summaryrefslogtreecommitdiff
path: root/src/glsl/glsl_types.cpp
blob: 66e9b133086d5abc632aa94597c9a14f965f01a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
/*
 * Copyright © 2009 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

#include <stdio.h>
#include "main/core.h" /* for Elements, MAX2 */
#include "glsl_parser_extras.h"
#include "glsl_types.h"
extern "C" {
#include "program/hash_table.h"
}

hash_table *glsl_type::array_types = NULL;
hash_table *glsl_type::record_types = NULL;
hash_table *glsl_type::interface_types = NULL;
void *glsl_type::mem_ctx = NULL;

void
glsl_type::init_ralloc_type_ctx(void)
{
   if (glsl_type::mem_ctx == NULL) {
      glsl_type::mem_ctx = ralloc_autofree_context();
      assert(glsl_type::mem_ctx != NULL);
   }
}

glsl_type::glsl_type(GLenum gl_type,
		     glsl_base_type base_type, unsigned vector_elements,
		     unsigned matrix_columns, const char *name) :
   gl_type(gl_type),
   base_type(base_type),
   sampler_dimensionality(0), sampler_shadow(0), sampler_array(0),
   sampler_type(0), interface_packing(0),
   vector_elements(vector_elements), matrix_columns(matrix_columns),
   length(0)
{
   init_ralloc_type_ctx();
   assert(name != NULL);
   this->name = ralloc_strdup(this->mem_ctx, name);
   /* Neither dimension is zero or both dimensions are zero.
    */
   assert((vector_elements == 0) == (matrix_columns == 0));
   memset(& fields, 0, sizeof(fields));
}

glsl_type::glsl_type(GLenum gl_type, glsl_base_type base_type,
		     enum glsl_sampler_dim dim, bool shadow, bool array,
		     unsigned type, const char *name) :
   gl_type(gl_type),
   base_type(base_type),
   sampler_dimensionality(dim), sampler_shadow(shadow),
   sampler_array(array), sampler_type(type), interface_packing(0),
   length(0)
{
   init_ralloc_type_ctx();
   assert(name != NULL);
   this->name = ralloc_strdup(this->mem_ctx, name);
   memset(& fields, 0, sizeof(fields));

   if (base_type == GLSL_TYPE_SAMPLER) {
      /* Samplers take no storage whatsoever. */
      matrix_columns = vector_elements = 0;
   } else {
      matrix_columns = vector_elements = 1;
   }
}

glsl_type::glsl_type(const glsl_struct_field *fields, unsigned num_fields,
		     const char *name) :
   gl_type(0),
   base_type(GLSL_TYPE_STRUCT),
   sampler_dimensionality(0), sampler_shadow(0), sampler_array(0),
   sampler_type(0), interface_packing(0),
   vector_elements(0), matrix_columns(0),
   length(num_fields)
{
   unsigned int i;

   init_ralloc_type_ctx();
   assert(name != NULL);
   this->name = ralloc_strdup(this->mem_ctx, name);
   this->fields.structure = ralloc_array(this->mem_ctx,
					 glsl_struct_field, length);
   for (i = 0; i < length; i++) {
      this->fields.structure[i].type = fields[i].type;
      this->fields.structure[i].name = ralloc_strdup(this->fields.structure,
						     fields[i].name);
      this->fields.structure[i].location = fields[i].location;
      this->fields.structure[i].interpolation = fields[i].interpolation;
      this->fields.structure[i].centroid = fields[i].centroid;
      this->fields.structure[i].sample = fields[i].sample;
      this->fields.structure[i].matrix_layout = fields[i].matrix_layout;
   }
}

glsl_type::glsl_type(const glsl_struct_field *fields, unsigned num_fields,
		     enum glsl_interface_packing packing, const char *name) :
   gl_type(0),
   base_type(GLSL_TYPE_INTERFACE),
   sampler_dimensionality(0), sampler_shadow(0), sampler_array(0),
   sampler_type(0), interface_packing((unsigned) packing),
   vector_elements(0), matrix_columns(0),
   length(num_fields)
{
   unsigned int i;

   init_ralloc_type_ctx();
   assert(name != NULL);
   this->name = ralloc_strdup(this->mem_ctx, name);
   this->fields.structure = ralloc_array(this->mem_ctx,
					 glsl_struct_field, length);
   for (i = 0; i < length; i++) {
      this->fields.structure[i].type = fields[i].type;
      this->fields.structure[i].name = ralloc_strdup(this->fields.structure,
						     fields[i].name);
      this->fields.structure[i].location = fields[i].location;
      this->fields.structure[i].interpolation = fields[i].interpolation;
      this->fields.structure[i].centroid = fields[i].centroid;
      this->fields.structure[i].sample = fields[i].sample;
      this->fields.structure[i].matrix_layout = fields[i].matrix_layout;
   }
}


bool
glsl_type::contains_sampler() const
{
   if (this->is_array()) {
      return this->fields.array->contains_sampler();
   } else if (this->is_record()) {
      for (unsigned int i = 0; i < this->length; i++) {
	 if (this->fields.structure[i].type->contains_sampler())
	    return true;
      }
      return false;
   } else {
      return this->is_sampler();
   }
}


bool
glsl_type::contains_integer() const
{
   if (this->is_array()) {
      return this->fields.array->contains_integer();
   } else if (this->is_record()) {
      for (unsigned int i = 0; i < this->length; i++) {
	 if (this->fields.structure[i].type->contains_integer())
	    return true;
      }
      return false;
   } else {
      return this->is_integer();
   }
}

bool
glsl_type::contains_opaque() const {
   switch (base_type) {
   case GLSL_TYPE_SAMPLER:
   case GLSL_TYPE_IMAGE:
   case GLSL_TYPE_ATOMIC_UINT:
      return true;
   case GLSL_TYPE_ARRAY:
      return element_type()->contains_opaque();
   case GLSL_TYPE_STRUCT:
      for (unsigned int i = 0; i < length; i++) {
         if (fields.structure[i].type->contains_opaque())
            return true;
      }
      return false;
   default:
      return false;
   }
}

gl_texture_index
glsl_type::sampler_index() const
{
   const glsl_type *const t = (this->is_array()) ? this->fields.array : this;

   assert(t->is_sampler());

   switch (t->sampler_dimensionality) {
   case GLSL_SAMPLER_DIM_1D:
      return (t->sampler_array) ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
   case GLSL_SAMPLER_DIM_2D:
      return (t->sampler_array) ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
   case GLSL_SAMPLER_DIM_3D:
      return TEXTURE_3D_INDEX;
   case GLSL_SAMPLER_DIM_CUBE:
      return (t->sampler_array) ? TEXTURE_CUBE_ARRAY_INDEX : TEXTURE_CUBE_INDEX;
   case GLSL_SAMPLER_DIM_RECT:
      return TEXTURE_RECT_INDEX;
   case GLSL_SAMPLER_DIM_BUF:
      return TEXTURE_BUFFER_INDEX;
   case GLSL_SAMPLER_DIM_EXTERNAL:
      return TEXTURE_EXTERNAL_INDEX;
   case GLSL_SAMPLER_DIM_MS:
      return (t->sampler_array) ? TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX : TEXTURE_2D_MULTISAMPLE_INDEX;
   default:
      assert(!"Should not get here.");
      return TEXTURE_BUFFER_INDEX;
   }
}

bool
glsl_type::contains_image() const
{
   if (this->is_array()) {
      return this->fields.array->contains_image();
   } else if (this->is_record()) {
      for (unsigned int i = 0; i < this->length; i++) {
	 if (this->fields.structure[i].type->contains_image())
	    return true;
      }
      return false;
   } else {
      return this->is_image();
   }
}

const glsl_type *glsl_type::get_base_type() const
{
   switch (base_type) {
   case GLSL_TYPE_UINT:
      return uint_type;
   case GLSL_TYPE_INT:
      return int_type;
   case GLSL_TYPE_FLOAT:
      return float_type;
   case GLSL_TYPE_BOOL:
      return bool_type;
   default:
      return error_type;
   }
}


const glsl_type *glsl_type::get_scalar_type() const
{
   const glsl_type *type = this;

   /* Handle arrays */
   while (type->base_type == GLSL_TYPE_ARRAY)
      type = type->fields.array;

   /* Handle vectors and matrices */
   switch (type->base_type) {
   case GLSL_TYPE_UINT:
      return uint_type;
   case GLSL_TYPE_INT:
      return int_type;
   case GLSL_TYPE_FLOAT:
      return float_type;
   case GLSL_TYPE_BOOL:
      return bool_type;
   default:
      /* Handle everything else */
      return type;
   }
}


void
_mesa_glsl_release_types(void)
{
   if (glsl_type::array_types != NULL) {
      hash_table_dtor(glsl_type::array_types);
      glsl_type::array_types = NULL;
   }

   if (glsl_type::record_types != NULL) {
      hash_table_dtor(glsl_type::record_types);
      glsl_type::record_types = NULL;
   }
}


glsl_type::glsl_type(const glsl_type *array, unsigned length) :
   base_type(GLSL_TYPE_ARRAY),
   sampler_dimensionality(0), sampler_shadow(0), sampler_array(0),
   sampler_type(0), interface_packing(0),
   vector_elements(0), matrix_columns(0),
   name(NULL), length(length)
{
   this->fields.array = array;
   /* Inherit the gl type of the base. The GL type is used for
    * uniform/statevar handling in Mesa and the arrayness of the type
    * is represented by the size rather than the type.
    */
   this->gl_type = array->gl_type;

   /* Allow a maximum of 10 characters for the array size.  This is enough
    * for 32-bits of ~0.  The extra 3 are for the '[', ']', and terminating
    * NUL.
    */
   const unsigned name_length = strlen(array->name) + 10 + 3;
   char *const n = (char *) ralloc_size(this->mem_ctx, name_length);

   if (length == 0)
      snprintf(n, name_length, "%s[]", array->name);
   else {
      /* insert outermost dimensions in the correct spot
       * otherwise the dimension order will be backwards
       */
      const char *pos = strchr(array->name, '[');
      if (pos) {
         int idx = pos - array->name;
         snprintf(n, idx+1, "%s", array->name);
         snprintf(n + idx, name_length - idx, "[%u]%s",
                  length, array->name + idx);
      } else {
         snprintf(n, name_length, "%s[%u]", array->name, length);
      }
   }

   this->name = n;
}


const glsl_type *
glsl_type::vec(unsigned components)
{
   if (components == 0 || components > 4)
      return error_type;

   static const glsl_type *const ts[] = {
      float_type, vec2_type, vec3_type, vec4_type
   };
   return ts[components - 1];
}


const glsl_type *
glsl_type::ivec(unsigned components)
{
   if (components == 0 || components > 4)
      return error_type;

   static const glsl_type *const ts[] = {
      int_type, ivec2_type, ivec3_type, ivec4_type
   };
   return ts[components - 1];
}


const glsl_type *
glsl_type::uvec(unsigned components)
{
   if (components == 0 || components > 4)
      return error_type;

   static const glsl_type *const ts[] = {
      uint_type, uvec2_type, uvec3_type, uvec4_type
   };
   return ts[components - 1];
}


const glsl_type *
glsl_type::bvec(unsigned components)
{
   if (components == 0 || components > 4)
      return error_type;

   static const glsl_type *const ts[] = {
      bool_type, bvec2_type, bvec3_type, bvec4_type
   };
   return ts[components - 1];
}


const glsl_type *
glsl_type::get_instance(unsigned base_type, unsigned rows, unsigned columns)
{
   if (base_type == GLSL_TYPE_VOID)
      return void_type;

   if ((rows < 1) || (rows > 4) || (columns < 1) || (columns > 4))
      return error_type;

   /* Treat GLSL vectors as Nx1 matrices.
    */
   if (columns == 1) {
      switch (base_type) {
      case GLSL_TYPE_UINT:
	 return uvec(rows);
      case GLSL_TYPE_INT:
	 return ivec(rows);
      case GLSL_TYPE_FLOAT:
	 return vec(rows);
      case GLSL_TYPE_BOOL:
	 return bvec(rows);
      default:
	 return error_type;
      }
   } else {
      if ((base_type != GLSL_TYPE_FLOAT) || (rows == 1))
	 return error_type;

      /* GLSL matrix types are named mat{COLUMNS}x{ROWS}.  Only the following
       * combinations are valid:
       *
       *   1 2 3 4
       * 1
       * 2   x x x
       * 3   x x x
       * 4   x x x
       */
#define IDX(c,r) (((c-1)*3) + (r-1))

      switch (IDX(columns, rows)) {
      case IDX(2,2): return mat2_type;
      case IDX(2,3): return mat2x3_type;
      case IDX(2,4): return mat2x4_type;
      case IDX(3,2): return mat3x2_type;
      case IDX(3,3): return mat3_type;
      case IDX(3,4): return mat3x4_type;
      case IDX(4,2): return mat4x2_type;
      case IDX(4,3): return mat4x3_type;
      case IDX(4,4): return mat4_type;
      default: return error_type;
      }
   }

   assert(!"Should not get here.");
   return error_type;
}


const glsl_type *
glsl_type::get_array_instance(const glsl_type *base, unsigned array_size)
{

   if (array_types == NULL) {
      array_types = hash_table_ctor(64, hash_table_string_hash,
				    hash_table_string_compare);
   }

   /* Generate a name using the base type pointer in the key.  This is
    * done because the name of the base type may not be unique across
    * shaders.  For example, two shaders may have different record types
    * named 'foo'.
    */
   char key[128];
   snprintf(key, sizeof(key), "%p[%u]", (void *) base, array_size);

   const glsl_type *t = (glsl_type *) hash_table_find(array_types, key);
   if (t == NULL) {
      t = new glsl_type(base, array_size);

      hash_table_insert(array_types, (void *) t, ralloc_strdup(mem_ctx, key));
   }

   assert(t->base_type == GLSL_TYPE_ARRAY);
   assert(t->length == array_size);
   assert(t->fields.array == base);

   return t;
}


bool
glsl_type::record_compare(const glsl_type *b) const
{
   if (this->length != b->length)
      return false;

   if (this->interface_packing != b->interface_packing)
      return false;

   for (unsigned i = 0; i < this->length; i++) {
      if (this->fields.structure[i].type != b->fields.structure[i].type)
	 return false;
      if (strcmp(this->fields.structure[i].name,
		 b->fields.structure[i].name) != 0)
	 return false;
      if (this->fields.structure[i].matrix_layout
         != b->fields.structure[i].matrix_layout)
        return false;
      if (this->fields.structure[i].location
          != b->fields.structure[i].location)
         return false;
      if (this->fields.structure[i].interpolation
          != b->fields.structure[i].interpolation)
         return false;
      if (this->fields.structure[i].centroid
          != b->fields.structure[i].centroid)
         return false;
      if (this->fields.structure[i].sample
          != b->fields.structure[i].sample)
         return false;
   }

   return true;
}


int
glsl_type::record_key_compare(const void *a, const void *b)
{
   const glsl_type *const key1 = (glsl_type *) a;
   const glsl_type *const key2 = (glsl_type *) b;

   /* Return zero is the types match (there is zero difference) or non-zero
    * otherwise.
    */
   if (strcmp(key1->name, key2->name) != 0)
      return 1;

   return !key1->record_compare(key2);
}


unsigned
glsl_type::record_key_hash(const void *a)
{
   const glsl_type *const key = (glsl_type *) a;
   char hash_key[128];
   unsigned size = 0;

   size = snprintf(hash_key, sizeof(hash_key), "%08x", key->length);

   for (unsigned i = 0; i < key->length; i++) {
      if (size >= sizeof(hash_key))
	 break;

      size += snprintf(& hash_key[size], sizeof(hash_key) - size,
		       "%p", (void *) key->fields.structure[i].type);
   }

   return hash_table_string_hash(& hash_key);
}


const glsl_type *
glsl_type::get_record_instance(const glsl_struct_field *fields,
			       unsigned num_fields,
			       const char *name)
{
   const glsl_type key(fields, num_fields, name);

   if (record_types == NULL) {
      record_types = hash_table_ctor(64, record_key_hash, record_key_compare);
   }

   const glsl_type *t = (glsl_type *) hash_table_find(record_types, & key);
   if (t == NULL) {
      t = new glsl_type(fields, num_fields, name);

      hash_table_insert(record_types, (void *) t, t);
   }

   assert(t->base_type == GLSL_TYPE_STRUCT);
   assert(t->length == num_fields);
   assert(strcmp(t->name, name) == 0);

   return t;
}


const glsl_type *
glsl_type::get_interface_instance(const glsl_struct_field *fields,
				  unsigned num_fields,
				  enum glsl_interface_packing packing,
				  const char *block_name)
{
   const glsl_type key(fields, num_fields, packing, block_name);

   if (interface_types == NULL) {
      interface_types = hash_table_ctor(64, record_key_hash, record_key_compare);
   }

   const glsl_type *t = (glsl_type *) hash_table_find(interface_types, & key);
   if (t == NULL) {
      t = new glsl_type(fields, num_fields, packing, block_name);

      hash_table_insert(interface_types, (void *) t, t);
   }

   assert(t->base_type == GLSL_TYPE_INTERFACE);
   assert(t->length == num_fields);
   assert(strcmp(t->name, block_name) == 0);

   return t;
}


const glsl_type *
glsl_type::field_type(const char *name) const
{
   if (this->base_type != GLSL_TYPE_STRUCT
       && this->base_type != GLSL_TYPE_INTERFACE)
      return error_type;

   for (unsigned i = 0; i < this->length; i++) {
      if (strcmp(name, this->fields.structure[i].name) == 0)
	 return this->fields.structure[i].type;
   }

   return error_type;
}


int
glsl_type::field_index(const char *name) const
{
   if (this->base_type != GLSL_TYPE_STRUCT
       && this->base_type != GLSL_TYPE_INTERFACE)
      return -1;

   for (unsigned i = 0; i < this->length; i++) {
      if (strcmp(name, this->fields.structure[i].name) == 0)
	 return i;
   }

   return -1;
}


unsigned
glsl_type::component_slots() const
{
   switch (this->base_type) {
   case GLSL_TYPE_UINT:
   case GLSL_TYPE_INT:
   case GLSL_TYPE_FLOAT:
   case GLSL_TYPE_BOOL:
      return this->components();

   case GLSL_TYPE_STRUCT:
   case GLSL_TYPE_INTERFACE: {
      unsigned size = 0;

      for (unsigned i = 0; i < this->length; i++)
	 size += this->fields.structure[i].type->component_slots();

      return size;
   }

   case GLSL_TYPE_ARRAY:
      return this->length * this->fields.array->component_slots();

   case GLSL_TYPE_IMAGE:
      return 1;

   case GLSL_TYPE_SAMPLER:
   case GLSL_TYPE_ATOMIC_UINT:
   case GLSL_TYPE_VOID:
   case GLSL_TYPE_ERROR:
      break;
   }

   return 0;
}

unsigned
glsl_type::uniform_locations() const
{
   if (this->is_matrix())
      return 1;

   unsigned size = 0;

   switch (this->base_type) {
   case GLSL_TYPE_STRUCT:
   case GLSL_TYPE_INTERFACE:
      for (unsigned i = 0; i < this->length; i++)
         size += this->fields.structure[i].type->uniform_locations();
      return size;
   case GLSL_TYPE_ARRAY:
      return this->length * this->fields.array->uniform_locations();
   default:
      break;
   }

   /* The location count for many types match with component_slots() result,
    * all expections should be handled above.
    */
   return component_slots();
}

bool
glsl_type::can_implicitly_convert_to(const glsl_type *desired,
                                     _mesa_glsl_parse_state *state) const
{
   if (this == desired)
      return true;

   /* There is no conversion among matrix types. */
   if (this->matrix_columns > 1 || desired->matrix_columns > 1)
      return false;

   /* Vector size must match. */
   if (this->vector_elements != desired->vector_elements)
      return false;

   /* int and uint can be converted to float. */
   if (desired->is_float() && this->is_integer())
      return true;

   /* With GLSL 4.0 / ARB_gpu_shader5, int can be converted to uint.
    * Note that state may be NULL here, when resolving function calls in the
    * linker. By this time, all the state-dependent checks have already
    * happened though, so allow anything that's allowed in any shader version. */
   if ((!state || state->is_version(400, 0) || state->ARB_gpu_shader5_enable) &&
         desired->base_type == GLSL_TYPE_UINT && this->base_type == GLSL_TYPE_INT)
      return true;

   return false;
}

unsigned
glsl_type::std140_base_alignment(bool row_major) const
{
   /* (1) If the member is a scalar consuming <N> basic machine units, the
    *     base alignment is <N>.
    *
    * (2) If the member is a two- or four-component vector with components
    *     consuming <N> basic machine units, the base alignment is 2<N> or
    *     4<N>, respectively.
    *
    * (3) If the member is a three-component vector with components consuming
    *     <N> basic machine units, the base alignment is 4<N>.
    */
   if (this->is_scalar() || this->is_vector()) {
      switch (this->vector_elements) {
      case 1:
	 return 4;
      case 2:
	 return 8;
      case 3:
      case 4:
	 return 16;
      }
   }

   /* (4) If the member is an array of scalars or vectors, the base alignment
    *     and array stride are set to match the base alignment of a single
    *     array element, according to rules (1), (2), and (3), and rounded up
    *     to the base alignment of a vec4. The array may have padding at the
    *     end; the base offset of the member following the array is rounded up
    *     to the next multiple of the base alignment.
    *
    * (6) If the member is an array of <S> column-major matrices with <C>
    *     columns and <R> rows, the matrix is stored identically to a row of
    *     <S>*<C> column vectors with <R> components each, according to rule
    *     (4).
    *
    * (8) If the member is an array of <S> row-major matrices with <C> columns
    *     and <R> rows, the matrix is stored identically to a row of <S>*<R>
    *     row vectors with <C> components each, according to rule (4).
    *
    * (10) If the member is an array of <S> structures, the <S> elements of
    *      the array are laid out in order, according to rule (9).
    */
   if (this->is_array()) {
      if (this->fields.array->is_scalar() ||
	  this->fields.array->is_vector() ||
	  this->fields.array->is_matrix()) {
	 return MAX2(this->fields.array->std140_base_alignment(row_major), 16);
      } else {
	 assert(this->fields.array->is_record());
	 return this->fields.array->std140_base_alignment(row_major);
      }
   }

   /* (5) If the member is a column-major matrix with <C> columns and
    *     <R> rows, the matrix is stored identically to an array of
    *     <C> column vectors with <R> components each, according to
    *     rule (4).
    *
    * (7) If the member is a row-major matrix with <C> columns and <R>
    *     rows, the matrix is stored identically to an array of <R>
    *     row vectors with <C> components each, according to rule (4).
    */
   if (this->is_matrix()) {
      const struct glsl_type *vec_type, *array_type;
      int c = this->matrix_columns;
      int r = this->vector_elements;

      if (row_major) {
	 vec_type = get_instance(GLSL_TYPE_FLOAT, c, 1);
	 array_type = glsl_type::get_array_instance(vec_type, r);
      } else {
	 vec_type = get_instance(GLSL_TYPE_FLOAT, r, 1);
	 array_type = glsl_type::get_array_instance(vec_type, c);
      }

      return array_type->std140_base_alignment(false);
   }

   /* (9) If the member is a structure, the base alignment of the
    *     structure is <N>, where <N> is the largest base alignment
    *     value of any of its members, and rounded up to the base
    *     alignment of a vec4. The individual members of this
    *     sub-structure are then assigned offsets by applying this set
    *     of rules recursively, where the base offset of the first
    *     member of the sub-structure is equal to the aligned offset
    *     of the structure. The structure may have padding at the end;
    *     the base offset of the member following the sub-structure is
    *     rounded up to the next multiple of the base alignment of the
    *     structure.
    */
   if (this->is_record()) {
      unsigned base_alignment = 16;
      for (unsigned i = 0; i < this->length; i++) {
         bool field_row_major = row_major;
         const enum glsl_matrix_layout matrix_layout =
            glsl_matrix_layout(this->fields.structure[i].matrix_layout);
         if (matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
            field_row_major = true;
         } else if (matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR) {
            field_row_major = false;
         }

	 const struct glsl_type *field_type = this->fields.structure[i].type;
	 base_alignment = MAX2(base_alignment,
			       field_type->std140_base_alignment(field_row_major));
      }
      return base_alignment;
   }

   assert(!"not reached");
   return -1;
}

unsigned
glsl_type::std140_size(bool row_major) const
{
   /* (1) If the member is a scalar consuming <N> basic machine units, the
    *     base alignment is <N>.
    *
    * (2) If the member is a two- or four-component vector with components
    *     consuming <N> basic machine units, the base alignment is 2<N> or
    *     4<N>, respectively.
    *
    * (3) If the member is a three-component vector with components consuming
    *     <N> basic machine units, the base alignment is 4<N>.
    */
   if (this->is_scalar() || this->is_vector()) {
      return this->vector_elements * 4;
   }

   /* (5) If the member is a column-major matrix with <C> columns and
    *     <R> rows, the matrix is stored identically to an array of
    *     <C> column vectors with <R> components each, according to
    *     rule (4).
    *
    * (6) If the member is an array of <S> column-major matrices with <C>
    *     columns and <R> rows, the matrix is stored identically to a row of
    *     <S>*<C> column vectors with <R> components each, according to rule
    *     (4).
    *
    * (7) If the member is a row-major matrix with <C> columns and <R>
    *     rows, the matrix is stored identically to an array of <R>
    *     row vectors with <C> components each, according to rule (4).
    *
    * (8) If the member is an array of <S> row-major matrices with <C> columns
    *     and <R> rows, the matrix is stored identically to a row of <S>*<R>
    *     row vectors with <C> components each, according to rule (4).
    */
   if (this->without_array()->is_matrix()) {
      const struct glsl_type *element_type;
      const struct glsl_type *vec_type;
      unsigned int array_len;

      if (this->is_array()) {
	 element_type = this->fields.array;
	 array_len = this->length;
      } else {
	 element_type = this;
	 array_len = 1;
      }

      if (row_major) {
	 vec_type = get_instance(GLSL_TYPE_FLOAT,
				 element_type->matrix_columns, 1);
	 array_len *= element_type->vector_elements;
      } else {
	 vec_type = get_instance(GLSL_TYPE_FLOAT,
				 element_type->vector_elements, 1);
	 array_len *= element_type->matrix_columns;
      }
      const glsl_type *array_type = glsl_type::get_array_instance(vec_type,
								  array_len);

      return array_type->std140_size(false);
   }

   /* (4) If the member is an array of scalars or vectors, the base alignment
    *     and array stride are set to match the base alignment of a single
    *     array element, according to rules (1), (2), and (3), and rounded up
    *     to the base alignment of a vec4. The array may have padding at the
    *     end; the base offset of the member following the array is rounded up
    *     to the next multiple of the base alignment.
    *
    * (10) If the member is an array of <S> structures, the <S> elements of
    *      the array are laid out in order, according to rule (9).
    */
   if (this->is_array()) {
      if (this->fields.array->is_record()) {
	 return this->length * this->fields.array->std140_size(row_major);
      } else {
	 unsigned element_base_align =
	    this->fields.array->std140_base_alignment(row_major);
	 return this->length * MAX2(element_base_align, 16);
      }
   }

   /* (9) If the member is a structure, the base alignment of the
    *     structure is <N>, where <N> is the largest base alignment
    *     value of any of its members, and rounded up to the base
    *     alignment of a vec4. The individual members of this
    *     sub-structure are then assigned offsets by applying this set
    *     of rules recursively, where the base offset of the first
    *     member of the sub-structure is equal to the aligned offset
    *     of the structure. The structure may have padding at the end;
    *     the base offset of the member following the sub-structure is
    *     rounded up to the next multiple of the base alignment of the
    *     structure.
    */
   if (this->is_record()) {
      unsigned size = 0;
      unsigned max_align = 0;

      for (unsigned i = 0; i < this->length; i++) {
         bool field_row_major = row_major;
         const enum glsl_matrix_layout matrix_layout =
            glsl_matrix_layout(this->fields.structure[i].matrix_layout);
         if (matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
            field_row_major = true;
         } else if (matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR) {
            field_row_major = false;
         }

	 const struct glsl_type *field_type = this->fields.structure[i].type;
	 unsigned align = field_type->std140_base_alignment(field_row_major);
	 size = glsl_align(size, align);
	 size += field_type->std140_size(field_row_major);

         max_align = MAX2(align, max_align);

         if (field_type->is_record() && (i + 1 < this->length))
            size = glsl_align(size, 16);
      }
      size = glsl_align(size, max_align);
      return size;
   }

   assert(!"not reached");
   return -1;
}


unsigned
glsl_type::count_attribute_slots() const
{
   /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
    *
    *     "A scalar input counts the same amount against this limit as a vec4,
    *     so applications may want to consider packing groups of four
    *     unrelated float inputs together into a vector to better utilize the
    *     capabilities of the underlying hardware. A matrix input will use up
    *     multiple locations.  The number of locations used will equal the
    *     number of columns in the matrix."
    *
    * The spec does not explicitly say how arrays are counted.  However, it
    * should be safe to assume the total number of slots consumed by an array
    * is the number of entries in the array multiplied by the number of slots
    * consumed by a single element of the array.
    *
    * The spec says nothing about how structs are counted, because vertex
    * attributes are not allowed to be (or contain) structs.  However, Mesa
    * allows varying structs, the number of varying slots taken up by a
    * varying struct is simply equal to the sum of the number of slots taken
    * up by each element.
    */
   switch (this->base_type) {
   case GLSL_TYPE_UINT:
   case GLSL_TYPE_INT:
   case GLSL_TYPE_FLOAT:
   case GLSL_TYPE_BOOL:
      return this->matrix_columns;

   case GLSL_TYPE_STRUCT:
   case GLSL_TYPE_INTERFACE: {
      unsigned size = 0;

      for (unsigned i = 0; i < this->length; i++)
         size += this->fields.structure[i].type->count_attribute_slots();

      return size;
   }

   case GLSL_TYPE_ARRAY:
      return this->length * this->fields.array->count_attribute_slots();

   case GLSL_TYPE_SAMPLER:
   case GLSL_TYPE_IMAGE:
   case GLSL_TYPE_ATOMIC_UINT:
   case GLSL_TYPE_VOID:
   case GLSL_TYPE_ERROR:
      break;
   }

   assert(!"Unexpected type in count_attribute_slots()");

   return 0;
}

int
glsl_type::coordinate_components() const
{
   int size;

   switch (sampler_dimensionality) {
   case GLSL_SAMPLER_DIM_1D:
   case GLSL_SAMPLER_DIM_BUF:
      size = 1;
      break;
   case GLSL_SAMPLER_DIM_2D:
   case GLSL_SAMPLER_DIM_RECT:
   case GLSL_SAMPLER_DIM_MS:
   case GLSL_SAMPLER_DIM_EXTERNAL:
      size = 2;
      break;
   case GLSL_SAMPLER_DIM_3D:
   case GLSL_SAMPLER_DIM_CUBE:
      size = 3;
      break;
   default:
      assert(!"Should not get here.");
      size = 1;
      break;
   }

   /* Array textures need an additional component for the array index. */
   if (sampler_array)
      size += 1;

   return size;
}