summaryrefslogtreecommitdiff
path: root/src/gallium/drivers/radeonsi/si_state_viewport.c
blob: 0327d2f5d15f12377742e6b3bff78973f614cb76 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
/*
 * Copyright 2012 Advanced Micro Devices, Inc.
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * on the rights to use, copy, modify, merge, publish, distribute, sub
 * license, and/or sell copies of the Software, and to permit persons to whom
 * the Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

#include "si_build_pm4.h"
#include "util/u_upload_mgr.h"
#include "util/u_viewport.h"

#define SI_MAX_SCISSOR 16384

void si_get_small_prim_cull_info(struct si_context *sctx, struct si_small_prim_cull_info *out)
{
   /* This is needed by the small primitive culling, because it's done
    * in screen space.
    */
   struct si_small_prim_cull_info info;
   unsigned num_samples = si_get_num_coverage_samples(sctx);
   assert(num_samples >= 1);

   info.scale[0] = sctx->viewports.states[0].scale[0];
   info.scale[1] = sctx->viewports.states[0].scale[1];
   info.translate[0] = sctx->viewports.states[0].translate[0];
   info.translate[1] = sctx->viewports.states[0].translate[1];

   /* The viewport shouldn't flip the X axis for the small prim culling to work. */
   assert(-info.scale[0] + info.translate[0] <= info.scale[0] + info.translate[0]);

   /* If the Y axis is inverted (OpenGL default framebuffer), reverse it.
    * This is because the viewport transformation inverts the clip space
    * bounding box, so min becomes max, which breaks small primitive
    * culling.
    */
   if (sctx->viewports.y_inverted) {
      info.scale[1] = -info.scale[1];
      info.translate[1] = -info.translate[1];
   }

   /* Scale the framebuffer up, so that samples become pixels and small
    * primitive culling is the same for all sample counts.
    * This only works with the standard DX sample positions, because
    * the samples are evenly spaced on both X and Y axes.
    */
   for (unsigned i = 0; i < 2; i++) {
      info.scale[i] *= num_samples;
      info.translate[i] *= num_samples;
   }

   /* Better subpixel precision increases the efficiency of small
    * primitive culling. (more precision means a tighter bounding box
    * around primitives and more accurate elimination)
    */
   unsigned quant_mode = sctx->viewports.as_scissor[0].quant_mode;

   if (quant_mode == SI_QUANT_MODE_12_12_FIXED_POINT_1_4096TH)
      info.small_prim_precision = num_samples / 4096.0;
   else if (quant_mode == SI_QUANT_MODE_14_10_FIXED_POINT_1_1024TH)
      info.small_prim_precision = num_samples / 1024.0;
   else
      info.small_prim_precision = num_samples / 256.0;

   *out = info;
}

static void si_emit_cull_state(struct si_context *sctx)
{
   assert(sctx->screen->use_ngg_culling);

   struct si_small_prim_cull_info info;
   si_get_small_prim_cull_info(sctx, &info);

   if (!sctx->small_prim_cull_info_buf ||
       memcmp(&info, &sctx->last_small_prim_cull_info, sizeof(info))) {
      unsigned offset = 0;

      /* Align to 256, because the address is shifted by 8 bits. */
      u_upload_data(sctx->b.const_uploader, 0, sizeof(info), 256, &info, &offset,
                    (struct pipe_resource **)&sctx->small_prim_cull_info_buf);

      sctx->small_prim_cull_info_address = sctx->small_prim_cull_info_buf->gpu_address + offset;
      sctx->last_small_prim_cull_info = info;
   }

   /* This will end up in SGPR6 as (value << 8), shifted by the hw. */
   radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, sctx->small_prim_cull_info_buf,
                             RADEON_USAGE_READ, RADEON_PRIO_CONST_BUFFER);
   radeon_begin(&sctx->gfx_cs);
   radeon_set_sh_reg(&sctx->gfx_cs, R_00B220_SPI_SHADER_PGM_LO_GS,
                     sctx->small_prim_cull_info_address >> 8);
   radeon_end();

   /* Set VS_STATE.SMALL_PRIM_PRECISION for NGG culling.
    *
    * small_prim_precision is 1 / 2^n. We only need n between 5 (1/32) and 12 (1/4096).
    * Such a floating point value can be packed into 4 bits as follows:
    * If we pass the first 4 bits of the exponent to the shader and set the next 3 bits
    * to 1, we'll get the number exactly because all other bits are always 0. See:
    *                                                               1
    * value  =  (0x70 | value.exponent[0:3]) << 23  =  ------------------------------
    *                                                  2 ^ (15 - value.exponent[0:3])
    *
    * So pass only the first 4 bits of the float exponent to the shader.
    */
   sctx->current_vs_state &= C_VS_STATE_SMALL_PRIM_PRECISION;
   sctx->current_vs_state |= S_VS_STATE_SMALL_PRIM_PRECISION(fui(info.small_prim_precision) >> 23);
}

static void si_set_scissor_states(struct pipe_context *pctx, unsigned start_slot,
                                  unsigned num_scissors, const struct pipe_scissor_state *state)
{
   struct si_context *ctx = (struct si_context *)pctx;
   int i;

   for (i = 0; i < num_scissors; i++)
      ctx->scissors[start_slot + i] = state[i];

   if (!ctx->queued.named.rasterizer->scissor_enable)
      return;

   si_mark_atom_dirty(ctx, &ctx->atoms.s.scissors);
}

/* Since the guard band disables clipping, we have to clip per-pixel
 * using a scissor.
 */
static void si_get_scissor_from_viewport(struct si_context *ctx,
                                         const struct pipe_viewport_state *vp,
                                         struct si_signed_scissor *scissor)
{
   float tmp, minx, miny, maxx, maxy;

   /* Convert (-1, -1) and (1, 1) from clip space into window space. */
   minx = -vp->scale[0] + vp->translate[0];
   miny = -vp->scale[1] + vp->translate[1];
   maxx = vp->scale[0] + vp->translate[0];
   maxy = vp->scale[1] + vp->translate[1];

   /* Handle inverted viewports. */
   if (minx > maxx) {
      tmp = minx;
      minx = maxx;
      maxx = tmp;
   }
   if (miny > maxy) {
      tmp = miny;
      miny = maxy;
      maxy = tmp;
   }

   /* Convert to integer and round up the max bounds. */
   scissor->minx = minx;
   scissor->miny = miny;
   scissor->maxx = ceilf(maxx);
   scissor->maxy = ceilf(maxy);
}

static void si_clamp_scissor(struct si_context *ctx, struct pipe_scissor_state *out,
                             struct si_signed_scissor *scissor)
{
   out->minx = CLAMP(scissor->minx, 0, SI_MAX_SCISSOR);
   out->miny = CLAMP(scissor->miny, 0, SI_MAX_SCISSOR);
   out->maxx = CLAMP(scissor->maxx, 0, SI_MAX_SCISSOR);
   out->maxy = CLAMP(scissor->maxy, 0, SI_MAX_SCISSOR);
}

static void si_clip_scissor(struct pipe_scissor_state *out, struct pipe_scissor_state *clip)
{
   out->minx = MAX2(out->minx, clip->minx);
   out->miny = MAX2(out->miny, clip->miny);
   out->maxx = MIN2(out->maxx, clip->maxx);
   out->maxy = MIN2(out->maxy, clip->maxy);
}

static void si_scissor_make_union(struct si_signed_scissor *out, struct si_signed_scissor *in)
{
   out->minx = MIN2(out->minx, in->minx);
   out->miny = MIN2(out->miny, in->miny);
   out->maxx = MAX2(out->maxx, in->maxx);
   out->maxy = MAX2(out->maxy, in->maxy);
   out->quant_mode = MIN2(out->quant_mode, in->quant_mode);
}

static void si_emit_one_scissor(struct si_context *ctx, struct radeon_cmdbuf *cs,
                                struct si_signed_scissor *vp_scissor,
                                struct pipe_scissor_state *scissor)
{
   struct pipe_scissor_state final;

   if (ctx->vs_disables_clipping_viewport) {
      final.minx = final.miny = 0;
      final.maxx = final.maxy = SI_MAX_SCISSOR;
   } else {
      si_clamp_scissor(ctx, &final, vp_scissor);
   }

   if (scissor)
      si_clip_scissor(&final, scissor);

   radeon_begin(cs);

   /* Workaround for a hw bug on GFX6 that occurs when PA_SU_HARDWARE_-
    * SCREEN_OFFSET != 0 and any_scissor.BR_X/Y <= 0.
    */
   if (ctx->chip_class == GFX6 && (final.maxx == 0 || final.maxy == 0)) {
      radeon_emit(cs, S_028250_TL_X(1) | S_028250_TL_Y(1) | S_028250_WINDOW_OFFSET_DISABLE(1));
      radeon_emit(cs, S_028254_BR_X(1) | S_028254_BR_Y(1));
      radeon_end();
      return;
   }

   radeon_emit(cs, S_028250_TL_X(final.minx) | S_028250_TL_Y(final.miny) |
                      S_028250_WINDOW_OFFSET_DISABLE(1));
   radeon_emit(cs, S_028254_BR_X(final.maxx) | S_028254_BR_Y(final.maxy));
   radeon_end();
}

#define MAX_PA_SU_HARDWARE_SCREEN_OFFSET 8176

static void si_emit_guardband(struct si_context *ctx)
{
   const struct si_state_rasterizer *rs = ctx->queued.named.rasterizer;
   struct si_signed_scissor vp_as_scissor;
   struct pipe_viewport_state vp;
   float left, top, right, bottom, max_range, guardband_x, guardband_y;
   float discard_x, discard_y;

   if (ctx->vs_writes_viewport_index) {
      /* Shaders can draw to any viewport. Make a union of all
       * viewports. */
      vp_as_scissor = ctx->viewports.as_scissor[0];
      for (unsigned i = 1; i < SI_MAX_VIEWPORTS; i++) {
         si_scissor_make_union(&vp_as_scissor, &ctx->viewports.as_scissor[i]);
      }
   } else {
      vp_as_scissor = ctx->viewports.as_scissor[0];
   }

   /* Blits don't set the viewport state. The vertex shader determines
    * the viewport size by scaling the coordinates, so we don't know
    * how large the viewport is. Assume the worst case.
    */
   if (ctx->vs_disables_clipping_viewport)
      vp_as_scissor.quant_mode = SI_QUANT_MODE_16_8_FIXED_POINT_1_256TH;

   /* Determine the optimal hardware screen offset to center the viewport
    * within the viewport range in order to maximize the guardband size.
    */
   int hw_screen_offset_x = (vp_as_scissor.maxx + vp_as_scissor.minx) / 2;
   int hw_screen_offset_y = (vp_as_scissor.maxy + vp_as_scissor.miny) / 2;

   /* GFX6-GFX7 need to align the offset to an ubertile consisting of all SEs. */
   const unsigned hw_screen_offset_alignment =
      ctx->chip_class >= GFX8 ? 16 : MAX2(ctx->screen->se_tile_repeat, 16);

   /* Indexed by quantization modes */
   static int max_viewport_size[] = {65535, 16383, 4095};

   /* Ensure that the whole viewport stays representable in
    * absolute coordinates.
    * See comment in si_set_viewport_states.
    */
   assert(vp_as_scissor.maxx <= max_viewport_size[vp_as_scissor.quant_mode] &&
          vp_as_scissor.maxy <= max_viewport_size[vp_as_scissor.quant_mode]);

   hw_screen_offset_x = CLAMP(hw_screen_offset_x, 0, MAX_PA_SU_HARDWARE_SCREEN_OFFSET);
   hw_screen_offset_y = CLAMP(hw_screen_offset_y, 0, MAX_PA_SU_HARDWARE_SCREEN_OFFSET);

   /* Align the screen offset by dropping the low bits. */
   hw_screen_offset_x &= ~(hw_screen_offset_alignment - 1);
   hw_screen_offset_y &= ~(hw_screen_offset_alignment - 1);

   /* Apply the offset to center the viewport and maximize the guardband. */
   vp_as_scissor.minx -= hw_screen_offset_x;
   vp_as_scissor.maxx -= hw_screen_offset_x;
   vp_as_scissor.miny -= hw_screen_offset_y;
   vp_as_scissor.maxy -= hw_screen_offset_y;

   /* Reconstruct the viewport transformation from the scissor. */
   vp.translate[0] = (vp_as_scissor.minx + vp_as_scissor.maxx) / 2.0;
   vp.translate[1] = (vp_as_scissor.miny + vp_as_scissor.maxy) / 2.0;
   vp.scale[0] = vp_as_scissor.maxx - vp.translate[0];
   vp.scale[1] = vp_as_scissor.maxy - vp.translate[1];

   /* Treat a 0x0 viewport as 1x1 to prevent division by zero. */
   if (vp_as_scissor.minx == vp_as_scissor.maxx)
      vp.scale[0] = 0.5;
   if (vp_as_scissor.miny == vp_as_scissor.maxy)
      vp.scale[1] = 0.5;

   /* Find the biggest guard band that is inside the supported viewport
    * range. The guard band is specified as a horizontal and vertical
    * distance from (0,0) in clip space.
    *
    * This is done by applying the inverse viewport transformation
    * on the viewport limits to get those limits in clip space.
    *
    * The viewport range is [-max_viewport_size/2 - 1, max_viewport_size/2].
    * (-1 to the min coord because max_viewport_size is odd and ViewportBounds
    * Min/Max are -32768, 32767).
    */
   assert(vp_as_scissor.quant_mode < ARRAY_SIZE(max_viewport_size));
   max_range = max_viewport_size[vp_as_scissor.quant_mode] / 2;
   left = (-max_range - 1 - vp.translate[0]) / vp.scale[0];
   right = (max_range - vp.translate[0]) / vp.scale[0];
   top = (-max_range - 1 - vp.translate[1]) / vp.scale[1];
   bottom = (max_range - vp.translate[1]) / vp.scale[1];

   assert(left <= -1 && top <= -1 && right >= 1 && bottom >= 1);

   guardband_x = MIN2(-left, right);
   guardband_y = MIN2(-top, bottom);

   discard_x = 1.0;
   discard_y = 1.0;

   if (unlikely(util_prim_is_points_or_lines(ctx->current_rast_prim))) {
      /* When rendering wide points or lines, we need to be more
       * conservative about when to discard them entirely. */
      float pixels;

      if (ctx->current_rast_prim == PIPE_PRIM_POINTS)
         pixels = rs->max_point_size;
      else
         pixels = rs->line_width;

      /* Add half the point size / line width */
      discard_x += pixels / (2.0 * vp.scale[0]);
      discard_y += pixels / (2.0 * vp.scale[1]);

      /* Discard primitives that would lie entirely outside the clip
       * region. */
      discard_x = MIN2(discard_x, guardband_x);
      discard_y = MIN2(discard_y, guardband_y);
   }

   /* If any of the GB registers is updated, all of them must be updated.
    * R_028BE8_PA_CL_GB_VERT_CLIP_ADJ, R_028BEC_PA_CL_GB_VERT_DISC_ADJ
    * R_028BF0_PA_CL_GB_HORZ_CLIP_ADJ, R_028BF4_PA_CL_GB_HORZ_DISC_ADJ
    */
   radeon_begin(&ctx->gfx_cs);
   radeon_opt_set_context_reg4(ctx, R_028BE8_PA_CL_GB_VERT_CLIP_ADJ,
                               SI_TRACKED_PA_CL_GB_VERT_CLIP_ADJ, fui(guardband_y), fui(discard_y),
                               fui(guardband_x), fui(discard_x));
   radeon_opt_set_context_reg(ctx, R_028234_PA_SU_HARDWARE_SCREEN_OFFSET,
                              SI_TRACKED_PA_SU_HARDWARE_SCREEN_OFFSET,
                              S_028234_HW_SCREEN_OFFSET_X(hw_screen_offset_x >> 4) |
                                 S_028234_HW_SCREEN_OFFSET_Y(hw_screen_offset_y >> 4));
   radeon_opt_set_context_reg(
      ctx, R_028BE4_PA_SU_VTX_CNTL, SI_TRACKED_PA_SU_VTX_CNTL,
      S_028BE4_PIX_CENTER(rs->half_pixel_center) |
         S_028BE4_QUANT_MODE(V_028BE4_X_16_8_FIXED_POINT_1_256TH + vp_as_scissor.quant_mode));
   radeon_end_update_context_roll(ctx);
}

static void si_emit_scissors(struct si_context *ctx)
{
   struct radeon_cmdbuf *cs = &ctx->gfx_cs;
   struct pipe_scissor_state *states = ctx->scissors;
   bool scissor_enabled = ctx->queued.named.rasterizer->scissor_enable;

   /* The simple case: Only 1 viewport is active. */
   if (!ctx->vs_writes_viewport_index) {
      struct si_signed_scissor *vp = &ctx->viewports.as_scissor[0];

      radeon_begin(cs);
      radeon_set_context_reg_seq(cs, R_028250_PA_SC_VPORT_SCISSOR_0_TL, 2);
      radeon_end();

      si_emit_one_scissor(ctx, cs, vp, scissor_enabled ? &states[0] : NULL);
      return;
   }

   /* All registers in the array need to be updated if any of them is changed.
    * This is a hardware requirement.
    */
   radeon_begin(cs);
   radeon_set_context_reg_seq(cs, R_028250_PA_SC_VPORT_SCISSOR_0_TL, SI_MAX_VIEWPORTS * 2);
   radeon_end();

   for (unsigned i = 0; i < SI_MAX_VIEWPORTS; i++) {
      si_emit_one_scissor(ctx, cs, &ctx->viewports.as_scissor[i],
                          scissor_enabled ? &states[i] : NULL);
   }
}

static void si_set_viewport_states(struct pipe_context *pctx, unsigned start_slot,
                                   unsigned num_viewports, const struct pipe_viewport_state *state)
{
   struct si_context *ctx = (struct si_context *)pctx;
   int i;

   for (i = 0; i < num_viewports; i++) {
      unsigned index = start_slot + i;
      struct si_signed_scissor *scissor = &ctx->viewports.as_scissor[index];

      ctx->viewports.states[index] = state[i];

      si_get_scissor_from_viewport(ctx, &state[i], scissor);

      unsigned w = scissor->maxx - scissor->minx;
      unsigned h = scissor->maxy - scissor->miny;
      unsigned max_extent = MAX2(w, h);

      int max_corner = MAX2(
         MAX2(abs(scissor->maxx), abs(scissor->maxy)),
         MAX2(abs(scissor->minx), abs(scissor->miny)));

      unsigned center_x = (scissor->maxx + scissor->minx) / 2;
      unsigned center_y = (scissor->maxy + scissor->miny) / 2;
      unsigned max_center = MAX2(center_x, center_y);

      /* PA_SU_HARDWARE_SCREEN_OFFSET can't center viewports whose
       * center start farther than MAX_PA_SU_HARDWARE_SCREEN_OFFSET.
       * (for example, a 1x1 viewport in the lower right corner of
       * 16Kx16K) Such viewports need a greater guardband, so they
       * have to use a worse quantization mode.
       */
      unsigned distance_off_center = MAX2(0, (int)max_center - MAX_PA_SU_HARDWARE_SCREEN_OFFSET);
      max_extent += distance_off_center;

      /* Determine the best quantization mode (subpixel precision),
       * but also leave enough space for the guardband.
       *
       * Note that primitive binning requires QUANT_MODE == 16_8 on Vega10
       * and Raven1 for line and rectangle primitive types to work correctly.
       * Always use 16_8 if primitive binning is possible to occur.
       */
      if ((ctx->family == CHIP_VEGA10 || ctx->family == CHIP_RAVEN) && ctx->screen->dpbb_allowed)
         max_extent = 16384; /* Use QUANT_MODE == 16_8. */

      /* Another constraint is that all coordinates in the viewport
       * are representable in fixed point with respect to the
       * surface origin.
       *
       * It means that PA_SU_HARDWARE_SCREEN_OFFSET can't be given
       * an offset that would make the upper corner of the viewport
       * greater than the maximum representable number post
       * quantization, ie 2^quant_bits.
       *
       * This does not matter for 14.10 and 16.8 formats since the
       * offset is already limited at 8k, but it means we can't use
       * 12.12 if we are drawing to some pixels outside the lower
       * 4k x 4k of the render target.
       */

      if (max_extent <= 1024 && max_corner < (1 << 12)) /* 4K scanline area for guardband */
         scissor->quant_mode = SI_QUANT_MODE_12_12_FIXED_POINT_1_4096TH;
      else if (max_extent <= 4096 && max_corner < (1 << 14)) /* 16K scanline area for guardband */
         scissor->quant_mode = SI_QUANT_MODE_14_10_FIXED_POINT_1_1024TH;
      else /* 64K scanline area for guardband */
         scissor->quant_mode = SI_QUANT_MODE_16_8_FIXED_POINT_1_256TH;
   }

   if (start_slot == 0) {
      ctx->viewports.y_inverted =
         -state->scale[1] + state->translate[1] > state->scale[1] + state->translate[1];

      /* NGG cull state uses the viewport and quant mode. */
      if (ctx->screen->use_ngg_culling)
         si_mark_atom_dirty(ctx, &ctx->atoms.s.ngg_cull_state);
   }

   si_mark_atom_dirty(ctx, &ctx->atoms.s.viewports);
   si_mark_atom_dirty(ctx, &ctx->atoms.s.guardband);
   si_mark_atom_dirty(ctx, &ctx->atoms.s.scissors);
}

static void si_emit_one_viewport(struct si_context *ctx, struct pipe_viewport_state *state)
{
   struct radeon_cmdbuf *cs = &ctx->gfx_cs;

   radeon_begin(cs);
   radeon_emit(cs, fui(state->scale[0]));
   radeon_emit(cs, fui(state->translate[0]));
   radeon_emit(cs, fui(state->scale[1]));
   radeon_emit(cs, fui(state->translate[1]));
   radeon_emit(cs, fui(state->scale[2]));
   radeon_emit(cs, fui(state->translate[2]));
   radeon_end();
}

static void si_emit_viewports(struct si_context *ctx)
{
   struct radeon_cmdbuf *cs = &ctx->gfx_cs;
   struct pipe_viewport_state *states = ctx->viewports.states;

   /* The simple case: Only 1 viewport is active. */
   if (!ctx->vs_writes_viewport_index) {
      radeon_begin(cs);
      radeon_set_context_reg_seq(cs, R_02843C_PA_CL_VPORT_XSCALE, 6);
      radeon_end();

      si_emit_one_viewport(ctx, &states[0]);
      return;
   }

   /* All registers in the array need to be updated if any of them is changed.
    * This is a hardware requirement.
    */
   radeon_begin(cs);
   radeon_set_context_reg_seq(cs, R_02843C_PA_CL_VPORT_XSCALE + 0, SI_MAX_VIEWPORTS * 6);
   radeon_end();

   for (unsigned i = 0; i < SI_MAX_VIEWPORTS; i++)
      si_emit_one_viewport(ctx, &states[i]);
}

static inline void si_viewport_zmin_zmax(const struct pipe_viewport_state *vp, bool halfz,
                                         bool window_space_position, float *zmin, float *zmax)
{
   if (window_space_position) {
      *zmin = 0;
      *zmax = 1;
      return;
   }
   util_viewport_zmin_zmax(vp, halfz, zmin, zmax);
}

static void si_emit_depth_ranges(struct si_context *ctx)
{
   struct radeon_cmdbuf *cs = &ctx->gfx_cs;
   struct pipe_viewport_state *states = ctx->viewports.states;
   bool clip_halfz = ctx->queued.named.rasterizer->clip_halfz;
   bool window_space = ctx->vs_disables_clipping_viewport;
   float zmin, zmax;

   /* The simple case: Only 1 viewport is active. */
   if (!ctx->vs_writes_viewport_index) {
      si_viewport_zmin_zmax(&states[0], clip_halfz, window_space, &zmin, &zmax);

      radeon_begin(cs);
      radeon_set_context_reg_seq(cs, R_0282D0_PA_SC_VPORT_ZMIN_0, 2);
      radeon_emit(cs, fui(zmin));
      radeon_emit(cs, fui(zmax));
      radeon_end();
      return;
   }

   /* All registers in the array need to be updated if any of them is changed.
    * This is a hardware requirement.
    */
   radeon_begin(cs);
   radeon_set_context_reg_seq(cs, R_0282D0_PA_SC_VPORT_ZMIN_0, SI_MAX_VIEWPORTS * 2);
   for (unsigned i = 0; i < SI_MAX_VIEWPORTS; i++) {
      si_viewport_zmin_zmax(&states[i], clip_halfz, window_space, &zmin, &zmax);
      radeon_emit(cs, fui(zmin));
      radeon_emit(cs, fui(zmax));
   }
   radeon_end();
}

static void si_emit_viewport_states(struct si_context *ctx)
{
   si_emit_viewports(ctx);
   si_emit_depth_ranges(ctx);
}

/**
 * This reacts to 2 state changes:
 * - VS.writes_viewport_index
 * - VS output position in window space (enable/disable)
 *
 * Normally, we only emit 1 viewport and 1 scissor if no shader is using
 * the VIEWPORT_INDEX output, and emitting the other viewports and scissors
 * is delayed. When a shader with VIEWPORT_INDEX appears, this should be
 * called to emit the rest.
 */
void si_update_vs_viewport_state(struct si_context *ctx)
{
   struct si_shader_info *info = si_get_vs_info(ctx);
   bool vs_window_space;

   if (!info)
      return;

   /* When the VS disables clipping and viewport transformation. */
   vs_window_space = info->stage == MESA_SHADER_VERTEX && info->base.vs.window_space_position;

   if (ctx->vs_disables_clipping_viewport != vs_window_space) {
      ctx->vs_disables_clipping_viewport = vs_window_space;
      si_mark_atom_dirty(ctx, &ctx->atoms.s.scissors);
      si_mark_atom_dirty(ctx, &ctx->atoms.s.viewports);
   }

   /* Viewport index handling. */
   if (ctx->vs_writes_viewport_index == info->writes_viewport_index)
      return;

   /* This changes how the guardband is computed. */
   ctx->vs_writes_viewport_index = info->writes_viewport_index;
   si_mark_atom_dirty(ctx, &ctx->atoms.s.guardband);

   /* Emit scissors and viewports that were enabled by having
    * the ViewportIndex output.
    */
   if (info->writes_viewport_index) {
      si_mark_atom_dirty(ctx, &ctx->atoms.s.scissors);
      si_mark_atom_dirty(ctx, &ctx->atoms.s.viewports);
   }
}

static void si_emit_window_rectangles(struct si_context *sctx)
{
   /* There are four clipping rectangles. Their corner coordinates are inclusive.
    * Every pixel is assigned a number from 0 and 15 by setting bits 0-3 depending
    * on whether the pixel is inside cliprects 0-3, respectively. For example,
    * if a pixel is inside cliprects 0 and 1, but outside 2 and 3, it is assigned
    * the number 3 (binary 0011).
    *
    * If CLIPRECT_RULE & (1 << number), the pixel is rasterized.
    */
   struct radeon_cmdbuf *cs = &sctx->gfx_cs;
   static const unsigned outside[4] = {
      /* outside rectangle 0 */
      V_02820C_OUT | V_02820C_IN_1 | V_02820C_IN_2 | V_02820C_IN_21 | V_02820C_IN_3 |
         V_02820C_IN_31 | V_02820C_IN_32 | V_02820C_IN_321,
      /* outside rectangles 0, 1 */
      V_02820C_OUT | V_02820C_IN_2 | V_02820C_IN_3 | V_02820C_IN_32,
      /* outside rectangles 0, 1, 2 */
      V_02820C_OUT | V_02820C_IN_3,
      /* outside rectangles 0, 1, 2, 3 */
      V_02820C_OUT,
   };
   const unsigned disabled = 0xffff; /* all inside and outside cases */
   unsigned num_rectangles = sctx->num_window_rectangles;
   struct pipe_scissor_state *rects = sctx->window_rectangles;
   unsigned rule;

   assert(num_rectangles <= 4);

   if (num_rectangles == 0)
      rule = disabled;
   else if (sctx->window_rectangles_include)
      rule = ~outside[num_rectangles - 1];
   else
      rule = outside[num_rectangles - 1];

   radeon_begin(cs);
   radeon_opt_set_context_reg(sctx, R_02820C_PA_SC_CLIPRECT_RULE, SI_TRACKED_PA_SC_CLIPRECT_RULE,
                              rule);
   if (num_rectangles == 0) {
      radeon_end();
      return;
   }

   radeon_set_context_reg_seq(cs, R_028210_PA_SC_CLIPRECT_0_TL, num_rectangles * 2);
   for (unsigned i = 0; i < num_rectangles; i++) {
      radeon_emit(cs, S_028210_TL_X(rects[i].minx) | S_028210_TL_Y(rects[i].miny));
      radeon_emit(cs, S_028214_BR_X(rects[i].maxx) | S_028214_BR_Y(rects[i].maxy));
   }
   radeon_end();
}

static void si_set_window_rectangles(struct pipe_context *ctx, bool include,
                                     unsigned num_rectangles,
                                     const struct pipe_scissor_state *rects)
{
   struct si_context *sctx = (struct si_context *)ctx;

   sctx->num_window_rectangles = num_rectangles;
   sctx->window_rectangles_include = include;
   if (num_rectangles) {
      memcpy(sctx->window_rectangles, rects, sizeof(*rects) * num_rectangles);
   }

   si_mark_atom_dirty(sctx, &sctx->atoms.s.window_rectangles);
}

void si_init_viewport_functions(struct si_context *ctx)
{
   ctx->atoms.s.guardband.emit = si_emit_guardband;
   ctx->atoms.s.scissors.emit = si_emit_scissors;
   ctx->atoms.s.viewports.emit = si_emit_viewport_states;
   ctx->atoms.s.window_rectangles.emit = si_emit_window_rectangles;
   ctx->atoms.s.ngg_cull_state.emit = si_emit_cull_state;

   ctx->b.set_scissor_states = si_set_scissor_states;
   ctx->b.set_viewport_states = si_set_viewport_states;
   ctx->b.set_window_rectangles = si_set_window_rectangles;

   for (unsigned i = 0; i < 16; i++)
      ctx->viewports.as_scissor[i].quant_mode = SI_QUANT_MODE_16_8_FIXED_POINT_1_256TH;
}