summaryrefslogtreecommitdiff
path: root/src/compiler/nir/nir_opt_load_store_vectorize.c
blob: d00b382f67e56a85d3fad98a5403e3e64cab8e08 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
/*
 * Copyright © 2019 Valve Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

/**
 * Although it's called a load/store "vectorization" pass, this also combines
 * intersecting and identical loads/stores. It currently supports derefs, ubo,
 * ssbo and push constant loads/stores.
 *
 * This doesn't handle copy_deref intrinsics and assumes that
 * nir_lower_alu_to_scalar() has been called and that the IR is free from ALU
 * modifiers. It also assumes that derefs have explicitly laid out types.
 *
 * After vectorization, the backend may want to call nir_lower_alu_to_scalar()
 * and nir_lower_pack(). Also this creates cast instructions taking derefs as a
 * source and some parts of NIR may not be able to handle that well.
 *
 * There are a few situations where this doesn't vectorize as well as it could:
 * - It won't turn four consecutive vec3 loads into 3 vec4 loads.
 * - It doesn't do global vectorization.
 * Handling these cases probably wouldn't provide much benefit though.
 *
 * This probably doesn't handle big-endian GPUs correctly.
*/

#include "nir.h"
#include "nir_deref.h"
#include "nir_builder.h"
#include "nir_worklist.h"
#include "util/u_dynarray.h"

#include <stdlib.h>

struct intrinsic_info {
   nir_variable_mode mode; /* 0 if the mode is obtained from the deref. */
   nir_intrinsic_op op;
   bool is_atomic;
   /* Indices into nir_intrinsic::src[] or -1 if not applicable. */
   int resource_src; /* resource (e.g. from vulkan_resource_index) */
   int base_src; /* offset which it loads/stores from */
   int deref_src; /* deref which is loads/stores from */
   int value_src; /* the data it is storing */
};

static const struct intrinsic_info *
get_info(nir_intrinsic_op op) {
   switch (op) {
#define INFO(mode, op, atomic, res, base, deref, val) \
case nir_intrinsic_##op: {\
   static const struct intrinsic_info op##_info = {mode, nir_intrinsic_##op, atomic, res, base, deref, val};\
   return &op##_info;\
}
#define LOAD(mode, op, res, base, deref) INFO(mode, load_##op, false, res, base, deref, -1)
#define STORE(mode, op, res, base, deref, val) INFO(mode, store_##op, false, res, base, deref, val)
#define ATOMIC(mode, type, op, res, base, deref, val) INFO(mode, type##_atomic_##op, true, res, base, deref, val)
   LOAD(nir_var_mem_push_const, push_constant, -1, 0, -1)
   LOAD(nir_var_mem_ubo, ubo, 0, 1, -1)
   LOAD(nir_var_mem_ssbo, ssbo, 0, 1, -1)
   STORE(nir_var_mem_ssbo, ssbo, 1, 2, -1, 0)
   LOAD(0, deref, -1, -1, 0)
   STORE(0, deref, -1, -1, 0, 1)
   LOAD(nir_var_mem_shared, shared, -1, 0, -1)
   STORE(nir_var_mem_shared, shared, -1, 1, -1, 0)
   LOAD(nir_var_mem_global, global, -1, 0, -1)
   STORE(nir_var_mem_global, global, -1, 1, -1, 0)
   ATOMIC(nir_var_mem_ssbo, ssbo, add, 0, 1, -1, 2)
   ATOMIC(nir_var_mem_ssbo, ssbo, imin, 0, 1, -1, 2)
   ATOMIC(nir_var_mem_ssbo, ssbo, umin, 0, 1, -1, 2)
   ATOMIC(nir_var_mem_ssbo, ssbo, imax, 0, 1, -1, 2)
   ATOMIC(nir_var_mem_ssbo, ssbo, umax, 0, 1, -1, 2)
   ATOMIC(nir_var_mem_ssbo, ssbo, and, 0, 1, -1, 2)
   ATOMIC(nir_var_mem_ssbo, ssbo, or, 0, 1, -1, 2)
   ATOMIC(nir_var_mem_ssbo, ssbo, xor, 0, 1, -1, 2)
   ATOMIC(nir_var_mem_ssbo, ssbo, exchange, 0, 1, -1, 2)
   ATOMIC(nir_var_mem_ssbo, ssbo, comp_swap, 0, 1, -1, 2)
   ATOMIC(nir_var_mem_ssbo, ssbo, fadd, 0, 1, -1, 2)
   ATOMIC(nir_var_mem_ssbo, ssbo, fmin, 0, 1, -1, 2)
   ATOMIC(nir_var_mem_ssbo, ssbo, fmax, 0, 1, -1, 2)
   ATOMIC(nir_var_mem_ssbo, ssbo, fcomp_swap, 0, 1, -1, 2)
   ATOMIC(0, deref, add, -1, -1, 0, 1)
   ATOMIC(0, deref, imin, -1, -1, 0, 1)
   ATOMIC(0, deref, umin, -1, -1, 0, 1)
   ATOMIC(0, deref, imax, -1, -1, 0, 1)
   ATOMIC(0, deref, umax, -1, -1, 0, 1)
   ATOMIC(0, deref, and, -1, -1, 0, 1)
   ATOMIC(0, deref, or, -1, -1, 0, 1)
   ATOMIC(0, deref, xor, -1, -1, 0, 1)
   ATOMIC(0, deref, exchange, -1, -1, 0, 1)
   ATOMIC(0, deref, comp_swap, -1, -1, 0, 1)
   ATOMIC(0, deref, fadd, -1, -1, 0, 1)
   ATOMIC(0, deref, fmin, -1, -1, 0, 1)
   ATOMIC(0, deref, fmax, -1, -1, 0, 1)
   ATOMIC(0, deref, fcomp_swap, -1, -1, 0, 1)
   ATOMIC(nir_var_mem_shared, shared, add, -1, 0, -1, 1)
   ATOMIC(nir_var_mem_shared, shared, imin, -1, 0, -1, 1)
   ATOMIC(nir_var_mem_shared, shared, umin, -1, 0, -1, 1)
   ATOMIC(nir_var_mem_shared, shared, imax, -1, 0, -1, 1)
   ATOMIC(nir_var_mem_shared, shared, umax, -1, 0, -1, 1)
   ATOMIC(nir_var_mem_shared, shared, and, -1, 0, -1, 1)
   ATOMIC(nir_var_mem_shared, shared, or, -1, 0, -1, 1)
   ATOMIC(nir_var_mem_shared, shared, xor, -1, 0, -1, 1)
   ATOMIC(nir_var_mem_shared, shared, exchange, -1, 0, -1, 1)
   ATOMIC(nir_var_mem_shared, shared, comp_swap, -1, 0, -1, 1)
   ATOMIC(nir_var_mem_shared, shared, fadd, -1, 0, -1, 1)
   ATOMIC(nir_var_mem_shared, shared, fmin, -1, 0, -1, 1)
   ATOMIC(nir_var_mem_shared, shared, fmax, -1, 0, -1, 1)
   ATOMIC(nir_var_mem_shared, shared, fcomp_swap, -1, 0, -1, 1)
   ATOMIC(nir_var_mem_global, global, add, -1, 0, -1, 1)
   ATOMIC(nir_var_mem_global, global, imin, -1, 0, -1, 1)
   ATOMIC(nir_var_mem_global, global, umin, -1, 0, -1, 1)
   ATOMIC(nir_var_mem_global, global, imax, -1, 0, -1, 1)
   ATOMIC(nir_var_mem_global, global, umax, -1, 0, -1, 1)
   ATOMIC(nir_var_mem_global, global, and, -1, 0, -1, 1)
   ATOMIC(nir_var_mem_global, global, or, -1, 0, -1, 1)
   ATOMIC(nir_var_mem_global, global, xor, -1, 0, -1, 1)
   ATOMIC(nir_var_mem_global, global, exchange, -1, 0, -1, 1)
   ATOMIC(nir_var_mem_global, global, comp_swap, -1, 0, -1, 1)
   ATOMIC(nir_var_mem_global, global, fadd, -1, 0, -1, 1)
   ATOMIC(nir_var_mem_global, global, fmin, -1, 0, -1, 1)
   ATOMIC(nir_var_mem_global, global, fmax, -1, 0, -1, 1)
   ATOMIC(nir_var_mem_global, global, fcomp_swap, -1, 0, -1, 1)
   default:
      break;
#undef ATOMIC
#undef STORE
#undef LOAD
#undef INFO
   }
   return NULL;
}

/*
 * Information used to compare memory operations.
 * It canonically represents an offset as:
 * `offset_defs[0]*offset_defs_mul[0] + offset_defs[1]*offset_defs_mul[1] + ...`
 * "offset_defs" is sorted in ascenting order by the ssa definition's index.
 * "resource" or "var" may be NULL.
 */
struct entry_key {
   nir_ssa_def *resource;
   nir_variable *var;
   unsigned offset_def_count;
   nir_ssa_def **offset_defs;
   uint64_t *offset_defs_mul;
};

/* Information on a single memory operation. */
struct entry {
   struct list_head head;
   unsigned index;

   struct entry_key *key;
   union {
      uint64_t offset; /* sign-extended */
      int64_t offset_signed;
   };
   uint32_t best_align;

   nir_instr *instr;
   nir_intrinsic_instr *intrin;
   const struct intrinsic_info *info;
   enum gl_access_qualifier access;
   bool is_store;

   nir_deref_instr *deref;
};

struct vectorize_ctx {
   nir_variable_mode modes;
   nir_should_vectorize_mem_func callback;
   struct list_head entries[nir_num_variable_modes];
   struct hash_table *loads[nir_num_variable_modes];
   struct hash_table *stores[nir_num_variable_modes];
};

static uint32_t hash_entry_key(const void *key_)
{
   /* this is careful to not include pointers in the hash calculation so that
    * the order of the hash table walk is deterministic */
   struct entry_key *key = (struct entry_key*)key_;

   uint32_t hash = _mesa_fnv32_1a_offset_bias;
   if (key->resource)
      hash = _mesa_fnv32_1a_accumulate(hash, key->resource->index);
   if (key->var) {
      hash = _mesa_fnv32_1a_accumulate(hash, key->var->index);
      unsigned mode = key->var->data.mode;
      hash = _mesa_fnv32_1a_accumulate(hash, mode);
   }

   for (unsigned i = 0; i < key->offset_def_count; i++)
      hash = _mesa_fnv32_1a_accumulate(hash, key->offset_defs[i]->index);

   hash = _mesa_fnv32_1a_accumulate_block(
      hash, key->offset_defs_mul, key->offset_def_count * sizeof(uint64_t));

   return hash;
}

static bool entry_key_equals(const void *a_, const void *b_)
{
   struct entry_key *a = (struct entry_key*)a_;
   struct entry_key *b = (struct entry_key*)b_;

   if (a->var != b->var || a->resource != b->resource)
      return false;

   if (a->offset_def_count != b->offset_def_count)
      return false;

   size_t offset_def_size = a->offset_def_count * sizeof(nir_ssa_def *);
   size_t offset_def_mul_size = a->offset_def_count * sizeof(uint64_t);
   if (a->offset_def_count &&
       (memcmp(a->offset_defs, b->offset_defs, offset_def_size) ||
        memcmp(a->offset_defs_mul, b->offset_defs_mul, offset_def_mul_size)))
      return false;

   return true;
}

static void delete_entry_dynarray(struct hash_entry *entry)
{
   struct util_dynarray *arr = (struct util_dynarray *)entry->data;
   ralloc_free(arr);
}

static int sort_entries(const void *a_, const void *b_)
{
   struct entry *a = *(struct entry*const*)a_;
   struct entry *b = *(struct entry*const*)b_;

   if (a->offset_signed > b->offset_signed)
      return 1;
   else if (a->offset_signed < b->offset_signed)
      return -1;
   else
      return 0;
}

static unsigned
get_bit_size(struct entry *entry)
{
   unsigned size = entry->is_store ?
                   entry->intrin->src[entry->info->value_src].ssa->bit_size :
                   entry->intrin->dest.ssa.bit_size;
   return size == 1 ? 32u : size;
}

/* If "def" is from an alu instruction with the opcode "op" and one of it's
 * sources is a constant, update "def" to be the non-constant source, fill "c"
 * with the constant and return true. */
static bool
parse_alu(nir_ssa_def **def, nir_op op, uint64_t *c)
{
   nir_ssa_scalar scalar;
   scalar.def = *def;
   scalar.comp = 0;

   if (!nir_ssa_scalar_is_alu(scalar) || nir_ssa_scalar_alu_op(scalar) != op)
      return false;

   nir_ssa_scalar src0 = nir_ssa_scalar_chase_alu_src(scalar, 0);
   nir_ssa_scalar src1 = nir_ssa_scalar_chase_alu_src(scalar, 1);
   if (op != nir_op_ishl && nir_ssa_scalar_is_const(src0) && src1.comp == 0) {
      *c = nir_ssa_scalar_as_uint(src0);
      *def = src1.def;
   } else if (nir_ssa_scalar_is_const(src1) && src0.comp == 0) {
      *c = nir_ssa_scalar_as_uint(src1);
      *def = src0.def;
   } else {
      return false;
   }
   return true;
}

/* Parses an offset expression such as "a * 16 + 4" and "(a * 16 + 4) * 64 + 32". */
static void
parse_offset(nir_ssa_def **base, uint64_t *base_mul, uint64_t *offset)
{
   if ((*base)->parent_instr->type == nir_instr_type_load_const) {
      *offset = nir_src_comp_as_uint(nir_src_for_ssa(*base), 0);
      *base = NULL;
      return;
   }

   uint64_t mul = 1;
   uint64_t add = 0;
   bool progress = false;
   do {
      uint64_t mul2 = 1, add2 = 0;

      progress = parse_alu(base, nir_op_imul, &mul2);
      mul *= mul2;

      mul2 = 0;
      progress |= parse_alu(base, nir_op_ishl, &mul2);
      mul <<= mul2;

      progress |= parse_alu(base, nir_op_iadd, &add2);
      add += add2 * mul;
   } while (progress);

   *base_mul = mul;
   *offset = add;
}

static unsigned
type_scalar_size_bytes(const struct glsl_type *type)
{
   assert(glsl_type_is_vector_or_scalar(type) ||
          glsl_type_is_matrix(type));
   return glsl_type_is_boolean(type) ? 4u : glsl_get_bit_size(type) / 8u;
}

static int
get_array_stride(const struct glsl_type *type)
{
   unsigned explicit_stride = glsl_get_explicit_stride(type);
   if ((glsl_type_is_matrix(type) &&
        glsl_matrix_type_is_row_major(type)) ||
       (glsl_type_is_vector(type) && explicit_stride == 0))
      return type_scalar_size_bytes(type);
   return explicit_stride;
}

static uint64_t
mask_sign_extend(uint64_t val, unsigned bit_size)
{
   return (int64_t)(val << (64 - bit_size)) >> (64 - bit_size);
}

static unsigned
add_to_entry_key(nir_ssa_def **offset_defs, uint64_t *offset_defs_mul,
                 unsigned offset_def_count, nir_ssa_def *def, uint64_t mul)
{
   mul = mask_sign_extend(mul, def->bit_size);

   for (unsigned i = 0; i <= offset_def_count; i++) {
      if (i == offset_def_count || def->index > offset_defs[i]->index) {
         /* insert before i */
         memmove(offset_defs + i + 1, offset_defs + i,
                 (offset_def_count - i) * sizeof(nir_ssa_def *));
         memmove(offset_defs_mul + i + 1, offset_defs_mul + i,
                 (offset_def_count - i) * sizeof(uint64_t));
         offset_defs[i] = def;
         offset_defs_mul[i] = mul;
         return 1;
      } else if (def->index == offset_defs[i]->index) {
         /* merge with offset_def at i */
         offset_defs_mul[i] += mul;
         return 0;
      }
   }
   unreachable("Unreachable.");
   return 0;
}

static struct entry_key *
create_entry_key_from_deref(void *mem_ctx,
                            struct vectorize_ctx *ctx,
                            nir_deref_path *path,
                            uint64_t *offset_base)
{
   unsigned path_len = 0;
   while (path->path[path_len])
      path_len++;

   nir_ssa_def *offset_defs_stack[32];
   uint64_t offset_defs_mul_stack[32];
   nir_ssa_def **offset_defs = offset_defs_stack;
   uint64_t *offset_defs_mul = offset_defs_mul_stack;
   if (path_len > 32) {
      offset_defs = malloc(path_len * sizeof(nir_ssa_def *));
      offset_defs_mul = malloc(path_len * sizeof(uint64_t));
   }
   unsigned offset_def_count = 0;

   struct entry_key* key = ralloc(mem_ctx, struct entry_key);
   key->resource = NULL;
   key->var = NULL;
   *offset_base = 0;

   for (unsigned i = 0; i < path_len; i++) {
      nir_deref_instr *parent = i ? path->path[i - 1] : NULL;
      nir_deref_instr *deref = path->path[i];

      switch (deref->deref_type) {
      case nir_deref_type_var: {
         assert(!parent);
         key->var = deref->var;
         break;
      }
      case nir_deref_type_array:
      case nir_deref_type_ptr_as_array: {
         assert(parent);
         nir_ssa_def *index = deref->arr.index.ssa;
         uint32_t stride;
         if (deref->deref_type == nir_deref_type_ptr_as_array)
            stride = nir_deref_instr_ptr_as_array_stride(deref);
         else
            stride = get_array_stride(parent->type);

         nir_ssa_def *base = index;
         uint64_t offset = 0, base_mul = 1;
         parse_offset(&base, &base_mul, &offset);
         offset = mask_sign_extend(offset, index->bit_size);

         *offset_base += offset * stride;
         if (base) {
            offset_def_count += add_to_entry_key(offset_defs, offset_defs_mul,
                                                 offset_def_count,
                                                 base, base_mul * stride);
         }
         break;
      }
      case nir_deref_type_struct: {
         assert(parent);
         int offset = glsl_get_struct_field_offset(parent->type, deref->strct.index);
         *offset_base += offset;
         break;
      }
      case nir_deref_type_cast: {
         if (!parent)
            key->resource = deref->parent.ssa;
         break;
      }
      default:
         unreachable("Unhandled deref type");
      }
   }

   key->offset_def_count = offset_def_count;
   key->offset_defs = ralloc_array(mem_ctx, nir_ssa_def *, offset_def_count);
   key->offset_defs_mul = ralloc_array(mem_ctx, uint64_t, offset_def_count);
   memcpy(key->offset_defs, offset_defs, offset_def_count * sizeof(nir_ssa_def *));
   memcpy(key->offset_defs_mul, offset_defs_mul, offset_def_count * sizeof(uint64_t));

   if (offset_defs != offset_defs_stack)
      free(offset_defs);
   if (offset_defs_mul != offset_defs_mul_stack)
      free(offset_defs_mul);

   return key;
}

static unsigned
parse_entry_key_from_offset(struct entry_key *key, unsigned size, unsigned left,
                            nir_ssa_def *base, uint64_t base_mul, uint64_t *offset)
{
   uint64_t new_mul;
   uint64_t new_offset;
   parse_offset(&base, &new_mul, &new_offset);
   *offset += new_offset * base_mul;

   if (!base)
      return 0;

   base_mul *= new_mul;

   assert(left >= 1);

   if (left >= 2) {
      nir_ssa_scalar scalar;
      scalar.def = base;
      scalar.comp = 0;
      if (nir_ssa_scalar_is_alu(scalar) && nir_ssa_scalar_alu_op(scalar) == nir_op_iadd) {
         nir_ssa_scalar src0 = nir_ssa_scalar_chase_alu_src(scalar, 0);
         nir_ssa_scalar src1 = nir_ssa_scalar_chase_alu_src(scalar, 1);
         if (src0.comp == 0 && src1.comp == 0) {
            unsigned amount = parse_entry_key_from_offset(key, size, left - 1, src0.def, base_mul, offset);
            amount += parse_entry_key_from_offset(key, size + amount, left - amount, src1.def, base_mul, offset);
            return amount;
         }
      }
   }

   return add_to_entry_key(key->offset_defs, key->offset_defs_mul, size, base, base_mul);
}

static struct entry_key *
create_entry_key_from_offset(void *mem_ctx, nir_ssa_def *base, uint64_t base_mul, uint64_t *offset)
{
   struct entry_key *key = ralloc(mem_ctx, struct entry_key);
   key->resource = NULL;
   key->var = NULL;
   if (base) {
      nir_ssa_def *offset_defs[32];
      uint64_t offset_defs_mul[32];
      key->offset_defs = offset_defs;
      key->offset_defs_mul = offset_defs_mul;

      key->offset_def_count = parse_entry_key_from_offset(key, 0, 32, base, base_mul, offset);

      key->offset_defs = ralloc_array(mem_ctx, nir_ssa_def *, key->offset_def_count);
      key->offset_defs_mul = ralloc_array(mem_ctx, uint64_t, key->offset_def_count);
      memcpy(key->offset_defs, offset_defs, key->offset_def_count * sizeof(nir_ssa_def *));
      memcpy(key->offset_defs_mul, offset_defs_mul, key->offset_def_count * sizeof(uint64_t));
   } else {
      key->offset_def_count = 0;
      key->offset_defs = NULL;
      key->offset_defs_mul = NULL;
   }
   return key;
}

static nir_variable_mode
get_variable_mode(struct entry *entry)
{
   if (entry->info->mode)
      return entry->info->mode;
   assert(entry->deref);
   return entry->deref->mode;
}

static unsigned
mode_to_index(nir_variable_mode mode)
{
   assert(util_bitcount(mode) == 1);

   /* Globals and SSBOs should be tracked together */
   if (mode == nir_var_mem_global)
      mode = nir_var_mem_ssbo;

   return ffs(mode) - 1;
}

static nir_variable_mode
aliasing_modes(nir_variable_mode modes)
{
   /* Global and SSBO can alias */
   if (modes & (nir_var_mem_ssbo | nir_var_mem_global))
      modes |= nir_var_mem_ssbo | nir_var_mem_global;
   return modes;
}

static struct entry *
create_entry(struct vectorize_ctx *ctx,
             const struct intrinsic_info *info,
             nir_intrinsic_instr *intrin)
{
   struct entry *entry = rzalloc(ctx, struct entry);
   entry->intrin = intrin;
   entry->instr = &intrin->instr;
   entry->info = info;
   entry->best_align = UINT32_MAX;
   entry->is_store = entry->info->value_src >= 0;

   if (entry->info->deref_src >= 0) {
      entry->deref = nir_src_as_deref(intrin->src[entry->info->deref_src]);
      nir_deref_path path;
      nir_deref_path_init(&path, entry->deref, NULL);
      entry->key = create_entry_key_from_deref(entry, ctx, &path, &entry->offset);
      nir_deref_path_finish(&path);
   } else {
      nir_ssa_def *base = entry->info->base_src >= 0 ?
                          intrin->src[entry->info->base_src].ssa : NULL;
      uint64_t offset = 0;
      if (nir_intrinsic_infos[intrin->intrinsic].index_map[NIR_INTRINSIC_BASE])
         offset += nir_intrinsic_base(intrin);
      entry->key = create_entry_key_from_offset(entry, base, 1, &offset);
      entry->offset = offset;

      if (base)
         entry->offset = mask_sign_extend(entry->offset, base->bit_size);
   }

   if (entry->info->resource_src >= 0)
      entry->key->resource = intrin->src[entry->info->resource_src].ssa;

   if (nir_intrinsic_infos[intrin->intrinsic].index_map[NIR_INTRINSIC_ACCESS])
      entry->access = nir_intrinsic_access(intrin);
   else if (entry->key->var)
      entry->access = entry->key->var->data.access;

   uint32_t restrict_modes = nir_var_shader_in | nir_var_shader_out;
   restrict_modes |= nir_var_shader_temp | nir_var_function_temp;
   restrict_modes |= nir_var_uniform | nir_var_mem_push_const;
   restrict_modes |= nir_var_system_value | nir_var_mem_shared;
   if (get_variable_mode(entry) & restrict_modes)
      entry->access |= ACCESS_RESTRICT;

   return entry;
}

static nir_deref_instr *
cast_deref(nir_builder *b, unsigned num_components, unsigned bit_size, nir_deref_instr *deref)
{
   if (glsl_get_components(deref->type) == num_components &&
       type_scalar_size_bytes(deref->type)*8u == bit_size)
      return deref;

   enum glsl_base_type types[] = {
      GLSL_TYPE_UINT8, GLSL_TYPE_UINT16, GLSL_TYPE_UINT, GLSL_TYPE_UINT64};
   enum glsl_base_type base = types[ffs(bit_size / 8u) - 1u];
   const struct glsl_type *type = glsl_vector_type(base, num_components);

   if (deref->type == type)
      return deref;

   return nir_build_deref_cast(b, &deref->dest.ssa, deref->mode, type, 0);
}

/* Return true if the write mask "write_mask" of a store with "old_bit_size"
 * bits per element can be represented for a store with "new_bit_size" bits per
 * element. */
static bool
writemask_representable(unsigned write_mask, unsigned old_bit_size, unsigned new_bit_size)
{
   while (write_mask) {
      int start, count;
      u_bit_scan_consecutive_range(&write_mask, &start, &count);
      start *= old_bit_size;
      count *= old_bit_size;
      if (start % new_bit_size != 0)
         return false;
      if (count % new_bit_size != 0)
         return false;
   }
   return true;
}

static uint64_t
gcd(uint64_t a, uint64_t b)
{
   while (b) {
      uint64_t old_b = b;
      b = a % b;
      a = old_b;
   }
   return a;
}

static uint32_t
get_best_align(struct entry *entry)
{
   if (entry->best_align != UINT32_MAX)
      return entry->best_align;

   uint64_t best_align = entry->offset;
   for (unsigned i = 0; i < entry->key->offset_def_count; i++) {
      if (!best_align)
         best_align = entry->key->offset_defs_mul[i];
      else if (entry->key->offset_defs_mul[i])
         best_align = gcd(best_align, entry->key->offset_defs_mul[i]);
   }

   if (nir_intrinsic_infos[entry->intrin->intrinsic].index_map[NIR_INTRINSIC_ALIGN_MUL])
      best_align = MAX2(best_align, nir_intrinsic_align(entry->intrin));

   /* ensure the result is a power of two that fits in a int32_t */
   entry->best_align = gcd(best_align, 1u << 30);

   return entry->best_align;
}

/* Return true if "new_bit_size" is a usable bit size for a vectorized load/store
 * of "low" and "high". */
static bool
new_bitsize_acceptable(struct vectorize_ctx *ctx, unsigned new_bit_size,
                       struct entry *low, struct entry *high, unsigned size)
{
   if (size % new_bit_size != 0)
      return false;

   unsigned new_num_components = size / new_bit_size;
   if (!nir_num_components_valid(new_num_components))
      return false;

   unsigned high_offset = high->offset_signed - low->offset_signed;

   /* check nir_extract_bits limitations */
   unsigned common_bit_size = MIN2(get_bit_size(low), get_bit_size(high));
   common_bit_size = MIN2(common_bit_size, new_bit_size);
   if (high_offset > 0)
      common_bit_size = MIN2(common_bit_size, (1u << (ffs(high_offset * 8) - 1)));
   if (new_bit_size / common_bit_size > NIR_MAX_VEC_COMPONENTS)
      return false;

   if (!ctx->callback(get_best_align(low), new_bit_size, new_num_components,
                      high_offset, low->intrin, high->intrin))
      return false;

   if (low->is_store) {
      unsigned low_size = low->intrin->num_components * get_bit_size(low);
      unsigned high_size = high->intrin->num_components * get_bit_size(high);

      if (low_size % new_bit_size != 0)
         return false;
      if (high_size % new_bit_size != 0)
         return false;

      unsigned write_mask = nir_intrinsic_write_mask(low->intrin);
      if (!writemask_representable(write_mask, get_bit_size(low), new_bit_size))
         return false;

      write_mask = nir_intrinsic_write_mask(high->intrin);
      if (!writemask_representable(write_mask, get_bit_size(high), new_bit_size))
         return false;
   }

   return true;
}

/* Updates a write mask, "write_mask", so that it can be used with a
 * "new_bit_size"-bit store instead of a "old_bit_size"-bit store. */
static uint32_t
update_writemask(unsigned write_mask, unsigned old_bit_size, unsigned new_bit_size)
{
   uint32_t res = 0;
   while (write_mask) {
      int start, count;
      u_bit_scan_consecutive_range(&write_mask, &start, &count);
      start = start * old_bit_size / new_bit_size;
      count = count * old_bit_size / new_bit_size;
      res |= ((1 << count) - 1) << start;
   }
   return res;
}

static nir_deref_instr *subtract_deref(nir_builder *b, nir_deref_instr *deref, int64_t offset)
{
   /* avoid adding another deref to the path */
   if (deref->deref_type == nir_deref_type_ptr_as_array &&
       nir_src_is_const(deref->arr.index) &&
       offset % nir_deref_instr_ptr_as_array_stride(deref) == 0) {
      unsigned stride = nir_deref_instr_ptr_as_array_stride(deref);
      nir_ssa_def *index = nir_imm_intN_t(b, nir_src_as_int(deref->arr.index) - offset / stride,
                                          deref->dest.ssa.bit_size);
      return nir_build_deref_ptr_as_array(b, nir_deref_instr_parent(deref), index);
   }

   if (deref->deref_type == nir_deref_type_array &&
       nir_src_is_const(deref->arr.index)) {
      nir_deref_instr *parent = nir_deref_instr_parent(deref);
      unsigned stride = glsl_get_explicit_stride(parent->type);
      if (offset % stride == 0)
         return nir_build_deref_array_imm(
            b, parent, nir_src_as_int(deref->arr.index) - offset / stride);
   }


   deref = nir_build_deref_cast(b, &deref->dest.ssa, deref->mode,
                                glsl_scalar_type(GLSL_TYPE_UINT8), 1);
   return nir_build_deref_ptr_as_array(
      b, deref, nir_imm_intN_t(b, -offset, deref->dest.ssa.bit_size));
}

static bool update_align(struct entry *entry)
{
   bool has_align_index =
      nir_intrinsic_infos[entry->intrin->intrinsic].index_map[NIR_INTRINSIC_ALIGN_MUL];
   if (has_align_index) {
      unsigned align = get_best_align(entry);
      if (align != nir_intrinsic_align(entry->intrin)) {
         nir_intrinsic_set_align(entry->intrin, align, 0);
         return true;
      }
   }
   return false;
}

static void
vectorize_loads(nir_builder *b, struct vectorize_ctx *ctx,
                struct entry *low, struct entry *high,
                struct entry *first, struct entry *second,
                unsigned new_bit_size, unsigned new_num_components,
                unsigned high_start)
{
   unsigned low_bit_size = get_bit_size(low);
   unsigned high_bit_size = get_bit_size(high);
   bool low_bool = low->intrin->dest.ssa.bit_size == 1;
   bool high_bool = high->intrin->dest.ssa.bit_size == 1;
   nir_ssa_def *data = &first->intrin->dest.ssa;

   b->cursor = nir_after_instr(first->instr);

   /* update the load's destination size and extract data for each of the original loads */
   data->num_components = new_num_components;
   data->bit_size = new_bit_size;

   nir_ssa_def *low_def = nir_extract_bits(
      b, &data, 1, 0, low->intrin->num_components, low_bit_size);
   nir_ssa_def *high_def = nir_extract_bits(
      b, &data, 1, high_start, high->intrin->num_components, high_bit_size);

   /* convert booleans */
   low_def = low_bool ? nir_i2b(b, low_def) : nir_mov(b, low_def);
   high_def = high_bool ? nir_i2b(b, high_def) : nir_mov(b, high_def);

   /* update uses */
   if (first == low) {
      nir_ssa_def_rewrite_uses_after(&low->intrin->dest.ssa, nir_src_for_ssa(low_def),
                                     high_def->parent_instr);
      nir_ssa_def_rewrite_uses(&high->intrin->dest.ssa, nir_src_for_ssa(high_def));
   } else {
      nir_ssa_def_rewrite_uses(&low->intrin->dest.ssa, nir_src_for_ssa(low_def));
      nir_ssa_def_rewrite_uses_after(&high->intrin->dest.ssa, nir_src_for_ssa(high_def),
                                     high_def->parent_instr);
   }

   /* update the intrinsic */
   first->intrin->num_components = new_num_components;

   const struct intrinsic_info *info = first->info;

   /* update the offset */
   if (first != low && info->base_src >= 0) {
      /* let nir_opt_algebraic() remove this addition. this doesn't have much
       * issues with subtracting 16 from expressions like "(i + 1) * 16" because
       * nir_opt_algebraic() turns them into "i * 16 + 16" */
      b->cursor = nir_before_instr(first->instr);

      nir_ssa_def *new_base = first->intrin->src[info->base_src].ssa;
      new_base = nir_iadd_imm(b, new_base, -(int)(high_start / 8u));

      nir_instr_rewrite_src(first->instr, &first->intrin->src[info->base_src],
                            nir_src_for_ssa(new_base));
   }

   /* update the deref */
   if (info->deref_src >= 0) {
      b->cursor = nir_before_instr(first->instr);

      nir_deref_instr *deref = nir_src_as_deref(first->intrin->src[info->deref_src]);
      if (first != low && high_start != 0)
         deref = subtract_deref(b, deref, high_start / 8u);
      first->deref = cast_deref(b, new_num_components, new_bit_size, deref);

      nir_instr_rewrite_src(first->instr, &first->intrin->src[info->deref_src],
                            nir_src_for_ssa(&first->deref->dest.ssa));
   }

   /* update base/align */
   bool has_base_index =
      nir_intrinsic_infos[first->intrin->intrinsic].index_map[NIR_INTRINSIC_BASE];

   if (first != low && has_base_index)
      nir_intrinsic_set_base(first->intrin, nir_intrinsic_base(low->intrin));

   first->key = low->key;
   first->offset = low->offset;
   first->best_align = get_best_align(low);

   update_align(first);

   nir_instr_remove(second->instr);
}

static void
vectorize_stores(nir_builder *b, struct vectorize_ctx *ctx,
                 struct entry *low, struct entry *high,
                 struct entry *first, struct entry *second,
                 unsigned new_bit_size, unsigned new_num_components,
                 unsigned high_start)
{
   ASSERTED unsigned low_size = low->intrin->num_components * get_bit_size(low);
   assert(low_size % new_bit_size == 0);

   b->cursor = nir_before_instr(second->instr);

   /* get new writemasks */
   uint32_t low_write_mask = nir_intrinsic_write_mask(low->intrin);
   uint32_t high_write_mask = nir_intrinsic_write_mask(high->intrin);
   low_write_mask = update_writemask(low_write_mask, get_bit_size(low), new_bit_size);
   high_write_mask = update_writemask(high_write_mask, get_bit_size(high), new_bit_size);
   high_write_mask <<= high_start / new_bit_size;

   uint32_t write_mask = low_write_mask | high_write_mask;

   /* convert booleans */
   nir_ssa_def *low_val = low->intrin->src[low->info->value_src].ssa;
   nir_ssa_def *high_val = high->intrin->src[high->info->value_src].ssa;
   low_val = low_val->bit_size == 1 ? nir_b2i(b, low_val, 32) : low_val;
   high_val = high_val->bit_size == 1 ? nir_b2i(b, high_val, 32) : high_val;

   /* combine the data */
   nir_ssa_def *data_channels[NIR_MAX_VEC_COMPONENTS];
   for (unsigned i = 0; i < new_num_components; i++) {
      bool set_low = low_write_mask & (1 << i);
      bool set_high = high_write_mask & (1 << i);

      if (set_low && (!set_high || low == second)) {
         unsigned offset = i * new_bit_size;
         data_channels[i] = nir_extract_bits(b, &low_val, 1, offset, 1, new_bit_size);
      } else if (set_high) {
         assert(!set_low || high == second);
         unsigned offset = i * new_bit_size - high_start;
         data_channels[i] = nir_extract_bits(b, &high_val, 1, offset, 1, new_bit_size);
      } else {
         data_channels[i] = nir_ssa_undef(b, 1, new_bit_size);
      }
   }
   nir_ssa_def *data = nir_vec(b, data_channels, new_num_components);

   /* update the intrinsic */
   nir_intrinsic_set_write_mask(second->intrin, write_mask);
   second->intrin->num_components = data->num_components;

   const struct intrinsic_info *info = second->info;
   assert(info->value_src >= 0);
   nir_instr_rewrite_src(second->instr, &second->intrin->src[info->value_src],
                         nir_src_for_ssa(data));

   /* update the offset */
   if (second != low && info->base_src >= 0)
      nir_instr_rewrite_src(second->instr, &second->intrin->src[info->base_src],
                            low->intrin->src[info->base_src]);

   /* update the deref */
   if (info->deref_src >= 0) {
      b->cursor = nir_before_instr(second->instr);
      second->deref = cast_deref(b, new_num_components, new_bit_size,
                                 nir_src_as_deref(low->intrin->src[info->deref_src]));
      nir_instr_rewrite_src(second->instr, &second->intrin->src[info->deref_src],
                            nir_src_for_ssa(&second->deref->dest.ssa));
   }

   /* update base/align */
   bool has_base_index =
      nir_intrinsic_infos[second->intrin->intrinsic].index_map[NIR_INTRINSIC_BASE];

   if (second != low && has_base_index)
      nir_intrinsic_set_base(second->intrin, nir_intrinsic_base(low->intrin));

   second->key = low->key;
   second->offset = low->offset;
   second->best_align = get_best_align(low);

   update_align(second);

   list_del(&first->head);
   nir_instr_remove(first->instr);
}

/* Returns true if it can prove that "a" and "b" point to different resources. */
static bool
resources_different(nir_ssa_def *a, nir_ssa_def *b)
{
   if (!a || !b)
      return false;

   if (a->parent_instr->type == nir_instr_type_load_const &&
       b->parent_instr->type == nir_instr_type_load_const) {
      return nir_src_as_uint(nir_src_for_ssa(a)) != nir_src_as_uint(nir_src_for_ssa(b));
   }

   if (a->parent_instr->type == nir_instr_type_intrinsic &&
       b->parent_instr->type == nir_instr_type_intrinsic) {
      nir_intrinsic_instr *aintrin = nir_instr_as_intrinsic(a->parent_instr);
      nir_intrinsic_instr *bintrin = nir_instr_as_intrinsic(b->parent_instr);
      if (aintrin->intrinsic == nir_intrinsic_vulkan_resource_index &&
          bintrin->intrinsic == nir_intrinsic_vulkan_resource_index) {
         return nir_intrinsic_desc_set(aintrin) != nir_intrinsic_desc_set(bintrin) ||
                nir_intrinsic_binding(aintrin) != nir_intrinsic_binding(bintrin) ||
                resources_different(aintrin->src[0].ssa, bintrin->src[0].ssa);
      }
   }

   return false;
}

static int64_t
compare_entries(struct entry *a, struct entry *b)
{
   if (!entry_key_equals(a->key, b->key))
      return INT64_MAX;
   return b->offset_signed - a->offset_signed;
}

static bool
may_alias(struct entry *a, struct entry *b)
{
   assert(mode_to_index(get_variable_mode(a)) ==
          mode_to_index(get_variable_mode(b)));

   /* if the resources/variables are definitively different and both have
    * ACCESS_RESTRICT, we can assume they do not alias. */
   bool res_different = a->key->var != b->key->var ||
                        resources_different(a->key->resource, b->key->resource);
   if (res_different && (a->access & ACCESS_RESTRICT) && (b->access & ACCESS_RESTRICT))
      return false;

   /* we can't compare offsets if the resources/variables might be different */
   if (a->key->var != b->key->var || a->key->resource != b->key->resource)
      return true;

   /* use adjacency information */
   /* TODO: we can look closer at the entry keys */
   int64_t diff = compare_entries(a, b);
   if (diff != INT64_MAX) {
      /* with atomics, intrin->num_components can be 0 */
      if (diff < 0)
         return llabs(diff) < MAX2(b->intrin->num_components, 1u) * (get_bit_size(b) / 8u);
      else
         return diff < MAX2(a->intrin->num_components, 1u) * (get_bit_size(a) / 8u);
   }

   /* TODO: we can use deref information */

   return true;
}

static bool
check_for_aliasing(struct vectorize_ctx *ctx, struct entry *first, struct entry *second)
{
   nir_variable_mode mode = get_variable_mode(first);
   if (mode & (nir_var_uniform | nir_var_system_value |
               nir_var_mem_push_const | nir_var_mem_ubo))
      return false;

   unsigned mode_index = mode_to_index(mode);
   if (first->is_store) {
      /* find first entry that aliases "first" */
      list_for_each_entry_from(struct entry, next, first, &ctx->entries[mode_index], head) {
         if (next == first)
            continue;
         if (next == second)
            return false;
         if (may_alias(first, next))
            return true;
      }
   } else {
      /* find previous store that aliases this load */
      list_for_each_entry_from_rev(struct entry, prev, second, &ctx->entries[mode_index], head) {
         if (prev == second)
            continue;
         if (prev == first)
            return false;
         if (prev->is_store && may_alias(second, prev))
            return true;
      }
   }

   return false;
}

static bool
is_strided_vector(const struct glsl_type *type)
{
   if (glsl_type_is_vector(type)) {
      unsigned explicit_stride = glsl_get_explicit_stride(type);
      return explicit_stride != 0 && explicit_stride !=
             type_scalar_size_bytes(glsl_get_array_element(type));
   } else {
      return false;
   }
}

static bool
try_vectorize(nir_function_impl *impl, struct vectorize_ctx *ctx,
              struct entry *low, struct entry *high,
              struct entry *first, struct entry *second)
{
   if (!(get_variable_mode(first) & ctx->modes) ||
       !(get_variable_mode(second) & ctx->modes))
      return false;

   if (check_for_aliasing(ctx, first, second))
      return false;

   /* we can only vectorize non-volatile loads/stores of the same type and with
    * the same access */
   if (first->info != second->info || first->access != second->access ||
       (first->access & ACCESS_VOLATILE) || first->info->is_atomic)
      return false;

   /* don't attempt to vectorize accesses of row-major matrix columns */
   if (first->deref) {
      const struct glsl_type *first_type = first->deref->type;
      const struct glsl_type *second_type = second->deref->type;
      if (is_strided_vector(first_type) || is_strided_vector(second_type))
         return false;
   }

   /* gather information */
   uint64_t diff = high->offset_signed - low->offset_signed;
   unsigned low_bit_size = get_bit_size(low);
   unsigned high_bit_size = get_bit_size(high);
   unsigned low_size = low->intrin->num_components * low_bit_size;
   unsigned high_size = high->intrin->num_components * high_bit_size;
   unsigned new_size = MAX2(diff * 8u + high_size, low_size);

   /* find a good bit size for the new load/store */
   unsigned new_bit_size = 0;
   if (new_bitsize_acceptable(ctx, low_bit_size, low, high, new_size)) {
      new_bit_size = low_bit_size;
   } else if (low_bit_size != high_bit_size &&
              new_bitsize_acceptable(ctx, high_bit_size, low, high, new_size)) {
      new_bit_size = high_bit_size;
   } else {
      new_bit_size = 64;
      for (; new_bit_size >= 8; new_bit_size /= 2) {
         /* don't repeat trying out bitsizes */
         if (new_bit_size == low_bit_size || new_bit_size == high_bit_size)
            continue;
         if (new_bitsize_acceptable(ctx, new_bit_size, low, high, new_size))
            break;
      }
      if (new_bit_size < 8)
         return false;
   }
   unsigned new_num_components = new_size / new_bit_size;

   /* vectorize the loads/stores */
   nir_builder b;
   nir_builder_init(&b, impl);

   if (first->is_store)
      vectorize_stores(&b, ctx, low, high, first, second,
                       new_bit_size, new_num_components, diff * 8u);
   else
      vectorize_loads(&b, ctx, low, high, first, second,
                      new_bit_size, new_num_components, diff * 8u);

   return true;
}

static bool
vectorize_entries(struct vectorize_ctx *ctx, nir_function_impl *impl, struct hash_table *ht)
{
   if (!ht)
      return false;

   bool progress = false;
   hash_table_foreach(ht, entry) {
      struct util_dynarray *arr = entry->data;
      if (!arr->size)
         continue;

      qsort(util_dynarray_begin(arr),
            util_dynarray_num_elements(arr, struct entry *),
            sizeof(struct entry *), &sort_entries);

      unsigned i = 0;
      for (; i < util_dynarray_num_elements(arr, struct entry*) - 1; i++) {
         struct entry *low = *util_dynarray_element(arr, struct entry *, i);
         struct entry *high = *util_dynarray_element(arr, struct entry *, i + 1);

         uint64_t diff = high->offset_signed - low->offset_signed;
         if (diff > get_bit_size(low) / 8u * low->intrin->num_components) {
            progress |= update_align(low);
            continue;
         }

         struct entry *first = low->index < high->index ? low : high;
         struct entry *second = low->index < high->index ? high : low;

         if (try_vectorize(impl, ctx, low, high, first, second)) {
            *util_dynarray_element(arr, struct entry *, i) = NULL;
            *util_dynarray_element(arr, struct entry *, i + 1) = low->is_store ? second : first;
            progress = true;
         } else {
            progress |= update_align(low);
         }
      }

      struct entry *last = *util_dynarray_element(arr, struct entry *, i);
      progress |= update_align(last);
   }

   _mesa_hash_table_clear(ht, delete_entry_dynarray);

   return progress;
}

static bool
handle_barrier(struct vectorize_ctx *ctx, bool *progress, nir_function_impl *impl, nir_instr *instr)
{
   unsigned modes = 0;
   bool acquire = true;
   bool release = true;
   if (instr->type == nir_instr_type_intrinsic) {
      nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
      switch (intrin->intrinsic) {
      case nir_intrinsic_group_memory_barrier:
      case nir_intrinsic_memory_barrier:
         modes = nir_var_mem_ssbo | nir_var_mem_shared | nir_var_mem_global;
         break;
      /* prevent speculative loads/stores */
      case nir_intrinsic_discard_if:
      case nir_intrinsic_discard:
         modes = nir_var_all;
         break;
      case nir_intrinsic_memory_barrier_buffer:
         modes = nir_var_mem_ssbo | nir_var_mem_global;
         break;
      case nir_intrinsic_memory_barrier_shared:
         modes = nir_var_mem_shared;
         break;
      case nir_intrinsic_scoped_memory_barrier:
         modes = nir_intrinsic_memory_modes(intrin);
         acquire = nir_intrinsic_memory_semantics(intrin) & NIR_MEMORY_ACQUIRE;
         release = nir_intrinsic_memory_semantics(intrin) & NIR_MEMORY_RELEASE;
         switch (nir_intrinsic_memory_scope(intrin)) {
         case NIR_SCOPE_INVOCATION:
         case NIR_SCOPE_SUBGROUP:
            /* a barier should never be required for correctness with these scopes */
            modes = 0;
            break;
         default:
            break;
         }
         break;
      default:
         return false;
      }
   } else if (instr->type == nir_instr_type_call) {
      modes = nir_var_all;
   } else {
      return false;
   }

   while (modes) {
      unsigned mode_index = u_bit_scan(&modes);
      if ((1 << mode_index) == nir_var_mem_global) {
         /* Global should be rolled in with SSBO */
         assert(list_is_empty(&ctx->entries[mode_index]));
         assert(ctx->loads[mode_index] == NULL);
         assert(ctx->stores[mode_index] == NULL);
         continue;
      }

      if (acquire)
         *progress |= vectorize_entries(ctx, impl, ctx->loads[mode_index]);
      if (release)
         *progress |= vectorize_entries(ctx, impl, ctx->stores[mode_index]);
   }

   return true;
}

static bool
process_block(nir_function_impl *impl, struct vectorize_ctx *ctx, nir_block *block)
{
   bool progress = false;

   for (unsigned i = 0; i < nir_num_variable_modes; i++) {
      list_inithead(&ctx->entries[i]);
      if (ctx->loads[i])
         _mesa_hash_table_clear(ctx->loads[i], delete_entry_dynarray);
      if (ctx->stores[i])
         _mesa_hash_table_clear(ctx->stores[i], delete_entry_dynarray);
   }

   /* create entries */
   unsigned next_index = 0;

   nir_foreach_instr_safe(instr, block) {
      if (handle_barrier(ctx, &progress, impl, instr))
         continue;

      /* gather information */
      if (instr->type != nir_instr_type_intrinsic)
         continue;
      nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);

      const struct intrinsic_info *info = get_info(intrin->intrinsic); 
      if (!info)
         continue;

      nir_variable_mode mode = info->mode;
      if (!mode)
         mode = nir_src_as_deref(intrin->src[info->deref_src])->mode;
      if (!(mode & aliasing_modes(ctx->modes)))
         continue;
      unsigned mode_index = mode_to_index(mode);

      /* create entry */
      struct entry *entry = create_entry(ctx, info, intrin);
      entry->index = next_index++;

      list_addtail(&entry->head, &ctx->entries[mode_index]);

      /* add the entry to a hash table */

      struct hash_table *adj_ht = NULL;
      if (entry->is_store) {
         if (!ctx->stores[mode_index])
            ctx->stores[mode_index] = _mesa_hash_table_create(ctx, &hash_entry_key, &entry_key_equals);
         adj_ht = ctx->stores[mode_index];
      } else {
         if (!ctx->loads[mode_index])
            ctx->loads[mode_index] = _mesa_hash_table_create(ctx, &hash_entry_key, &entry_key_equals);
         adj_ht = ctx->loads[mode_index];
      }

      uint32_t key_hash = hash_entry_key(entry->key);
      struct hash_entry *adj_entry = _mesa_hash_table_search_pre_hashed(adj_ht, key_hash, entry->key);
      struct util_dynarray *arr;
      if (adj_entry && adj_entry->data) {
         arr = (struct util_dynarray *)adj_entry->data;
      } else {
         arr = ralloc(ctx, struct util_dynarray);
         util_dynarray_init(arr, arr);
         _mesa_hash_table_insert_pre_hashed(adj_ht, key_hash, entry->key, arr);
      }
      util_dynarray_append(arr, struct entry *, entry);
   }

   /* sort and combine entries */
   for (unsigned i = 0; i < nir_num_variable_modes; i++) {
      progress |= vectorize_entries(ctx, impl, ctx->loads[i]);
      progress |= vectorize_entries(ctx, impl, ctx->stores[i]);
   }

   return progress;
}

bool
nir_opt_load_store_vectorize(nir_shader *shader, nir_variable_mode modes,
                             nir_should_vectorize_mem_func callback)
{
   bool progress = false;

   struct vectorize_ctx *ctx = rzalloc(NULL, struct vectorize_ctx);
   ctx->modes = modes;
   ctx->callback = callback;

   nir_index_vars(shader, NULL, modes);

   nir_foreach_function(function, shader) {
      if (function->impl) {
         if (modes & nir_var_function_temp)
            nir_index_vars(shader, function->impl, nir_var_function_temp);

         nir_foreach_block(block, function->impl)
            progress |= process_block(function->impl, ctx, block);

         nir_metadata_preserve(function->impl,
                               nir_metadata_block_index |
                               nir_metadata_dominance |
                               nir_metadata_live_ssa_defs);
      }
   }

   ralloc_free(ctx);
   return progress;
}