summaryrefslogtreecommitdiff
path: root/src/gallium/winsys/radeon/drm/radeon_drm_cs.c
blob: 31aded6db9c921679251b595d5f458cd7d2faf49 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
/*
 * Copyright © 2008 Jérôme Glisse
 * Copyright © 2010 Marek Olšák <maraeo@gmail.com>
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sub license, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS, AUTHORS
 * AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial portions
 * of the Software.
 */

/*
    This file replaces libdrm's radeon_cs_gem with our own implemention.
    It's optimized specifically for Radeon DRM.
    Adding buffers and space checking are faster and simpler than their
    counterparts in libdrm (the time complexity of all the functions
    is O(1) in nearly all scenarios, thanks to hashing).

    It works like this:

    cs_add_buffer(cs, buf, read_domain, write_domain) adds a new relocation and
    also adds the size of 'buf' to the used_gart and used_vram winsys variables
    based on the domains, which are simply or'd for the accounting purposes.
    The adding is skipped if the reloc is already present in the list, but it
    accounts any newly-referenced domains.

    cs_validate is then called, which just checks:
        used_vram/gart < vram/gart_size * 0.8
    The 0.8 number allows for some memory fragmentation. If the validation
    fails, the pipe driver flushes CS and tries do the validation again,
    i.e. it validates only that one operation. If it fails again, it drops
    the operation on the floor and prints some nasty message to stderr.
    (done in the pipe driver)

    cs_write_reloc(cs, buf) just writes a reloc that has been added using
    cs_add_buffer. The read_domain and write_domain parameters have been removed,
    because we already specify them in cs_add_buffer.
*/

#include "radeon_drm_cs.h"

#include "util/u_memory.h"
#include "util/os_time.h"

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <xf86drm.h>


#define RELOC_DWORDS (sizeof(struct drm_radeon_cs_reloc) / sizeof(uint32_t))

static struct pipe_fence_handle *radeon_cs_create_fence(struct radeon_cmdbuf *rcs);
static void radeon_fence_reference(struct pipe_fence_handle **dst,
                                   struct pipe_fence_handle *src);

static struct radeon_winsys_ctx *radeon_drm_ctx_create(struct radeon_winsys *ws)
{
   struct radeon_ctx *ctx = CALLOC_STRUCT(radeon_ctx);
   if (!ctx)
      return NULL;

   ctx->ws = (struct radeon_drm_winsys*)ws;
   ctx->gpu_reset_counter = radeon_drm_get_gpu_reset_counter(ctx->ws);
   return (struct radeon_winsys_ctx*)ctx;
}

static void radeon_drm_ctx_destroy(struct radeon_winsys_ctx *ctx)
{
   FREE(ctx);
}

static enum pipe_reset_status
radeon_drm_ctx_query_reset_status(struct radeon_winsys_ctx *rctx)
{
   struct radeon_ctx *ctx = (struct radeon_ctx*)rctx;

   unsigned latest = radeon_drm_get_gpu_reset_counter(ctx->ws);

   if (ctx->gpu_reset_counter == latest)
      return PIPE_NO_RESET;

   ctx->gpu_reset_counter = latest;
   return PIPE_UNKNOWN_CONTEXT_RESET;
}

static bool radeon_init_cs_context(struct radeon_cs_context *csc,
                                   struct radeon_drm_winsys *ws)
{
   int i;

   csc->fd = ws->fd;

   csc->chunks[0].chunk_id = RADEON_CHUNK_ID_IB;
   csc->chunks[0].length_dw = 0;
   csc->chunks[0].chunk_data = (uint64_t)(uintptr_t)csc->buf;
   csc->chunks[1].chunk_id = RADEON_CHUNK_ID_RELOCS;
   csc->chunks[1].length_dw = 0;
   csc->chunks[1].chunk_data = (uint64_t)(uintptr_t)csc->relocs;
   csc->chunks[2].chunk_id = RADEON_CHUNK_ID_FLAGS;
   csc->chunks[2].length_dw = 2;
   csc->chunks[2].chunk_data = (uint64_t)(uintptr_t)&csc->flags;

   csc->chunk_array[0] = (uint64_t)(uintptr_t)&csc->chunks[0];
   csc->chunk_array[1] = (uint64_t)(uintptr_t)&csc->chunks[1];
   csc->chunk_array[2] = (uint64_t)(uintptr_t)&csc->chunks[2];

   csc->cs.chunks = (uint64_t)(uintptr_t)csc->chunk_array;

   for (i = 0; i < ARRAY_SIZE(csc->reloc_indices_hashlist); i++) {
      csc->reloc_indices_hashlist[i] = -1;
   }
   return true;
}

static void radeon_cs_context_cleanup(struct radeon_cs_context *csc)
{
   unsigned i;

   for (i = 0; i < csc->num_relocs; i++) {
      p_atomic_dec(&csc->relocs_bo[i].bo->num_cs_references);
      radeon_bo_reference(&csc->relocs_bo[i].bo, NULL);
   }
   for (i = 0; i < csc->num_slab_buffers; ++i) {
      p_atomic_dec(&csc->slab_buffers[i].bo->num_cs_references);
      radeon_bo_reference(&csc->slab_buffers[i].bo, NULL);
   }

   csc->num_relocs = 0;
   csc->num_validated_relocs = 0;
   csc->num_slab_buffers = 0;
   csc->chunks[0].length_dw = 0;
   csc->chunks[1].length_dw = 0;

   for (i = 0; i < ARRAY_SIZE(csc->reloc_indices_hashlist); i++) {
      csc->reloc_indices_hashlist[i] = -1;
   }
}

static void radeon_destroy_cs_context(struct radeon_cs_context *csc)
{
   radeon_cs_context_cleanup(csc);
   FREE(csc->slab_buffers);
   FREE(csc->relocs_bo);
   FREE(csc->relocs);
}


static bool
radeon_drm_cs_create(struct radeon_cmdbuf *rcs,
                     struct radeon_winsys_ctx *ctx,
                     enum ring_type ring_type,
                     void (*flush)(void *ctx, unsigned flags,
                                   struct pipe_fence_handle **fence),
                     void *flush_ctx,
                     bool stop_exec_on_failure)
{
   struct radeon_drm_winsys *ws = ((struct radeon_ctx*)ctx)->ws;
   struct radeon_drm_cs *cs;

   cs = CALLOC_STRUCT(radeon_drm_cs);
   if (!cs) {
      return false;
   }
   util_queue_fence_init(&cs->flush_completed);

   cs->ws = ws;
   cs->flush_cs = flush;
   cs->flush_data = flush_ctx;

   if (!radeon_init_cs_context(&cs->csc1, cs->ws)) {
      FREE(cs);
      return false;
   }
   if (!radeon_init_cs_context(&cs->csc2, cs->ws)) {
      radeon_destroy_cs_context(&cs->csc1);
      FREE(cs);
      return false;
   }

   /* Set the first command buffer as current. */
   cs->csc = &cs->csc1;
   cs->cst = &cs->csc2;
   cs->ring_type = ring_type;

   memset(rcs, 0, sizeof(*rcs));
   rcs->current.buf = cs->csc->buf;
   rcs->current.max_dw = ARRAY_SIZE(cs->csc->buf);
   rcs->priv = cs;

   p_atomic_inc(&ws->num_cs);
   return true;
}

int radeon_lookup_buffer(struct radeon_cs_context *csc, struct radeon_bo *bo)
{
   unsigned hash = bo->hash & (ARRAY_SIZE(csc->reloc_indices_hashlist)-1);
   struct radeon_bo_item *buffers;
   unsigned num_buffers;
   int i = csc->reloc_indices_hashlist[hash];

   if (bo->handle) {
      buffers = csc->relocs_bo;
      num_buffers = csc->num_relocs;
   } else {
      buffers = csc->slab_buffers;
      num_buffers = csc->num_slab_buffers;
   }

   /* not found or found */
   if (i == -1 || (i < num_buffers && buffers[i].bo == bo))
      return i;

   /* Hash collision, look for the BO in the list of relocs linearly. */
   for (i = num_buffers - 1; i >= 0; i--) {
      if (buffers[i].bo == bo) {
         /* Put this reloc in the hash list.
          * This will prevent additional hash collisions if there are
          * several consecutive lookup_buffer calls for the same buffer.
          *
          * Example: Assuming buffers A,B,C collide in the hash list,
          * the following sequence of relocs:
          *         AAAAAAAAAAABBBBBBBBBBBBBBCCCCCCCC
          * will collide here: ^ and here:   ^,
          * meaning that we should get very few collisions in the end. */
         csc->reloc_indices_hashlist[hash] = i;
         return i;
      }
   }
   return -1;
}

static unsigned radeon_lookup_or_add_real_buffer(struct radeon_drm_cs *cs,
                                                 struct radeon_bo *bo)
{
   struct radeon_cs_context *csc = cs->csc;
   struct drm_radeon_cs_reloc *reloc;
   unsigned hash = bo->hash & (ARRAY_SIZE(csc->reloc_indices_hashlist)-1);
   int i = -1;

   i = radeon_lookup_buffer(csc, bo);

   if (i >= 0) {
      /* For async DMA, every add_buffer call must add a buffer to the list
       * no matter how many duplicates there are. This is due to the fact
       * the DMA CS checker doesn't use NOP packets for offset patching,
       * but always uses the i-th buffer from the list to patch the i-th
       * offset. If there are N offsets in a DMA CS, there must also be N
       * buffers in the relocation list.
       *
       * This doesn't have to be done if virtual memory is enabled,
       * because there is no offset patching with virtual memory.
       */
      if (cs->ring_type != RING_DMA || cs->ws->info.r600_has_virtual_memory) {
         return i;
      }
   }

   /* New relocation, check if the backing array is large enough. */
   if (csc->num_relocs >= csc->max_relocs) {
      uint32_t size;
      csc->max_relocs = MAX2(csc->max_relocs + 16, (unsigned)(csc->max_relocs * 1.3));

      size = csc->max_relocs * sizeof(csc->relocs_bo[0]);
      csc->relocs_bo = realloc(csc->relocs_bo, size);

      size = csc->max_relocs * sizeof(struct drm_radeon_cs_reloc);
      csc->relocs = realloc(csc->relocs, size);

      csc->chunks[1].chunk_data = (uint64_t)(uintptr_t)csc->relocs;
   }

   /* Initialize the new relocation. */
   csc->relocs_bo[csc->num_relocs].bo = NULL;
   csc->relocs_bo[csc->num_relocs].u.real.priority_usage = 0;
   radeon_bo_reference(&csc->relocs_bo[csc->num_relocs].bo, bo);
   p_atomic_inc(&bo->num_cs_references);
   reloc = &csc->relocs[csc->num_relocs];
   reloc->handle = bo->handle;
   reloc->read_domains = 0;
   reloc->write_domain = 0;
   reloc->flags = 0;

   csc->reloc_indices_hashlist[hash] = csc->num_relocs;

   csc->chunks[1].length_dw += RELOC_DWORDS;

   return csc->num_relocs++;
}

static int radeon_lookup_or_add_slab_buffer(struct radeon_drm_cs *cs,
                                            struct radeon_bo *bo)
{
   struct radeon_cs_context *csc = cs->csc;
   unsigned hash;
   struct radeon_bo_item *item;
   int idx;
   int real_idx;

   idx = radeon_lookup_buffer(csc, bo);
   if (idx >= 0)
      return idx;

   real_idx = radeon_lookup_or_add_real_buffer(cs, bo->u.slab.real);

   /* Check if the backing array is large enough. */
   if (csc->num_slab_buffers >= csc->max_slab_buffers) {
      unsigned new_max = MAX2(csc->max_slab_buffers + 16,
                              (unsigned)(csc->max_slab_buffers * 1.3));
      struct radeon_bo_item *new_buffers =
            REALLOC(csc->slab_buffers,
                    csc->max_slab_buffers * sizeof(*new_buffers),
                    new_max * sizeof(*new_buffers));
      if (!new_buffers) {
         fprintf(stderr, "radeon_lookup_or_add_slab_buffer: allocation failure\n");
         return -1;
      }

      csc->max_slab_buffers = new_max;
      csc->slab_buffers = new_buffers;
   }

   /* Initialize the new relocation. */
   idx = csc->num_slab_buffers++;
   item = &csc->slab_buffers[idx];

   item->bo = NULL;
   item->u.slab.real_idx = real_idx;
   radeon_bo_reference(&item->bo, bo);
   p_atomic_inc(&bo->num_cs_references);

   hash = bo->hash & (ARRAY_SIZE(csc->reloc_indices_hashlist)-1);
   csc->reloc_indices_hashlist[hash] = idx;

   return idx;
}

static unsigned radeon_drm_cs_add_buffer(struct radeon_cmdbuf *rcs,
                                         struct pb_buffer *buf,
                                         enum radeon_bo_usage usage,
                                         enum radeon_bo_domain domains,
                                         enum radeon_bo_priority priority)
{
   struct radeon_drm_cs *cs = radeon_drm_cs(rcs);
   struct radeon_bo *bo = (struct radeon_bo*)buf;
   enum radeon_bo_domain added_domains;

   /* If VRAM is just stolen system memory, allow both VRAM and
    * GTT, whichever has free space. If a buffer is evicted from
    * VRAM to GTT, it will stay there.
    */
   if (!cs->ws->info.has_dedicated_vram)
      domains |= RADEON_DOMAIN_GTT;

   enum radeon_bo_domain rd = usage & RADEON_USAGE_READ ? domains : 0;
   enum radeon_bo_domain wd = usage & RADEON_USAGE_WRITE ? domains : 0;
   struct drm_radeon_cs_reloc *reloc;
   int index;

   if (!bo->handle) {
      index = radeon_lookup_or_add_slab_buffer(cs, bo);
      if (index < 0)
         return 0;

      index = cs->csc->slab_buffers[index].u.slab.real_idx;
   } else {
      index = radeon_lookup_or_add_real_buffer(cs, bo);
   }

   reloc = &cs->csc->relocs[index];
   added_domains = (rd | wd) & ~(reloc->read_domains | reloc->write_domain);
   reloc->read_domains |= rd;
   reloc->write_domain |= wd;
   reloc->flags = MAX2(reloc->flags, priority);
   cs->csc->relocs_bo[index].u.real.priority_usage |= 1u << priority;

   if (added_domains & RADEON_DOMAIN_VRAM)
      rcs->used_vram_kb += bo->base.size / 1024;
   else if (added_domains & RADEON_DOMAIN_GTT)
      rcs->used_gart_kb += bo->base.size / 1024;

   return index;
}

static int radeon_drm_cs_lookup_buffer(struct radeon_cmdbuf *rcs,
                                       struct pb_buffer *buf)
{
   struct radeon_drm_cs *cs = radeon_drm_cs(rcs);

   return radeon_lookup_buffer(cs->csc, (struct radeon_bo*)buf);
}

static bool radeon_drm_cs_validate(struct radeon_cmdbuf *rcs)
{
   struct radeon_drm_cs *cs = radeon_drm_cs(rcs);
   bool status =
         rcs->used_gart_kb < cs->ws->info.gart_size_kb * 0.8 &&
         rcs->used_vram_kb < cs->ws->info.vram_size_kb * 0.8;

   if (status) {
      cs->csc->num_validated_relocs = cs->csc->num_relocs;
   } else {
      /* Remove lately-added buffers. The validation failed with them
       * and the CS is about to be flushed because of that. Keep only
       * the already-validated buffers. */
      unsigned i;

      for (i = cs->csc->num_validated_relocs; i < cs->csc->num_relocs; i++) {
         p_atomic_dec(&cs->csc->relocs_bo[i].bo->num_cs_references);
         radeon_bo_reference(&cs->csc->relocs_bo[i].bo, NULL);
      }
      cs->csc->num_relocs = cs->csc->num_validated_relocs;

      /* Flush if there are any relocs. Clean up otherwise. */
      if (cs->csc->num_relocs) {
         cs->flush_cs(cs->flush_data,
                      RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
      } else {
         radeon_cs_context_cleanup(cs->csc);
         rcs->used_vram_kb = 0;
         rcs->used_gart_kb = 0;

         assert(rcs->current.cdw == 0);
         if (rcs->current.cdw != 0) {
            fprintf(stderr, "radeon: Unexpected error in %s.\n", __func__);
         }
      }
   }
   return status;
}

static bool radeon_drm_cs_check_space(struct radeon_cmdbuf *rcs, unsigned dw,
                                      bool force_chaining)
{
   assert(rcs->current.cdw <= rcs->current.max_dw);
   return rcs->current.max_dw - rcs->current.cdw >= dw;
}

static unsigned radeon_drm_cs_get_buffer_list(struct radeon_cmdbuf *rcs,
                                              struct radeon_bo_list_item *list)
{
   struct radeon_drm_cs *cs = radeon_drm_cs(rcs);
   int i;

   if (list) {
      for (i = 0; i < cs->csc->num_relocs; i++) {
         list[i].bo_size = cs->csc->relocs_bo[i].bo->base.size;
         list[i].vm_address = cs->csc->relocs_bo[i].bo->va;
         list[i].priority_usage = cs->csc->relocs_bo[i].u.real.priority_usage;
      }
   }
   return cs->csc->num_relocs;
}

void radeon_drm_cs_emit_ioctl_oneshot(void *job, int thread_index)
{
   struct radeon_cs_context *csc = ((struct radeon_drm_cs*)job)->cst;
   unsigned i;
   int r;

   r = drmCommandWriteRead(csc->fd, DRM_RADEON_CS,
                           &csc->cs, sizeof(struct drm_radeon_cs));
   if (r) {
      if (r == -ENOMEM)
         fprintf(stderr, "radeon: Not enough memory for command submission.\n");
      else if (debug_get_bool_option("RADEON_DUMP_CS", false)) {
         unsigned i;

         fprintf(stderr, "radeon: The kernel rejected CS, dumping...\n");
         for (i = 0; i < csc->chunks[0].length_dw; i++) {
            fprintf(stderr, "0x%08X\n", csc->buf[i]);
         }
      } else {
         fprintf(stderr, "radeon: The kernel rejected CS, "
                         "see dmesg for more information (%i).\n", r);
      }
   }

   for (i = 0; i < csc->num_relocs; i++)
      p_atomic_dec(&csc->relocs_bo[i].bo->num_active_ioctls);
   for (i = 0; i < csc->num_slab_buffers; i++)
      p_atomic_dec(&csc->slab_buffers[i].bo->num_active_ioctls);

   radeon_cs_context_cleanup(csc);
}

/*
 * Make sure previous submission of this cs are completed
 */
void radeon_drm_cs_sync_flush(struct radeon_cmdbuf *rcs)
{
   struct radeon_drm_cs *cs = radeon_drm_cs(rcs);

   /* Wait for any pending ioctl of this CS to complete. */
   if (util_queue_is_initialized(&cs->ws->cs_queue))
      util_queue_fence_wait(&cs->flush_completed);
}

/* Add the given fence to a slab buffer fence list.
 *
 * There is a potential race condition when bo participates in submissions on
 * two or more threads simultaneously. Since we do not know which of the
 * submissions will be sent to the GPU first, we have to keep the fences
 * of all submissions.
 *
 * However, fences that belong to submissions that have already returned from
 * their respective ioctl do not have to be kept, because we know that they
 * will signal earlier.
 */
static void radeon_bo_slab_fence(struct radeon_bo *bo, struct radeon_bo *fence)
{
   unsigned dst;

   assert(fence->num_cs_references);

   /* Cleanup older fences */
   dst = 0;
   for (unsigned src = 0; src < bo->u.slab.num_fences; ++src) {
      if (bo->u.slab.fences[src]->num_cs_references) {
         bo->u.slab.fences[dst] = bo->u.slab.fences[src];
         dst++;
      } else {
         radeon_bo_reference(&bo->u.slab.fences[src], NULL);
      }
   }
   bo->u.slab.num_fences = dst;

   /* Check available space for the new fence */
   if (bo->u.slab.num_fences >= bo->u.slab.max_fences) {
      unsigned new_max_fences = bo->u.slab.max_fences + 1;
      struct radeon_bo **new_fences = REALLOC(bo->u.slab.fences,
                                              bo->u.slab.max_fences * sizeof(*new_fences),
                                              new_max_fences * sizeof(*new_fences));
      if (!new_fences) {
         fprintf(stderr, "radeon_bo_slab_fence: allocation failure, dropping fence\n");
         return;
      }

      bo->u.slab.fences = new_fences;
      bo->u.slab.max_fences = new_max_fences;
   }

   /* Add the new fence */
   bo->u.slab.fences[bo->u.slab.num_fences] = NULL;
   radeon_bo_reference(&bo->u.slab.fences[bo->u.slab.num_fences], fence);
   bo->u.slab.num_fences++;
}

static int radeon_drm_cs_flush(struct radeon_cmdbuf *rcs,
                               unsigned flags,
                               struct pipe_fence_handle **pfence)
{
   struct radeon_drm_cs *cs = radeon_drm_cs(rcs);
   struct radeon_cs_context *tmp;

   switch (cs->ring_type) {
   case RING_DMA:
      /* pad DMA ring to 8 DWs */
      if (cs->ws->info.chip_class <= GFX6) {
         while (rcs->current.cdw & 7)
            radeon_emit(rcs, 0xf0000000); /* NOP packet */
      } else {
         while (rcs->current.cdw & 7)
            radeon_emit(rcs, 0x00000000); /* NOP packet */
      }
      break;
   case RING_GFX:
      /* pad GFX ring to 8 DWs to meet CP fetch alignment requirements
       * r6xx, requires at least 4 dw alignment to avoid a hw bug.
       */
      if (cs->ws->info.gfx_ib_pad_with_type2) {
         while (rcs->current.cdw & 7)
            radeon_emit(rcs, 0x80000000); /* type2 nop packet */
      } else {
         while (rcs->current.cdw & 7)
            radeon_emit(rcs, 0xffff1000); /* type3 nop packet */
      }
      break;
   case RING_UVD:
      while (rcs->current.cdw & 15)
         radeon_emit(rcs, 0x80000000); /* type2 nop packet */
      break;
   default:
      break;
   }

   if (rcs->current.cdw > rcs->current.max_dw) {
      fprintf(stderr, "radeon: command stream overflowed\n");
   }

   if (pfence || cs->csc->num_slab_buffers) {
      struct pipe_fence_handle *fence;

      if (cs->next_fence) {
         fence = cs->next_fence;
         cs->next_fence = NULL;
      } else {
         fence = radeon_cs_create_fence(rcs);
      }

      if (fence) {
         if (pfence)
            radeon_fence_reference(pfence, fence);

         mtx_lock(&cs->ws->bo_fence_lock);
         for (unsigned i = 0; i < cs->csc->num_slab_buffers; ++i) {
            struct radeon_bo *bo = cs->csc->slab_buffers[i].bo;
            p_atomic_inc(&bo->num_active_ioctls);
            radeon_bo_slab_fence(bo, (struct radeon_bo *)fence);
         }
         mtx_unlock(&cs->ws->bo_fence_lock);

         radeon_fence_reference(&fence, NULL);
      }
   } else {
      radeon_fence_reference(&cs->next_fence, NULL);
   }

   radeon_drm_cs_sync_flush(rcs);

   /* Swap command streams. */
   tmp = cs->csc;
   cs->csc = cs->cst;
   cs->cst = tmp;

   /* If the CS is not empty or overflowed, emit it in a separate thread. */
   if (rcs->current.cdw && rcs->current.cdw <= rcs->current.max_dw &&
       !cs->ws->noop_cs && !(flags & RADEON_FLUSH_NOOP)) {
      unsigned i, num_relocs;

      num_relocs = cs->cst->num_relocs;

      cs->cst->chunks[0].length_dw = rcs->current.cdw;

      for (i = 0; i < num_relocs; i++) {
         /* Update the number of active asynchronous CS ioctls for the buffer. */
         p_atomic_inc(&cs->cst->relocs_bo[i].bo->num_active_ioctls);
      }

      switch (cs->ring_type) {
      case RING_DMA:
         cs->cst->flags[0] = 0;
         cs->cst->flags[1] = RADEON_CS_RING_DMA;
         cs->cst->cs.num_chunks = 3;
         if (cs->ws->info.r600_has_virtual_memory) {
            cs->cst->flags[0] |= RADEON_CS_USE_VM;
         }
         break;

      case RING_UVD:
         cs->cst->flags[0] = 0;
         cs->cst->flags[1] = RADEON_CS_RING_UVD;
         cs->cst->cs.num_chunks = 3;
         break;

      case RING_VCE:
         cs->cst->flags[0] = 0;
         cs->cst->flags[1] = RADEON_CS_RING_VCE;
         cs->cst->cs.num_chunks = 3;
         break;

      default:
      case RING_GFX:
      case RING_COMPUTE:
         cs->cst->flags[0] = RADEON_CS_KEEP_TILING_FLAGS;
         cs->cst->flags[1] = RADEON_CS_RING_GFX;
         cs->cst->cs.num_chunks = 3;

         if (cs->ws->info.r600_has_virtual_memory) {
            cs->cst->flags[0] |= RADEON_CS_USE_VM;
            cs->cst->cs.num_chunks = 3;
         }
         if (flags & PIPE_FLUSH_END_OF_FRAME) {
            cs->cst->flags[0] |= RADEON_CS_END_OF_FRAME;
            cs->cst->cs.num_chunks = 3;
         }
         if (cs->ring_type == RING_COMPUTE) {
            cs->cst->flags[1] = RADEON_CS_RING_COMPUTE;
            cs->cst->cs.num_chunks = 3;
         }
         break;
      }

      if (util_queue_is_initialized(&cs->ws->cs_queue)) {
         util_queue_add_job(&cs->ws->cs_queue, cs, &cs->flush_completed,
                            radeon_drm_cs_emit_ioctl_oneshot, NULL, 0);
         if (!(flags & PIPE_FLUSH_ASYNC))
            radeon_drm_cs_sync_flush(rcs);
      } else {
         radeon_drm_cs_emit_ioctl_oneshot(cs, 0);
      }
   } else {
      radeon_cs_context_cleanup(cs->cst);
   }

   /* Prepare a new CS. */
   rcs->current.buf = cs->csc->buf;
   rcs->current.cdw = 0;
   rcs->used_vram_kb = 0;
   rcs->used_gart_kb = 0;

   if (cs->ring_type == RING_GFX)
      cs->ws->num_gfx_IBs++;
   else if (cs->ring_type == RING_DMA)
      cs->ws->num_sdma_IBs++;
   return 0;
}

static void radeon_drm_cs_destroy(struct radeon_cmdbuf *rcs)
{
   struct radeon_drm_cs *cs = radeon_drm_cs(rcs);

   if (!cs)
      return;

   radeon_drm_cs_sync_flush(rcs);
   util_queue_fence_destroy(&cs->flush_completed);
   radeon_cs_context_cleanup(&cs->csc1);
   radeon_cs_context_cleanup(&cs->csc2);
   p_atomic_dec(&cs->ws->num_cs);
   radeon_destroy_cs_context(&cs->csc1);
   radeon_destroy_cs_context(&cs->csc2);
   radeon_fence_reference(&cs->next_fence, NULL);
   FREE(cs);
}

static bool radeon_bo_is_referenced(struct radeon_cmdbuf *rcs,
                                    struct pb_buffer *_buf,
                                    enum radeon_bo_usage usage)
{
   struct radeon_drm_cs *cs = radeon_drm_cs(rcs);
   struct radeon_bo *bo = (struct radeon_bo*)_buf;
   int index;

   if (!bo->num_cs_references)
      return false;

   index = radeon_lookup_buffer(cs->csc, bo);
   if (index == -1)
      return false;

   if (!bo->handle)
      index = cs->csc->slab_buffers[index].u.slab.real_idx;

   if ((usage & RADEON_USAGE_WRITE) && cs->csc->relocs[index].write_domain)
      return true;
   if ((usage & RADEON_USAGE_READ) && cs->csc->relocs[index].read_domains)
      return true;

   return false;
}

/* FENCES */

static struct pipe_fence_handle *radeon_cs_create_fence(struct radeon_cmdbuf *rcs)
{
   struct radeon_drm_cs *cs = radeon_drm_cs(rcs);
   struct pb_buffer *fence;

   /* Create a fence, which is a dummy BO. */
   fence = cs->ws->base.buffer_create(&cs->ws->base, 1, 1,
                                      RADEON_DOMAIN_GTT,
                                      RADEON_FLAG_NO_SUBALLOC
                                      | RADEON_FLAG_NO_INTERPROCESS_SHARING);
   if (!fence)
      return NULL;

   /* Add the fence as a dummy relocation. */
   cs->ws->base.cs_add_buffer(rcs, fence,
                              RADEON_USAGE_READWRITE, RADEON_DOMAIN_GTT,
                              RADEON_PRIO_FENCE);
   return (struct pipe_fence_handle*)fence;
}

static bool radeon_fence_wait(struct radeon_winsys *ws,
                              struct pipe_fence_handle *fence,
                              uint64_t timeout)
{
   return ws->buffer_wait((struct pb_buffer*)fence, timeout,
                          RADEON_USAGE_READWRITE);
}

static void radeon_fence_reference(struct pipe_fence_handle **dst,
                                   struct pipe_fence_handle *src)
{
   pb_reference((struct pb_buffer**)dst, (struct pb_buffer*)src);
}

static struct pipe_fence_handle *radeon_drm_cs_get_next_fence(struct radeon_cmdbuf *rcs)
{
   struct radeon_drm_cs *cs = radeon_drm_cs(rcs);
   struct pipe_fence_handle *fence = NULL;

   if (cs->next_fence) {
      radeon_fence_reference(&fence, cs->next_fence);
      return fence;
   }

   fence = radeon_cs_create_fence(rcs);
   if (!fence)
      return NULL;

   radeon_fence_reference(&cs->next_fence, fence);
   return fence;
}

static void
radeon_drm_cs_add_fence_dependency(struct radeon_cmdbuf *cs,
                                   struct pipe_fence_handle *fence,
                                   unsigned dependency_flags)
{
   /* TODO: Handle the following unlikely multi-threaded scenario:
    *
    *  Thread 1 / Context 1                   Thread 2 / Context 2
    *  --------------------                   --------------------
    *  f = cs_get_next_fence()
    *                                         cs_add_fence_dependency(f)
    *                                         cs_flush()
    *  cs_flush()
    *
    * We currently assume that this does not happen because we don't support
    * asynchronous flushes on Radeon.
    */
}

void radeon_drm_cs_init_functions(struct radeon_drm_winsys *ws)
{
   ws->base.ctx_create = radeon_drm_ctx_create;
   ws->base.ctx_destroy = radeon_drm_ctx_destroy;
   ws->base.ctx_query_reset_status = radeon_drm_ctx_query_reset_status;
   ws->base.cs_create = radeon_drm_cs_create;
   ws->base.cs_destroy = radeon_drm_cs_destroy;
   ws->base.cs_add_buffer = radeon_drm_cs_add_buffer;
   ws->base.cs_lookup_buffer = radeon_drm_cs_lookup_buffer;
   ws->base.cs_validate = radeon_drm_cs_validate;
   ws->base.cs_check_space = radeon_drm_cs_check_space;
   ws->base.cs_get_buffer_list = radeon_drm_cs_get_buffer_list;
   ws->base.cs_flush = radeon_drm_cs_flush;
   ws->base.cs_get_next_fence = radeon_drm_cs_get_next_fence;
   ws->base.cs_is_buffer_referenced = radeon_bo_is_referenced;
   ws->base.cs_sync_flush = radeon_drm_cs_sync_flush;
   ws->base.cs_add_fence_dependency = radeon_drm_cs_add_fence_dependency;
   ws->base.fence_wait = radeon_fence_wait;
   ws->base.fence_reference = radeon_fence_reference;
}