what the hardware appears to do is to
       * align whatever rectangle is sent down the pipeline to the nearest
       * multiple of 2x2 blocks, and then scale it up by a factor of N
       * horizontally and 2 vertically.  So the resulting alignment is 4
       * vertically and either 4 or 16 horizontally, and the scaledown
       * factor is 2 vertically and either 2 or 8 horizontally.
       */
      switch (aux_surf->format) {
      case ISL_FORMAT_MCS_2X:
      case ISL_FORMAT_MCS_4X:
         x_scaledown = 8;
         break;
      case ISL_FORMAT_MCS_8X:
         x_scaledown = 2;
         break;
      case ISL_FORMAT_MCS_16X:
         x_scaledown = 1;
         break;
      default:
         unreachable("Unexpected MCS format for fast clear");
      }
      y_scaledown = 2;
      x_align = x_scaledown * 2;
      y_align = y_scaledown * 2;
   }

   *x0 = ROUND_DOWN_TO(*x0,  x_align) / x_scaledown;
   *y0 = ROUND_DOWN_TO(*y0, y_align) / y_scaledown;
   *x1 = ALIGN(*x1, x_align) / x_scaledown;
   *y1 = ALIGN(*y1, y_align) / y_scaledown;
}

void
blorp_fast_clear(struct blorp_batch *batch,
                 const struct blorp_surf *surf, enum isl_format format,
                 uint32_t level, uint32_t start_layer, uint32_t num_layers,
                 uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1)
{
   struct blorp_params params;
   blorp_params_init(&params);
   params.num_layers = num_layers;

   params.x0 = x0;
   params.y0 = y0;
   params.x1 = x1;
   params.y1 = y1;

   memset(&params.wm_inputs.clear_color, 0xff, 4*sizeof(float));
   params.fast_clear_op = BLORP_FAST_CLEAR_OP_CLEAR;

   get_fast_clear_rect(batch->blorp->isl_dev, surf->aux_surf,
                       &params.x0, &params.y0, &params.x1, &params.y1);

   if (!blorp_params_get_clear_kernel(batch->blorp, &params, true))
      return;

   brw_blorp_surface_info_init(batch->blorp, &params.dst, surf, level,
                               start_layer, format, true);
   params.num_samples = params.dst.surf.samples;

   batch->blorp->exec(batch, &params);
}

static union isl_color_value
swizzle_color_value(union isl_color_value src, struct isl_swizzle swizzle)
{
   union isl_color_value dst = { .u32 = { 0, } };

   /* We assign colors in ABGR order so that the first one will be taken in
    * RGBA precedence order.  According to the PRM docs for shader channel
    * select, this matches Haswell hardware behavior.
    */
   if ((unsigned)(swizzle.a - ISL_CHANNEL_SELECT_RED) < 4)
      dst.u32[swizzle.a - ISL_CHANNEL_SELECT_RED] = src.u32[3];
   if ((unsigned)(swizzle.b - ISL_CHANNEL_SELECT_RED) < 4)
      dst.u32[swizzle.b - ISL_CHANNEL_SELECT_RED] = src.u32[2];
   if ((unsigned)(swizzle.g - ISL_CHANNEL_SELECT_RED) < 4)
      dst.u32[swizzle.g - ISL_CHANNEL_SELECT_RED] = src.u32[1];
   if ((unsigned)(swizzle.r - ISL_CHANNEL_SELECT_RED) < 4)
      dst.u32[swizzle.r - ISL_CHANNEL_SELECT_RED] = src.u32[0];

   return dst;
}

void
blorp_clear(struct blorp_batch *batch,
            const struct blorp_surf *surf,
            enum isl_format format, struct isl_swizzle swizzle,
            uint32_t level, uint32_t start_layer, uint32_t num_layers,
            uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
            union isl_color_value clear_color,
            const bool color_write_disable[4])
{
   struct blorp_params params;
   blorp_params_init(&params);

   /* Manually apply the clear destination swizzle.  This way swizzled clears
    * will work for swizzles which we can't normally use for rendering and it
    * also ensures that they work on pre-Haswell hardware which can't swizlle
    * at all.
    */
   clear_color = swizzle_color_value(clear_color, swizzle);
   swizzle = ISL_SWIZZLE_IDENTITY;

   if (format == ISL_FORMAT_R9G9B9E5_SHAREDEXP) {
      clear_color.u32[0] = float3_to_rgb9e5(clear_color.f32);
      format = ISL_FORMAT_R32_UINT;
   } else if (format == ISL_FORMAT_A4B4G4R4_UNORM) {
      /* Broadwell and earlier cannot render to this format so we need to work
       * around it by swapping the colors around and using B4G4R4A4 instead.
       */
      const struct isl_swizzle ARGB = ISL_SWIZZLE(ALPHA, RED, GREEN, BLUE);
      clear_color = swizzle_color_value(clear_color, ARGB);
      format = ISL_FORMAT_B4G4R4A4_UNORM;
   }

   memcpy(&params.wm_inputs.clear_color, clear_color.f32, sizeof(float) * 4);

   bool use_simd16_replicated_data = true;

   /* From the SNB PRM (Vol4_Part1):
    *
    *     "Replicated data (Message Type = 111) is only supported when
    *      accessing tiled memory.  Using this Message Type to access linear
    *      (untiled) memory is UNDEFINED."
    */
   if (surf->surf->tiling == ISL_TILING_LINEAR)
      use_simd16_replicated_data = false;

   /* Replicated clears don't work yet before gen6 */
   if (batch->blorp->isl_dev->info->gen < 6)
      use_simd16_replicated_data = false;

   /* Constant color writes ignore everyting in blend and color calculator
    * state.  This is not documented.
    */
   if (color_write_disable) {
      for (unsigned i = 0; i < 4; i++) {
         params.color_write_disable[i] = color_write_disable[i];
         if (color_write_disable[i])
            use_simd16_replicated_data = false;
      }
   }

   if (!blorp_params_get_clear_kernel(batch->blorp, &params,
                                      use_simd16_replicated_data))
      return;

   if (!blorp_ensure_sf_program(batch->blorp, &params))
      return;

   while (num_layers > 0) {
      brw_blorp_surface_info_init(batch->blorp, &params.dst, surf, level,
                                  start_layer, format, true);
      params.dst.view.swizzle = swizzle;

      params.x0 = x0;
      params.y0 = y0;
      params.x1 = x1;
      params.y1 = y1;

      /* The MinLOD and MinimumArrayElement don't work properly for cube maps.
       * Convert them to a single slice on gen4.
       */
      if (batch->blorp->isl_dev->info->gen == 4 &&
          (params.dst.surf.usage & ISL_SURF_USAGE_CUBE_BIT)) {
         blorp_surf_convert_to_single_slice(batch->blorp->isl_dev, &params.dst);

         if (params.dst.tile_x_sa || params.dst.tile_y_sa) {
            /* This is gen4 so there is no multisampling and sa == px. */
            params.x0 += params.dst.tile_x_sa;
            params.y0 += params.dst.tile_y_sa;
            params.x1 += params.dst.tile_x_sa;
            params.y1 += params.dst.tile_y_sa;
         }
      }

      params.num_samples = params.dst.surf.samples;

      /* We may be restricted on the number of layers we can bind at any one
       * time.  In particular, Sandy Bridge has a maximum number of layers of
       * 512 but a maximum 3D texture size is much larger.
       */
      params.num_layers = MIN2(params.dst.view.array_len, num_layers);
      batch->blorp->exec(batch, &params);

      start_layer += params.num_layers;
      num_layers -= params.num_layers;
   }
}

void
blorp_clear_depth_stencil(struct blorp_batch *batch,
                          const struct blorp_surf *depth,
                          const struct blorp_surf *stencil,
                          uint32_t level, uint32_t start_layer,
                          uint32_t num_layers,
                          uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
                          bool clear_depth, float depth_value,
                          uint8_t stencil_mask, uint8_t stencil_value)
{
   struct blorp_params params;
   blorp_params_init(&params);

   params.x0 = x0;
   params.y0 = y0;
   params.x1 = x1;
   params.y1 = y1;

   if (ISL_DEV_GEN(batch->blorp->isl_dev) == 6) {
      /* For some reason, Sandy Bridge gets occlusion queries wrong if we
       * don't have a shader.  In particular, it records samples even though
       * we disable statistics in 3DSTATE_WM.  Give it the usual clear shader
       * to work around the issue.
       */
      if (!blorp_params_get_clear_kernel(batch->blorp, &params, false))
         return;
   }

   while (num_layers > 0) {
      params.num_layers = num_layers;

      if (stencil_mask) {
         brw_blorp_surface_info_init(batch->blorp, &params.stencil, stencil,
                                     level, start_layer,
                                     ISL_FORMAT_UNSUPPORTED, true);
         params.stencil_mask = stencil_mask;
         params.stencil_ref = stencil_value;

         params.dst.surf.samples = params.stencil.surf.samples;
         params.dst.surf.logical_level0_px =
            params.stencil.surf.logical_level0_px;
         params.dst.view = params.depth.view;

         params.num_samples = params.stencil.surf.samples;

         /* We may be restricted on the number of layers we can bind at any
          * one time.  In particular, Sandy Bridge has a maximum number of
          * layers of 512 but a maximum 3D texture size is much larger.
          */
         if (params.stencil.view.array_len < params.num_layers)
            params.num_layers = params.stencil.view.array_len;
      }

      if (clear_depth) {
         brw_blorp_surface_info_init(batch->blorp, &params.depth, depth,
                                     level, start_layer,
                                     ISL_FORMAT_UNSUPPORTED, true);
         params.z = depth_value;
         params.depth_format =
            isl_format_get_depth_format(depth->surf->format, false);

         params.dst.surf.samples = params.depth.surf.samples;
         params.dst.surf.logical_level0_px =
            params.depth.surf.logical_level0_px;
         params.dst.view = params.depth.view;

         params.num_samples = params.depth.surf.samples;

         /* We may be restricted on the number of layers we can bind at any
          * one time.  In particular, Sandy Bridge has a maximum number of
          * layers of 512 but a maximum 3D texture size is much larger.
          */
         if (params.depth.view.array_len < params.num_layers)
            params.num_layers = params.depth.view.array_len;
      }

      batch->blorp->exec(batch, &params);

      start_layer += params.num_layers;
      num_layers -= params.num_layers;
   }
}

bool
blorp_can_hiz_clear_depth(uint8_t gen, enum isl_format format,
                          uint32_t num_samples,
                          uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1)
{
   /* This function currently doesn't support any gen prior to gen8 */
   assert(gen >= 8);

   if (gen == 8 && format == ISL_FORMAT_R16_UNORM) {
      /* Apply the D16 alignment restrictions. On BDW, HiZ has an 8x4 sample
       * block with the following property: as the number of samples increases,
       * the number of pixels representable by this block decreases by a factor
       * of the sample dimensions. Sample dimensions scale following the MSAA
       * interleaved pattern.
       *
       * Sample|Sample|Pixel
       * Count |Dim   |Dim
       * ===================
       *    1  | 1x1  | 8x4
       *    2  | 2x1  | 4x4
       *    4  | 2x2  | 4x2
       *    8  | 4x2  | 2x2
       *   16  | 4x4  | 2x1
       *
       * Table: Pixel Dimensions in a HiZ Sample Block Pre-SKL
       */
      const struct isl_extent2d sa_block_dim =
         isl_get_interleaved_msaa_px_size_sa(num_samples);
      const uint8_t align_px_w = 8 / sa_block_dim.w;
      const uint8_t align_px_h = 4 / sa_block_dim.h;

      /* Fast depth clears clear an entire sample block at a time. As a result,
       * the rectangle must be aligned to the dimensions of the encompassing
       * pixel block for a successful operation.
       *
       * Fast clears can still work if the upper-left corner is aligned and the
       * bottom-rigtht corner touches the edge of a depth buffer whose extent
       * is unaligned. This is because each miplevel in the depth buffer is
       * padded by the Pixel Dim (similar to a standard compressed texture).
       * In this case, the clear rectangle could be padded by to match the full
       * depth buffer extent but to support multiple clearing techniques, we
       * chose to be unaware of the depth buffer's extent and thus don't handle
       * this case.
       */
      if (x0 % align_px_w || y0 % align_px_h ||
          x1 % align_px_w || y1 % align_px_h)
         return false;
   }
   return true;
}

/* Given a depth stencil attachment, this function performs a fast depth clear
 * on a depth portion and a regular clear on the stencil portion. When
 * performing a fast depth clear on the depth portion, the HiZ buffer is simply
 * tagged as cleared so the depth clear value is not actually needed.
 */
void
blorp_gen8_hiz_clear_attachments(struct blorp_batch *batch,
                                 uint32_t num_samples,
                                 uint32_t x0, uint32_t y0,
                                 uint32_t x1, uint32_t y1,
                                 bool clear_depth, bool clear_stencil,
                                 uint8_t stencil_value)
{
   assert(batch->flags & BLORP_BATCH_NO_EMIT_DEPTH_STENCIL);

   struct blorp_params params;
   blorp_params_init(&params);
   params.num_layers = 1;
   params.hiz_op = BLORP_HIZ_OP_DEPTH_CLEAR;
   params.x0 = x0;
   params.y0 = y0;
   params.x1 = x1;
   params.y1 = y1;
   params.num_samples = num_samples;
   params.depth.enabled = clear_depth;
   params.stencil.enabled = clear_stencil;
   params.stencil_ref = stencil_value;
   batch->blorp->exec(batch, &params);
}

/** Clear active color/depth/stencili attachments
 *
 * This function performs a clear operation on the currently bound
 * color/depth/stencil attachments.  It is assumed that any information passed
 * in here is valid, consistent, and in-bounds relative to the currently
 * attached depth/stencil.  The binding_table_offset parameter is the 32-bit
 * offset relative to surface state base address where pre-baked binding table
 * that we are to use lives.  If clear_color is false, binding_table_offset
 * must point to a binding table with one entry which is a valid null surface
 * that matches the currently bound depth and stencil.
 */
void
blorp_clear_attachments(struct blorp_batch *batch,
                        uint32_t binding_table_offset,
                        enum isl_format depth_format,
                        uint32_t num_samples,
                        uint32_t start_layer, uint32_t num_layers,
                        uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
                        bool clear_color, union isl_color_value color_value,
                        bool clear_depth, float depth_value,
                        uint8_t stencil_mask, uint8_t stencil_value)
{
   struct blorp_params params;
   blorp_params_init(&params);

   assert(batch->flags & BLORP_BATCH_NO_EMIT_DEPTH_STENCIL);

   params.x0 = x0;
   params.y0 = y0;
   params.x1 = x1;
   params.y1 = y1;

   params.use_pre_baked_binding_table = true;
   params.pre_baked_binding_table_offset = binding_table_offset;

   params.num_layers = num_layers;
   params.num_samples = num_samples;

   if (clear_color) {
      params.dst.enabled = true;

      memcpy(&params.wm_inputs.clear_color, color_value.f32, sizeof(float) * 4);

      /* Unfortunately, without knowing whether or not our destination surface
       * is tiled or not, we have to assume it may be linear.  This means no
       * SIMD16_REPDATA for us. :-(
       */
      if (!blorp_params_get_clear_kernel(batch->blorp, &params, false))
         return;
   }

   if (clear_depth) {
      params.depth.enabled = true;

      params.z = depth_value;
      params.depth_format = isl_format_get_depth_format(depth_format, false);
   }

   if (stencil_mask) {
      params.stencil.enabled = true;

      params.stencil_mask = stencil_mask;
      params.stencil_ref = stencil_value;
   }

   if (!blorp_params_get_layer_offset_vs(batch->blorp, &params))
      return;

   params.vs_inputs.base_layer = start_layer;

   batch->blorp->exec(batch, &params);
}

void
blorp_ccs_resolve(struct blorp_batch *batch,
                  struct blorp_surf *surf, uint32_t level, uint32_t layer,
                  enum isl_format format,
                  enum blorp_fast_clear_op resolve_op)
{
   struct blorp_params params;
   blorp_params_init(&params);

   brw_blorp_surface_info_init(batch->blorp, &params.dst, surf,
                               level, layer, format, true);

   /* From the Ivy Bridge PRM, Vol2 Part1 11.9 "Render Target Resolve":
    *
    *     A rectangle primitive must be scaled down by the following factors
    *     with respect to render target being resolved.
    *
    * The scaledown factors in the table that follows are related to the block
    * size of the CCS format.  For IVB and HSW, we divide by two, for BDW we
    * multiply by 8 and 16. On Sky Lake, we multiply by 8.
    */
   const struct isl_format_layout *aux_fmtl =
      isl_format_get_layout(params.dst.aux_surf.format);
   assert(aux_fmtl->txc == ISL_TXC_CCS);

   unsigned x_scaledown, y_scaledown;
   if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 9) {
      x_scaledown = aux_fmtl->bw * 8;
      y_scaledown = aux_fmtl->bh * 8;
   } else if (ISL_DEV_GEN(batch->blorp->isl_dev) >= 8) {
      x_scaledown = aux_fmtl->bw * 8;
      y_scaledown = aux_fmtl->bh * 16;
   } else {
      x_scaledown = aux_fmtl->bw / 2;
      y_scaledown = aux_fmtl->bh / 2;
   }
   params.x0 = params.y0 = 0;
   params.x1 = minify(params.dst.aux_surf.logical_level0_px.width, level);
   params.y1 = minify(params.dst.aux_surf.logical_level0_px.height, level);
   params.x1 = ALIGN(params.x1, x_scaledown) / x_scaledown;
   params.y1 = ALIGN(params.y1, y_scaledown) / y_scaledown;

   if (batch->blorp->isl_dev->info->gen >= 9) {
      assert(resolve_op == BLORP_FAST_CLEAR_OP_RESOLVE_FULL ||
             resolve_op == BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL);
   } else {
      /* Broadwell and earlier do not have a partial resolve */
      assert(resolve_op == BLORP_FAST_CLEAR_OP_RESOLVE_FULL);
   }
   params.fast_clear_op = resolve_op;

   /* Note: there is no need to initialize push constants because it doesn't
    * matter what data gets dispatched to the render target.  However, we must
    * ensure that the fragment shader delivers the data using the "replicated
    * color" message.
    */

   if (!blorp_params_get_clear_kernel(batch->blorp, &params, true))
      return;

   batch->blorp->exec(batch, &params);
}