summaryrefslogtreecommitdiff
path: root/src/gallium/drivers/radeonsi/si_cp_dma.c
blob: e83016fc53198bc0540c57afd805025ca025977a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
/*
 * Copyright 2013 Advanced Micro Devices, Inc.
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * on the rights to use, copy, modify, merge, publish, distribute, sub
 * license, and/or sell copies of the Software, and to permit persons to whom
 * the Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

#include "si_pipe.h"
#include "sid.h"

/* Set this if you want the ME to wait until CP DMA is done.
 * It should be set on the last CP DMA packet. */
#define CP_DMA_SYNC		(1 << 0)

/* Set this if the source data was used as a destination in a previous CP DMA
 * packet. It's for preventing a read-after-write (RAW) hazard between two
 * CP DMA packets. */
#define CP_DMA_RAW_WAIT		(1 << 1)
#define CP_DMA_DST_IS_GDS	(1 << 2)
#define CP_DMA_CLEAR		(1 << 3)
#define CP_DMA_PFP_SYNC_ME	(1 << 4)
#define CP_DMA_SRC_IS_GDS	(1 << 5)

/* The max number of bytes that can be copied per packet. */
static inline unsigned cp_dma_max_byte_count(struct si_context *sctx)
{
	unsigned max = sctx->chip_class >= GFX9 ?
			       S_414_BYTE_COUNT_GFX9(~0u) :
			       S_414_BYTE_COUNT_GFX6(~0u);

	/* make it aligned for optimal performance */
	return max & ~(SI_CPDMA_ALIGNMENT - 1);
}


/* Emit a CP DMA packet to do a copy from one buffer to another, or to clear
 * a buffer. The size must fit in bits [20:0]. If CP_DMA_CLEAR is set, src_va is a 32-bit
 * clear value.
 */
static void si_emit_cp_dma(struct si_context *sctx, struct radeon_cmdbuf *cs,
			   uint64_t dst_va, uint64_t src_va, unsigned size,
			   unsigned flags, enum si_cache_policy cache_policy)
{
	uint32_t header = 0, command = 0;

	assert(size <= cp_dma_max_byte_count(sctx));
	assert(sctx->chip_class != GFX6 || cache_policy == L2_BYPASS);

	if (sctx->chip_class >= GFX9)
		command |= S_414_BYTE_COUNT_GFX9(size);
	else
		command |= S_414_BYTE_COUNT_GFX6(size);

	/* Sync flags. */
	if (flags & CP_DMA_SYNC)
		header |= S_411_CP_SYNC(1);
	else {
		if (sctx->chip_class >= GFX9)
			command |= S_414_DISABLE_WR_CONFIRM_GFX9(1);
		else
			command |= S_414_DISABLE_WR_CONFIRM_GFX6(1);
	}

	if (flags & CP_DMA_RAW_WAIT)
		command |= S_414_RAW_WAIT(1);

	/* Src and dst flags. */
	if (sctx->chip_class >= GFX9 && !(flags & CP_DMA_CLEAR) &&
	    src_va == dst_va) {
		header |= S_411_DST_SEL(V_411_NOWHERE); /* prefetch only */
	} else if (flags & CP_DMA_DST_IS_GDS) {
		header |= S_411_DST_SEL(V_411_GDS);
		/* GDS increments the address, not CP. */
		command |= S_414_DAS(V_414_REGISTER) |
			   S_414_DAIC(V_414_NO_INCREMENT);
	} else if (sctx->chip_class >= GFX7 && cache_policy != L2_BYPASS) {
		header |= S_411_DST_SEL(V_411_DST_ADDR_TC_L2) |
			  S_500_DST_CACHE_POLICY(cache_policy == L2_STREAM);
	}

	if (flags & CP_DMA_CLEAR) {
		header |= S_411_SRC_SEL(V_411_DATA);
	} else if (flags & CP_DMA_SRC_IS_GDS) {
		header |= S_411_SRC_SEL(V_411_GDS);
		/* Both of these are required for GDS. It does increment the address. */
		command |= S_414_SAS(V_414_REGISTER) |
			   S_414_SAIC(V_414_NO_INCREMENT);
	} else if (sctx->chip_class >= GFX7 && cache_policy != L2_BYPASS) {
		header |= S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2) |
			  S_500_SRC_CACHE_POLICY(cache_policy == L2_STREAM);
	}

	if (sctx->chip_class >= GFX7) {
		radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, 0));
		radeon_emit(cs, header);
		radeon_emit(cs, src_va);	/* SRC_ADDR_LO [31:0] */
		radeon_emit(cs, src_va >> 32);	/* SRC_ADDR_HI [31:0] */
		radeon_emit(cs, dst_va);	/* DST_ADDR_LO [31:0] */
		radeon_emit(cs, dst_va >> 32);	/* DST_ADDR_HI [31:0] */
		radeon_emit(cs, command);
	} else {
		header |= S_411_SRC_ADDR_HI(src_va >> 32);

		radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, 0));
		radeon_emit(cs, src_va);	/* SRC_ADDR_LO [31:0] */
		radeon_emit(cs, header);	/* SRC_ADDR_HI [15:0] + flags. */
		radeon_emit(cs, dst_va);	/* DST_ADDR_LO [31:0] */
		radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */
		radeon_emit(cs, command);
	}

	/* CP DMA is executed in ME, but index buffers are read by PFP.
	 * This ensures that ME (CP DMA) is idle before PFP starts fetching
	 * indices. If we wanted to execute CP DMA in PFP, this packet
	 * should precede it.
	 */
	if (sctx->has_graphics && flags & CP_DMA_PFP_SYNC_ME) {
		radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
		radeon_emit(cs, 0);
	}
}

void si_cp_dma_wait_for_idle(struct si_context *sctx)
{
	/* Issue a dummy DMA that copies zero bytes.
	 *
	 * The DMA engine will see that there's no work to do and skip this
	 * DMA request, however, the CP will see the sync flag and still wait
	 * for all DMAs to complete.
	 */
	si_emit_cp_dma(sctx, sctx->gfx_cs, 0, 0, 0, CP_DMA_SYNC, L2_BYPASS);
}

static void si_cp_dma_prepare(struct si_context *sctx, struct pipe_resource *dst,
			      struct pipe_resource *src, unsigned byte_count,
			      uint64_t remaining_size, unsigned user_flags,
			      enum si_coherency coher, bool *is_first,
			      unsigned *packet_flags)
{
	/* Fast exit for a CPDMA prefetch. */
	if ((user_flags & SI_CPDMA_SKIP_ALL) == SI_CPDMA_SKIP_ALL) {
		*is_first = false;
		return;
	}

	if (!(user_flags & SI_CPDMA_SKIP_BO_LIST_UPDATE)) {
		/* Count memory usage in so that need_cs_space can take it into account. */
		if (dst)
			si_context_add_resource_size(sctx, dst);
		if (src)
			si_context_add_resource_size(sctx, src);
	}

	if (!(user_flags & SI_CPDMA_SKIP_CHECK_CS_SPACE))
		si_need_gfx_cs_space(sctx);

	/* This must be done after need_cs_space. */
	if (!(user_flags & SI_CPDMA_SKIP_BO_LIST_UPDATE)) {
		if (dst)
			radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
						  si_resource(dst),
						  RADEON_USAGE_WRITE, RADEON_PRIO_CP_DMA);
		if (src)
			radeon_add_to_buffer_list(sctx, sctx->gfx_cs,
						  si_resource(src),
						  RADEON_USAGE_READ, RADEON_PRIO_CP_DMA);
	}

	/* Flush the caches for the first copy only.
	 * Also wait for the previous CP DMA operations.
	 */
	if (!(user_flags & SI_CPDMA_SKIP_GFX_SYNC) && sctx->flags)
		si_emit_cache_flush(sctx);

	if (!(user_flags & SI_CPDMA_SKIP_SYNC_BEFORE) && *is_first &&
	    !(*packet_flags & CP_DMA_CLEAR))
		*packet_flags |= CP_DMA_RAW_WAIT;

	*is_first = false;

	/* Do the synchronization after the last dma, so that all data
	 * is written to memory.
	 */
	if (!(user_flags & SI_CPDMA_SKIP_SYNC_AFTER) &&
	    byte_count == remaining_size) {
		*packet_flags |= CP_DMA_SYNC;

		if (coher == SI_COHERENCY_SHADER)
			*packet_flags |= CP_DMA_PFP_SYNC_ME;
	}
}

void si_cp_dma_clear_buffer(struct si_context *sctx, struct radeon_cmdbuf *cs,
			    struct pipe_resource *dst, uint64_t offset,
			    uint64_t size, unsigned value, unsigned user_flags,
			    enum si_coherency coher, enum si_cache_policy cache_policy)
{
	struct si_resource *sdst = si_resource(dst);
	uint64_t va = (sdst ? sdst->gpu_address : 0) + offset;
	bool is_first = true;

	assert(size && size % 4 == 0);

	/* Mark the buffer range of destination as valid (initialized),
	 * so that transfer_map knows it should wait for the GPU when mapping
	 * that range. */
	if (sdst)
		util_range_add(&sdst->valid_buffer_range, offset, offset + size);

	/* Flush the caches. */
	if (sdst && !(user_flags & SI_CPDMA_SKIP_GFX_SYNC)) {
		sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
			       SI_CONTEXT_CS_PARTIAL_FLUSH |
			       si_get_flush_flags(sctx, coher, cache_policy);
	}

	while (size) {
		unsigned byte_count = MIN2(size, cp_dma_max_byte_count(sctx));
		unsigned dma_flags = CP_DMA_CLEAR | (sdst ? 0 : CP_DMA_DST_IS_GDS);

		si_cp_dma_prepare(sctx, dst, NULL, byte_count, size, user_flags,
				  coher, &is_first, &dma_flags);

		/* Emit the clear packet. */
		si_emit_cp_dma(sctx, cs, va, value, byte_count, dma_flags, cache_policy);

		size -= byte_count;
		va += byte_count;
	}

	if (sdst && cache_policy != L2_BYPASS)
		sdst->TC_L2_dirty = true;

	/* If it's not a framebuffer fast clear... */
	if (coher == SI_COHERENCY_SHADER) {
		sctx->num_cp_dma_calls++;
		si_prim_discard_signal_next_compute_ib_start(sctx);
	}
}

/**
 * Realign the CP DMA engine. This must be done after a copy with an unaligned
 * size.
 *
 * \param size  Remaining size to the CP DMA alignment.
 */
static void si_cp_dma_realign_engine(struct si_context *sctx, unsigned size,
				     unsigned user_flags, enum si_coherency coher,
				     enum si_cache_policy cache_policy,
				     bool *is_first)
{
	uint64_t va;
	unsigned dma_flags = 0;
	unsigned scratch_size = SI_CPDMA_ALIGNMENT * 2;

	assert(size < SI_CPDMA_ALIGNMENT);

	/* Use the scratch buffer as the dummy buffer. The 3D engine should be
	 * idle at this point.
	 */
	if (!sctx->scratch_buffer ||
	    sctx->scratch_buffer->b.b.width0 < scratch_size) {
		si_resource_reference(&sctx->scratch_buffer, NULL);
		sctx->scratch_buffer =
			si_aligned_buffer_create(&sctx->screen->b,
						   SI_RESOURCE_FLAG_UNMAPPABLE,
						   PIPE_USAGE_DEFAULT,
						   scratch_size, 256);
		if (!sctx->scratch_buffer)
			return;

		si_mark_atom_dirty(sctx, &sctx->atoms.s.scratch_state);
	}

	si_cp_dma_prepare(sctx, &sctx->scratch_buffer->b.b,
			  &sctx->scratch_buffer->b.b, size, size, user_flags,
			  coher, is_first, &dma_flags);

	va = sctx->scratch_buffer->gpu_address;
	si_emit_cp_dma(sctx, sctx->gfx_cs, va, va + SI_CPDMA_ALIGNMENT, size, dma_flags,
		       cache_policy);
}

/**
 * Do memcpy between buffers using CP DMA.
 * If src or dst is NULL, it means read or write GDS, respectively.
 *
 * \param user_flags	bitmask of SI_CPDMA_*
 */
void si_cp_dma_copy_buffer(struct si_context *sctx,
			   struct pipe_resource *dst, struct pipe_resource *src,
			   uint64_t dst_offset, uint64_t src_offset, unsigned size,
			   unsigned user_flags, enum si_coherency coher,
			   enum si_cache_policy cache_policy)
{
	uint64_t main_dst_offset, main_src_offset;
	unsigned skipped_size = 0;
	unsigned realign_size = 0;
	unsigned gds_flags = (dst ? 0 : CP_DMA_DST_IS_GDS) |
			     (src ? 0 : CP_DMA_SRC_IS_GDS);
	bool is_first = true;

	assert(size);

	if (dst) {
		/* Skip this for the L2 prefetch. */
		if (dst != src || dst_offset != src_offset) {
			/* Mark the buffer range of destination as valid (initialized),
			 * so that transfer_map knows it should wait for the GPU when mapping
			 * that range. */
			util_range_add(&si_resource(dst)->valid_buffer_range, dst_offset,
				       dst_offset + size);
		}

		dst_offset += si_resource(dst)->gpu_address;
	}
	if (src)
		src_offset += si_resource(src)->gpu_address;

	/* The workarounds aren't needed on Fiji and beyond. */
	if (sctx->family <= CHIP_CARRIZO ||
	    sctx->family == CHIP_STONEY) {
		/* If the size is not aligned, we must add a dummy copy at the end
		 * just to align the internal counter. Otherwise, the DMA engine
		 * would slow down by an order of magnitude for following copies.
		 */
		if (size % SI_CPDMA_ALIGNMENT)
			realign_size = SI_CPDMA_ALIGNMENT - (size % SI_CPDMA_ALIGNMENT);

		/* If the copy begins unaligned, we must start copying from the next
		 * aligned block and the skipped part should be copied after everything
		 * else has been copied. Only the src alignment matters, not dst.
		 *
		 * GDS doesn't need the source address to be aligned.
		 */
		if (src && src_offset % SI_CPDMA_ALIGNMENT) {
			skipped_size = SI_CPDMA_ALIGNMENT - (src_offset % SI_CPDMA_ALIGNMENT);
			/* The main part will be skipped if the size is too small. */
			skipped_size = MIN2(skipped_size, size);
			size -= skipped_size;
		}
	}

	/* Flush the caches. */
	if ((dst || src) && !(user_flags & SI_CPDMA_SKIP_GFX_SYNC)) {
		sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
			       SI_CONTEXT_CS_PARTIAL_FLUSH |
			       si_get_flush_flags(sctx, coher, cache_policy);
	}

	/* This is the main part doing the copying. Src is always aligned. */
	main_dst_offset = dst_offset + skipped_size;
	main_src_offset = src_offset + skipped_size;

	while (size) {
		unsigned byte_count = MIN2(size, cp_dma_max_byte_count(sctx));
		unsigned dma_flags = gds_flags;

		si_cp_dma_prepare(sctx, dst, src, byte_count,
				  size + skipped_size + realign_size,
				  user_flags, coher, &is_first, &dma_flags);

		si_emit_cp_dma(sctx, sctx->gfx_cs, main_dst_offset, main_src_offset,
			       byte_count, dma_flags, cache_policy);

		size -= byte_count;
		main_src_offset += byte_count;
		main_dst_offset += byte_count;
	}

	/* Copy the part we skipped because src wasn't aligned. */
	if (skipped_size) {
		unsigned dma_flags = gds_flags;

		si_cp_dma_prepare(sctx, dst, src, skipped_size,
				  skipped_size + realign_size, user_flags,
				  coher, &is_first, &dma_flags);

		si_emit_cp_dma(sctx, sctx->gfx_cs, dst_offset, src_offset, skipped_size,
			       dma_flags, cache_policy);
	}

	/* Finally, realign the engine if the size wasn't aligned. */
	if (realign_size) {
		si_cp_dma_realign_engine(sctx, realign_size, user_flags, coher,
					 cache_policy, &is_first);
	}

	if (dst && cache_policy != L2_BYPASS)
		si_resource(dst)->TC_L2_dirty = true;

	/* If it's not a prefetch or GDS copy... */
	if (dst && src && (dst != src || dst_offset != src_offset)) {
		sctx->num_cp_dma_calls++;
		si_prim_discard_signal_next_compute_ib_start(sctx);
	}
}

void cik_prefetch_TC_L2_async(struct si_context *sctx, struct pipe_resource *buf,
			      uint64_t offset, unsigned size)
{
	assert(sctx->chip_class >= GFX7);

	si_cp_dma_copy_buffer(sctx, buf, buf, offset, offset, size,
			      SI_CPDMA_SKIP_ALL, SI_COHERENCY_SHADER, L2_LRU);
}

static void cik_prefetch_shader_async(struct si_context *sctx,
				      struct si_pm4_state *state)
{
	struct pipe_resource *bo = &state->bo[0]->b.b;
	assert(state->nbo == 1);

	cik_prefetch_TC_L2_async(sctx, bo, 0, bo->width0);
}

static void cik_prefetch_VBO_descriptors(struct si_context *sctx)
{
	if (!sctx->vertex_elements || !sctx->vertex_elements->desc_list_byte_size)
		return;

	cik_prefetch_TC_L2_async(sctx, &sctx->vb_descriptors_buffer->b.b,
				 sctx->vb_descriptors_offset,
				 sctx->vertex_elements->desc_list_byte_size);
}

/**
 * Prefetch shaders and VBO descriptors.
 *
 * \param vertex_stage_only  Whether only the the API VS and VBO descriptors
 *                           should be prefetched.
 */
void cik_emit_prefetch_L2(struct si_context *sctx, bool vertex_stage_only)
{
	unsigned mask = sctx->prefetch_L2_mask;
	assert(mask);

	/* Prefetch shaders and VBO descriptors to TC L2. */
	if (sctx->chip_class >= GFX9) {
		/* Choose the right spot for the VBO prefetch. */
		if (sctx->tes_shader.cso) {
			if (mask & SI_PREFETCH_HS)
				cik_prefetch_shader_async(sctx, sctx->queued.named.hs);
			if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
				cik_prefetch_VBO_descriptors(sctx);
			if (vertex_stage_only) {
				sctx->prefetch_L2_mask &= ~(SI_PREFETCH_HS |
							    SI_PREFETCH_VBO_DESCRIPTORS);
				return;
			}

			if (mask & SI_PREFETCH_GS)
				cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
			if (mask & SI_PREFETCH_VS)
				cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
		} else if (sctx->gs_shader.cso) {
			if (mask & SI_PREFETCH_GS)
				cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
			if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
				cik_prefetch_VBO_descriptors(sctx);
			if (vertex_stage_only) {
				sctx->prefetch_L2_mask &= ~(SI_PREFETCH_GS |
							    SI_PREFETCH_VBO_DESCRIPTORS);
				return;
			}

			if (mask & SI_PREFETCH_VS)
				cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
		} else {
			if (mask & SI_PREFETCH_VS)
				cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
			if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
				cik_prefetch_VBO_descriptors(sctx);
			if (vertex_stage_only) {
				sctx->prefetch_L2_mask &= ~(SI_PREFETCH_VS |
							    SI_PREFETCH_VBO_DESCRIPTORS);
				return;
			}
		}
	} else {
		/* GFX6-GFX8 */
		/* Choose the right spot for the VBO prefetch. */
		if (sctx->tes_shader.cso) {
			if (mask & SI_PREFETCH_LS)
				cik_prefetch_shader_async(sctx, sctx->queued.named.ls);
			if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
				cik_prefetch_VBO_descriptors(sctx);
			if (vertex_stage_only) {
				sctx->prefetch_L2_mask &= ~(SI_PREFETCH_LS |
							    SI_PREFETCH_VBO_DESCRIPTORS);
				return;
			}

			if (mask & SI_PREFETCH_HS)
				cik_prefetch_shader_async(sctx, sctx->queued.named.hs);
			if (mask & SI_PREFETCH_ES)
				cik_prefetch_shader_async(sctx, sctx->queued.named.es);
			if (mask & SI_PREFETCH_GS)
				cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
			if (mask & SI_PREFETCH_VS)
				cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
		} else if (sctx->gs_shader.cso) {
			if (mask & SI_PREFETCH_ES)
				cik_prefetch_shader_async(sctx, sctx->queued.named.es);
			if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
				cik_prefetch_VBO_descriptors(sctx);
			if (vertex_stage_only) {
				sctx->prefetch_L2_mask &= ~(SI_PREFETCH_ES |
							    SI_PREFETCH_VBO_DESCRIPTORS);
				return;
			}

			if (mask & SI_PREFETCH_GS)
				cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
			if (mask & SI_PREFETCH_VS)
				cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
		} else {
			if (mask & SI_PREFETCH_VS)
				cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
			if (mask & SI_PREFETCH_VBO_DESCRIPTORS)
				cik_prefetch_VBO_descriptors(sctx);
			if (vertex_stage_only) {
				sctx->prefetch_L2_mask &= ~(SI_PREFETCH_VS |
							    SI_PREFETCH_VBO_DESCRIPTORS);
				return;
			}
		}
	}

	if (mask & SI_PREFETCH_PS)
		cik_prefetch_shader_async(sctx, sctx->queued.named.ps);

	sctx->prefetch_L2_mask = 0;
}

void si_test_gds(struct si_context *sctx)
{
	struct pipe_context *ctx = &sctx->b;
	struct pipe_resource *src, *dst;
	unsigned r[4] = {};
	unsigned offset = debug_get_num_option("OFFSET", 16);

	src = pipe_buffer_create(ctx->screen, 0, PIPE_USAGE_DEFAULT, 16);
	dst = pipe_buffer_create(ctx->screen, 0, PIPE_USAGE_DEFAULT, 16);
	si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, src, 0, 4, 0xabcdef01, 0, SI_COHERENCY_SHADER, L2_BYPASS);
	si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, src, 4, 4, 0x23456789, 0, SI_COHERENCY_SHADER, L2_BYPASS);
	si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, src, 8, 4, 0x87654321, 0, SI_COHERENCY_SHADER, L2_BYPASS);
	si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, src, 12, 4, 0xfedcba98, 0, SI_COHERENCY_SHADER, L2_BYPASS);
	si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, dst, 0, 16, 0xdeadbeef, 0, SI_COHERENCY_SHADER, L2_BYPASS);

	si_cp_dma_copy_buffer(sctx, NULL, src, offset, 0, 16, 0, SI_COHERENCY_NONE, L2_BYPASS);
	si_cp_dma_copy_buffer(sctx, dst, NULL, 0, offset, 16, 0, SI_COHERENCY_NONE, L2_BYPASS);

	pipe_buffer_read(ctx, dst, 0, sizeof(r), r);
	printf("GDS copy  = %08x %08x %08x %08x -> %s\n", r[0], r[1], r[2], r[3],
			r[0] == 0xabcdef01 && r[1] == 0x23456789 &&
			r[2] == 0x87654321 && r[3] == 0xfedcba98 ? "pass" : "fail");

	si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, NULL, offset, 16, 0xc1ea4146, 0, SI_COHERENCY_NONE, L2_BYPASS);
	si_cp_dma_copy_buffer(sctx, dst, NULL, 0, offset, 16, 0, SI_COHERENCY_NONE, L2_BYPASS);

	pipe_buffer_read(ctx, dst, 0, sizeof(r), r);
	printf("GDS clear = %08x %08x %08x %08x -> %s\n", r[0], r[1], r[2], r[3],
			r[0] == 0xc1ea4146 && r[1] == 0xc1ea4146 &&
			r[2] == 0xc1ea4146 && r[3] == 0xc1ea4146 ? "pass" : "fail");

	pipe_resource_reference(&src, NULL);
	pipe_resource_reference(&dst, NULL);
	exit(0);
}

void si_cp_write_data(struct si_context *sctx, struct si_resource *buf,
		      unsigned offset, unsigned size, unsigned dst_sel,
		      unsigned engine, const void *data)
{
	struct radeon_cmdbuf *cs = sctx->gfx_cs;

	assert(offset % 4 == 0);
	assert(size % 4 == 0);

	if (sctx->chip_class == GFX6 && dst_sel == V_370_MEM)
		dst_sel = V_370_MEM_GRBM;

	radeon_add_to_buffer_list(sctx, cs, buf,
				  RADEON_USAGE_WRITE, RADEON_PRIO_CP_DMA);
	uint64_t va = buf->gpu_address + offset;

	radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 2 + size/4, 0));
	radeon_emit(cs, S_370_DST_SEL(dst_sel) |
		    S_370_WR_CONFIRM(1) |
		    S_370_ENGINE_SEL(engine));
	radeon_emit(cs, va);
	radeon_emit(cs, va >> 32);
	radeon_emit_array(cs, (const uint32_t*)data, size/4);
}

void si_cp_copy_data(struct si_context *sctx, struct radeon_cmdbuf *cs,
		     unsigned dst_sel, struct si_resource *dst, unsigned dst_offset,
		     unsigned src_sel, struct si_resource *src, unsigned src_offset)
{
	/* cs can point to the compute IB, which has the buffer list in gfx_cs. */
	if (dst) {
		radeon_add_to_buffer_list(sctx, sctx->gfx_cs, dst,
					  RADEON_USAGE_WRITE, RADEON_PRIO_CP_DMA);
	}
	if (src) {
		radeon_add_to_buffer_list(sctx, sctx->gfx_cs, src,
					  RADEON_USAGE_READ, RADEON_PRIO_CP_DMA);
	}

	uint64_t dst_va = (dst ? dst->gpu_address : 0ull) + dst_offset;
	uint64_t src_va = (src ? src->gpu_address : 0ull) + src_offset;

	radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0));
	radeon_emit(cs, COPY_DATA_SRC_SEL(src_sel) |
			COPY_DATA_DST_SEL(dst_sel) |
			COPY_DATA_WR_CONFIRM);
	radeon_emit(cs, src_va);
	radeon_emit(cs, src_va >> 32);
	radeon_emit(cs, dst_va);
	radeon_emit(cs, dst_va >> 32);
}