summaryrefslogtreecommitdiff
path: root/src/compiler/glsl/ast_function.cpp
blob: 2be7a8c195d72f8fd607f617f02fd43c6a0f8834 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
/*
 * Copyright © 2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

#include "glsl_symbol_table.h"
#include "ast.h"
#include "compiler/glsl_types.h"
#include "ir.h"
#include "main/mtypes.h"
#include "main/shaderobj.h"
#include "builtin_functions.h"

static ir_rvalue *
convert_component(ir_rvalue *src, const glsl_type *desired_type);

static unsigned
process_parameters(exec_list *instructions, exec_list *actual_parameters,
                   exec_list *parameters,
                   struct _mesa_glsl_parse_state *state)
{
   void *mem_ctx = state;
   unsigned count = 0;

   foreach_list_typed(ast_node, ast, link, parameters) {
      /* We need to process the parameters first in order to know if we can
       * raise or not a unitialized warning. Calling set_is_lhs silence the
       * warning for now. Raising the warning or not will be checked at
       * verify_parameter_modes.
       */
      ast->set_is_lhs(true);
      ir_rvalue *result = ast->hir(instructions, state);

      ir_constant *const constant =
         result->constant_expression_value(mem_ctx);

      if (constant != NULL)
         result = constant;

      actual_parameters->push_tail(result);
      count++;
   }

   return count;
}


/**
 * Generate a source prototype for a function signature
 *
 * \param return_type Return type of the function.  May be \c NULL.
 * \param name        Name of the function.
 * \param parameters  List of \c ir_instruction nodes representing the
 *                    parameter list for the function.  This may be either a
 *                    formal (\c ir_variable) or actual (\c ir_rvalue)
 *                    parameter list.  Only the type is used.
 *
 * \return
 * A ralloced string representing the prototype of the function.
 */
char *
prototype_string(const glsl_type *return_type, const char *name,
                 exec_list *parameters)
{
   char *str = NULL;

   if (return_type != NULL)
      str = ralloc_asprintf(NULL, "%s ", return_type->name);

   ralloc_asprintf_append(&str, "%s(", name);

   const char *comma = "";
   foreach_in_list(const ir_variable, param, parameters) {
      ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
      comma = ", ";
   }

   ralloc_strcat(&str, ")");
   return str;
}

static bool
verify_image_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
                       const ir_variable *formal, const ir_variable *actual)
{
   /**
    * From the ARB_shader_image_load_store specification:
    *
    * "The values of image variables qualified with coherent,
    *  volatile, restrict, readonly, or writeonly may not be passed
    *  to functions whose formal parameters lack such
    *  qualifiers. [...] It is legal to have additional qualifiers
    *  on a formal parameter, but not to have fewer."
    */
   if (actual->data.memory_coherent && !formal->data.memory_coherent) {
      _mesa_glsl_error(loc, state,
                       "function call parameter `%s' drops "
                       "`coherent' qualifier", formal->name);
      return false;
   }

   if (actual->data.memory_volatile && !formal->data.memory_volatile) {
      _mesa_glsl_error(loc, state,
                       "function call parameter `%s' drops "
                       "`volatile' qualifier", formal->name);
      return false;
   }

   if (actual->data.memory_restrict && !formal->data.memory_restrict) {
      _mesa_glsl_error(loc, state,
                       "function call parameter `%s' drops "
                       "`restrict' qualifier", formal->name);
      return false;
   }

   if (actual->data.memory_read_only && !formal->data.memory_read_only) {
      _mesa_glsl_error(loc, state,
                       "function call parameter `%s' drops "
                       "`readonly' qualifier", formal->name);
      return false;
   }

   if (actual->data.memory_write_only && !formal->data.memory_write_only) {
      _mesa_glsl_error(loc, state,
                       "function call parameter `%s' drops "
                       "`writeonly' qualifier", formal->name);
      return false;
   }

   return true;
}

static bool
verify_first_atomic_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
                              ir_variable *var)
{
   if (!var ||
       (!var->is_in_shader_storage_block() &&
        var->data.mode != ir_var_shader_shared)) {
      _mesa_glsl_error(loc, state, "First argument to atomic function "
                       "must be a buffer or shared variable");
      return false;
   }
   return true;
}

static bool
is_atomic_function(const char *func_name)
{
   return !strcmp(func_name, "atomicAdd") ||
          !strcmp(func_name, "atomicMin") ||
          !strcmp(func_name, "atomicMax") ||
          !strcmp(func_name, "atomicAnd") ||
          !strcmp(func_name, "atomicOr") ||
          !strcmp(func_name, "atomicXor") ||
          !strcmp(func_name, "atomicExchange") ||
          !strcmp(func_name, "atomicCompSwap");
}

/**
 * Verify that 'out' and 'inout' actual parameters are lvalues.  Also, verify
 * that 'const_in' formal parameters (an extension in our IR) correspond to
 * ir_constant actual parameters.
 */
static bool
verify_parameter_modes(_mesa_glsl_parse_state *state,
                       ir_function_signature *sig,
                       exec_list &actual_ir_parameters,
                       exec_list &actual_ast_parameters)
{
   exec_node *actual_ir_node  = actual_ir_parameters.get_head_raw();
   exec_node *actual_ast_node = actual_ast_parameters.get_head_raw();

   foreach_in_list(const ir_variable, formal, &sig->parameters) {
      /* The lists must be the same length. */
      assert(!actual_ir_node->is_tail_sentinel());
      assert(!actual_ast_node->is_tail_sentinel());

      const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
      const ast_expression *const actual_ast =
         exec_node_data(ast_expression, actual_ast_node, link);

      /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
       * FIXME: 0:0(0).
       */
      YYLTYPE loc = actual_ast->get_location();

      /* Verify that 'const_in' parameters are ir_constants. */
      if (formal->data.mode == ir_var_const_in &&
          actual->ir_type != ir_type_constant) {
         _mesa_glsl_error(&loc, state,
                          "parameter `in %s' must be a constant expression",
                          formal->name);
         return false;
      }

      /* Verify that shader_in parameters are shader inputs */
      if (formal->data.must_be_shader_input) {
         const ir_rvalue *val = actual;

         /* GLSL 4.40 allows swizzles, while earlier GLSL versions do not. */
         if (val->ir_type == ir_type_swizzle) {
            if (!state->is_version(440, 0)) {
               _mesa_glsl_error(&loc, state,
                                "parameter `%s` must not be swizzled",
                                formal->name);
               return false;
            }
            val = ((ir_swizzle *)val)->val;
         }

         for (;;) {
            if (val->ir_type == ir_type_dereference_array) {
               val = ((ir_dereference_array *)val)->array;
            } else if (val->ir_type == ir_type_dereference_record &&
                       !state->es_shader) {
               val = ((ir_dereference_record *)val)->record;
            } else
               break;
         }

         ir_variable *var = NULL;
         if (const ir_dereference_variable *deref_var = val->as_dereference_variable())
            var = deref_var->variable_referenced();

         if (!var || var->data.mode != ir_var_shader_in) {
            _mesa_glsl_error(&loc, state,
                             "parameter `%s` must be a shader input",
                             formal->name);
            return false;
         }

         var->data.must_be_shader_input = 1;
      }

      /* Verify that 'out' and 'inout' actual parameters are lvalues. */
      if (formal->data.mode == ir_var_function_out
          || formal->data.mode == ir_var_function_inout) {
         const char *mode = NULL;
         switch (formal->data.mode) {
         case ir_var_function_out:   mode = "out";   break;
         case ir_var_function_inout: mode = "inout"; break;
         default:                    assert(false);  break;
         }

         /* This AST-based check catches errors like f(i++).  The IR-based
          * is_lvalue() is insufficient because the actual parameter at the
          * IR-level is just a temporary value, which is an l-value.
          */
         if (actual_ast->non_lvalue_description != NULL) {
            _mesa_glsl_error(&loc, state,
                             "function parameter '%s %s' references a %s",
                             mode, formal->name,
                             actual_ast->non_lvalue_description);
            return false;
         }

         ir_variable *var = actual->variable_referenced();

         if (var && formal->data.mode == ir_var_function_inout) {
            if ((var->data.mode == ir_var_auto ||
                 var->data.mode == ir_var_shader_out) &&
                !var->data.assigned &&
                !is_gl_identifier(var->name)) {
               _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
                                  var->name);
            }
         }

         if (var)
            var->data.assigned = true;

         if (var && var->data.read_only) {
            _mesa_glsl_error(&loc, state,
                             "function parameter '%s %s' references the "
                             "read-only variable '%s'",
                             mode, formal->name,
                             actual->variable_referenced()->name);
            return false;
         } else if (!actual->is_lvalue(state)) {
            _mesa_glsl_error(&loc, state,
                             "function parameter '%s %s' is not an lvalue",
                             mode, formal->name);
            return false;
         }
      } else {
         assert(formal->data.mode == ir_var_function_in ||
                formal->data.mode == ir_var_const_in);
         ir_variable *var = actual->variable_referenced();
         if (var) {
            if ((var->data.mode == ir_var_auto ||
                 var->data.mode == ir_var_shader_out) &&
                !var->data.assigned &&
                !is_gl_identifier(var->name)) {
               _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
                                  var->name);
            }
         }
      }

      if (formal->type->is_image() &&
          actual->variable_referenced()) {
         if (!verify_image_parameter(&loc, state, formal,
                                     actual->variable_referenced()))
            return false;
      }

      actual_ir_node  = actual_ir_node->next;
      actual_ast_node = actual_ast_node->next;
   }

   /* The first parameter of atomic functions must be a buffer variable */
   const char *func_name = sig->function_name();
   bool is_atomic = is_atomic_function(func_name);
   if (is_atomic) {
      const ir_rvalue *const actual =
         (ir_rvalue *) actual_ir_parameters.get_head_raw();

      const ast_expression *const actual_ast =
         exec_node_data(ast_expression,
                        actual_ast_parameters.get_head_raw(), link);
      YYLTYPE loc = actual_ast->get_location();

      if (!verify_first_atomic_parameter(&loc, state,
                                         actual->variable_referenced())) {
         return false;
      }
   }

   return true;
}

struct copy_index_deref_data {
   void *mem_ctx;
   exec_list *before_instructions;
};

static void
copy_index_derefs_to_temps(ir_instruction *ir, void *data)
{
   struct copy_index_deref_data *d = (struct copy_index_deref_data *)data;

   if (ir->ir_type == ir_type_dereference_array) {
      ir_dereference_array *a = (ir_dereference_array *) ir;
      ir = a->array->as_dereference();

      ir_rvalue *idx = a->array_index;
      ir_variable *var = idx->variable_referenced();

      /* If the index is read only it cannot change so there is no need
       * to copy it.
       */
      if (!var || var->data.read_only || var->data.memory_read_only)
         return;

      ir_variable *tmp = new(d->mem_ctx) ir_variable(idx->type, "idx_tmp",
                                                      ir_var_temporary);
      d->before_instructions->push_tail(tmp);

      ir_dereference_variable *const deref_tmp_1 =
         new(d->mem_ctx) ir_dereference_variable(tmp);
      ir_assignment *const assignment =
         new(d->mem_ctx) ir_assignment(deref_tmp_1,
                                       idx->clone(d->mem_ctx, NULL));
      d->before_instructions->push_tail(assignment);

      /* Replace the array index with a dereference of the new temporary */
      ir_dereference_variable *const deref_tmp_2 =
         new(d->mem_ctx) ir_dereference_variable(tmp);
      a->array_index = deref_tmp_2;
   }
}

static void
fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type,
              exec_list *before_instructions, exec_list *after_instructions,
              bool parameter_is_inout)
{
   ir_expression *const expr = actual->as_expression();

   /* If the types match exactly and the parameter is not a vector-extract,
    * nothing needs to be done to fix the parameter.
    */
   if (formal_type == actual->type
       && (expr == NULL || expr->operation != ir_binop_vector_extract)
       && actual->as_dereference_variable())
      return;

   /* An array index could also be an out variable so we need to make a copy
    * of them before the function is called.
    */
   if (!actual->as_dereference_variable()) {
      struct copy_index_deref_data data;
      data.mem_ctx = mem_ctx;
      data.before_instructions = before_instructions;

      visit_tree(actual, copy_index_derefs_to_temps, &data);
   }

   /* To convert an out parameter, we need to create a temporary variable to
    * hold the value before conversion, and then perform the conversion after
    * the function call returns.
    *
    * This has the effect of transforming code like this:
    *
    *   void f(out int x);
    *   float value;
    *   f(value);
    *
    * Into IR that's equivalent to this:
    *
    *   void f(out int x);
    *   float value;
    *   int out_parameter_conversion;
    *   f(out_parameter_conversion);
    *   value = float(out_parameter_conversion);
    *
    * If the parameter is an ir_expression of ir_binop_vector_extract,
    * additional conversion is needed in the post-call re-write.
    */
   ir_variable *tmp =
      new(mem_ctx) ir_variable(formal_type, "inout_tmp", ir_var_temporary);

   before_instructions->push_tail(tmp);

   /* If the parameter is an inout parameter, copy the value of the actual
    * parameter to the new temporary.  Note that no type conversion is allowed
    * here because inout parameters must match types exactly.
    */
   if (parameter_is_inout) {
      /* Inout parameters should never require conversion, since that would
       * require an implicit conversion to exist both to and from the formal
       * parameter type, and there are no bidirectional implicit conversions.
       */
      assert (actual->type == formal_type);

      ir_dereference_variable *const deref_tmp_1 =
         new(mem_ctx) ir_dereference_variable(tmp);
      ir_assignment *const assignment =
         new(mem_ctx) ir_assignment(deref_tmp_1, actual->clone(mem_ctx, NULL));
      before_instructions->push_tail(assignment);
   }

   /* Replace the parameter in the call with a dereference of the new
    * temporary.
    */
   ir_dereference_variable *const deref_tmp_2 =
      new(mem_ctx) ir_dereference_variable(tmp);
   actual->replace_with(deref_tmp_2);


   /* Copy the temporary variable to the actual parameter with optional
    * type conversion applied.
    */
   ir_rvalue *rhs = new(mem_ctx) ir_dereference_variable(tmp);
   if (actual->type != formal_type)
      rhs = convert_component(rhs, actual->type);

   ir_rvalue *lhs = actual;
   if (expr != NULL && expr->operation == ir_binop_vector_extract) {
      lhs = new(mem_ctx) ir_dereference_array(expr->operands[0]->clone(mem_ctx,
                                                                       NULL),
                                              expr->operands[1]->clone(mem_ctx,
                                                                       NULL));
   }

   ir_assignment *const assignment_2 = new(mem_ctx) ir_assignment(lhs, rhs);
   after_instructions->push_tail(assignment_2);
}

/**
 * Generate a function call.
 *
 * For non-void functions, this returns a dereference of the temporary
 * variable which stores the return value for the call.  For void functions,
 * this returns NULL.
 */
static ir_rvalue *
generate_call(exec_list *instructions, ir_function_signature *sig,
              exec_list *actual_parameters,
              ir_variable *sub_var,
              ir_rvalue *array_idx,
              struct _mesa_glsl_parse_state *state)
{
   void *ctx = state;
   exec_list post_call_conversions;

   /* Perform implicit conversion of arguments.  For out parameters, we need
    * to place them in a temporary variable and do the conversion after the
    * call takes place.  Since we haven't emitted the call yet, we'll place
    * the post-call conversions in a temporary exec_list, and emit them later.
    */
   foreach_two_lists(formal_node, &sig->parameters,
                     actual_node, actual_parameters) {
      ir_rvalue *actual = (ir_rvalue *) actual_node;
      ir_variable *formal = (ir_variable *) formal_node;

      if (formal->type->is_numeric() || formal->type->is_boolean()) {
         switch (formal->data.mode) {
         case ir_var_const_in:
         case ir_var_function_in: {
            ir_rvalue *converted
               = convert_component(actual, formal->type);
            actual->replace_with(converted);
            break;
         }
         case ir_var_function_out:
         case ir_var_function_inout:
            fix_parameter(ctx, actual, formal->type,
                          instructions, &post_call_conversions,
                          formal->data.mode == ir_var_function_inout);
            break;
         default:
            assert (!"Illegal formal parameter mode");
            break;
         }
      }
   }

   /* Section 4.3.2 (Const) of the GLSL 1.10.59 spec says:
    *
    *     "Initializers for const declarations must be formed from literal
    *     values, other const variables (not including function call
    *     paramaters), or expressions of these.
    *
    *     Constructors may be used in such expressions, but function calls may
    *     not."
    *
    * Section 4.3.3 (Constant Expressions) of the GLSL 1.20.8 spec says:
    *
    *     "A constant expression is one of
    *
    *         ...
    *
    *         - a built-in function call whose arguments are all constant
    *           expressions, with the exception of the texture lookup
    *           functions, the noise functions, and ftransform. The built-in
    *           functions dFdx, dFdy, and fwidth must return 0 when evaluated
    *           inside an initializer with an argument that is a constant
    *           expression."
    *
    * Section 5.10 (Constant Expressions) of the GLSL ES 1.00.17 spec says:
    *
    *     "A constant expression is one of
    *
    *         ...
    *
    *         - a built-in function call whose arguments are all constant
    *           expressions, with the exception of the texture lookup
    *           functions."
    *
    * Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec says:
    *
    *     "A constant expression is one of
    *
    *         ...
    *
    *         - a built-in function call whose arguments are all constant
    *           expressions, with the exception of the texture lookup
    *           functions.  The built-in functions dFdx, dFdy, and fwidth must
    *           return 0 when evaluated inside an initializer with an argument
    *           that is a constant expression."
    *
    * If the function call is a constant expression, don't generate any
    * instructions; just generate an ir_constant.
    */
   if (state->is_version(120, 100) ||
       state->ctx->Const.AllowGLSLBuiltinConstantExpression) {
      ir_constant *value = sig->constant_expression_value(ctx,
                                                          actual_parameters,
                                                          NULL);
      if (value != NULL) {
         return value;
      }
   }

   ir_dereference_variable *deref = NULL;
   if (!sig->return_type->is_void()) {
      /* Create a new temporary to hold the return value. */
      char *const name = ir_variable::temporaries_allocate_names
         ? ralloc_asprintf(ctx, "%s_retval", sig->function_name())
         : NULL;

      ir_variable *var;

      var = new(ctx) ir_variable(sig->return_type, name, ir_var_temporary);
      instructions->push_tail(var);

      ralloc_free(name);

      deref = new(ctx) ir_dereference_variable(var);
   }

   ir_call *call = new(ctx) ir_call(sig, deref,
                                    actual_parameters, sub_var, array_idx);
   instructions->push_tail(call);
   if (sig->is_builtin()) {
      /* inline immediately */
      call->generate_inline(call);
      call->remove();
   }

   /* Also emit any necessary out-parameter conversions. */
   instructions->append_list(&post_call_conversions);

   return deref ? deref->clone(ctx, NULL) : NULL;
}

/**
 * Given a function name and parameter list, find the matching signature.
 */
static ir_function_signature *
match_function_by_name(const char *name,
                       exec_list *actual_parameters,
                       struct _mesa_glsl_parse_state *state)
{
   ir_function *f = state->symbols->get_function(name);
   ir_function_signature *local_sig = NULL;
   ir_function_signature *sig = NULL;

   /* Is the function hidden by a record type constructor? */
   if (state->symbols->get_type(name))
      return sig; /* no match */

   /* Is the function hidden by a variable (impossible in 1.10)? */
   if (!state->symbols->separate_function_namespace
       && state->symbols->get_variable(name))
      return sig; /* no match */

   if (f != NULL) {
      /* In desktop GL, the presence of a user-defined signature hides any
       * built-in signatures, so we must ignore them.  In contrast, in ES2
       * user-defined signatures add new overloads, so we must consider them.
       */
      bool allow_builtins = state->es_shader || !f->has_user_signature();

      /* Look for a match in the local shader.  If exact, we're done. */
      bool is_exact = false;
      sig = local_sig = f->matching_signature(state, actual_parameters,
                                              allow_builtins, &is_exact);
      if (is_exact)
         return sig;

      if (!allow_builtins)
         return sig;
   }

   /* Local shader has no exact candidates; check the built-ins. */
   _mesa_glsl_initialize_builtin_functions();
   sig = _mesa_glsl_find_builtin_function(state, name, actual_parameters);

   /* if _mesa_glsl_find_builtin_function failed, fall back to the result
    * of choose_best_inexact_overload() instead. This should only affect
    * GLES.
    */
   return sig ? sig : local_sig;
}

static ir_function_signature *
match_subroutine_by_name(const char *name,
                         exec_list *actual_parameters,
                         struct _mesa_glsl_parse_state *state,
                         ir_variable **var_r)
{
   void *ctx = state;
   ir_function_signature *sig = NULL;
   ir_function *f, *found = NULL;
   const char *new_name;
   ir_variable *var;
   bool is_exact = false;

   new_name =
      ralloc_asprintf(ctx, "%s_%s",
                      _mesa_shader_stage_to_subroutine_prefix(state->stage),
                      name);
   var = state->symbols->get_variable(new_name);
   if (!var)
      return NULL;

   for (int i = 0; i < state->num_subroutine_types; i++) {
      f = state->subroutine_types[i];
      if (strcmp(f->name, var->type->without_array()->name))
         continue;
      found = f;
      break;
   }

   if (!found)
      return NULL;
   *var_r = var;
   sig = found->matching_signature(state, actual_parameters,
                                   false, &is_exact);
   return sig;
}

static ir_rvalue *
generate_array_index(void *mem_ctx, exec_list *instructions,
                     struct _mesa_glsl_parse_state *state, YYLTYPE loc,
                     const ast_expression *array, ast_expression *idx,
                     const char **function_name, exec_list *actual_parameters)
{
   if (array->oper == ast_array_index) {
      /* This handles arrays of arrays */
      ir_rvalue *outer_array = generate_array_index(mem_ctx, instructions,
                                                    state, loc,
                                                    array->subexpressions[0],
                                                    array->subexpressions[1],
                                                    function_name,
                                                    actual_parameters);
      ir_rvalue *outer_array_idx = idx->hir(instructions, state);

      YYLTYPE index_loc = idx->get_location();
      return _mesa_ast_array_index_to_hir(mem_ctx, state, outer_array,
                                          outer_array_idx, loc,
                                          index_loc);
   } else {
      ir_variable *sub_var = NULL;
      *function_name = array->primary_expression.identifier;

      if (!match_subroutine_by_name(*function_name, actual_parameters,
                                    state, &sub_var)) {
         _mesa_glsl_error(&loc, state, "Unknown subroutine `%s'",
                          *function_name);
         *function_name = NULL; /* indicate error condition to caller */
         return NULL;
      }

      ir_rvalue *outer_array_idx = idx->hir(instructions, state);
      return new(mem_ctx) ir_dereference_array(sub_var, outer_array_idx);
   }
}

static void
print_function_prototypes(_mesa_glsl_parse_state *state, YYLTYPE *loc,
                          ir_function *f)
{
   if (f == NULL)
      return;

   foreach_in_list(ir_function_signature, sig, &f->signatures) {
      if (sig->is_builtin() && !sig->is_builtin_available(state))
         continue;

      char *str = prototype_string(sig->return_type, f->name,
                                   &sig->parameters);
      _mesa_glsl_error(loc, state, "   %s", str);
      ralloc_free(str);
   }
}

/**
 * Raise a "no matching function" error, listing all possible overloads the
 * compiler considered so developers can figure out what went wrong.
 */
static void
no_matching_function_error(const char *name,
                           YYLTYPE *loc,
                           exec_list *actual_parameters,
                           _mesa_glsl_parse_state *state)
{
   gl_shader *sh = _mesa_glsl_get_builtin_function_shader();

   if (state->symbols->get_function(name) == NULL
       && (!state->uses_builtin_functions
           || sh->symbols->get_function(name) == NULL)) {
      _mesa_glsl_error(loc, state, "no function with name '%s'", name);
   } else {
      char *str = prototype_string(NULL, name, actual_parameters);
      _mesa_glsl_error(loc, state,
                       "no matching function for call to `%s';"
                       " candidates are:",
                       str);
      ralloc_free(str);

      print_function_prototypes(state, loc,
                                state->symbols->get_function(name));

      if (state->uses_builtin_functions) {
         print_function_prototypes(state, loc,
                                   sh->symbols->get_function(name));
      }
   }
}

/**
 * Perform automatic type conversion of constructor parameters
 *
 * This implements the rules in the "Conversion and Scalar Constructors"
 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
 */
static ir_rvalue *
convert_component(ir_rvalue *src, const glsl_type *desired_type)
{
   void *ctx = ralloc_parent(src);
   const unsigned a = desired_type->base_type;
   const unsigned b = src->type->base_type;
   ir_expression *result = NULL;

   if (src->type->is_error())
      return src;

   assert(a <= GLSL_TYPE_IMAGE);
   assert(b <= GLSL_TYPE_IMAGE);

   if (a == b)
      return src;

   switch (a) {
   case GLSL_TYPE_UINT:
      switch (b) {
      case GLSL_TYPE_INT:
         result = new(ctx) ir_expression(ir_unop_i2u, src);
         break;
      case GLSL_TYPE_FLOAT:
         result = new(ctx) ir_expression(ir_unop_f2u, src);
         break;
      case GLSL_TYPE_BOOL:
         result = new(ctx) ir_expression(ir_unop_i2u,
                                         new(ctx) ir_expression(ir_unop_b2i,
                                                                src));
         break;
      case GLSL_TYPE_DOUBLE:
         result = new(ctx) ir_expression(ir_unop_d2u, src);
         break;
      case GLSL_TYPE_UINT64:
         result = new(ctx) ir_expression(ir_unop_u642u, src);
         break;
      case GLSL_TYPE_INT64:
         result = new(ctx) ir_expression(ir_unop_i642u, src);
         break;
      case GLSL_TYPE_SAMPLER:
         result = new(ctx) ir_expression(ir_unop_unpack_sampler_2x32, src);
         break;
      case GLSL_TYPE_IMAGE:
         result = new(ctx) ir_expression(ir_unop_unpack_image_2x32, src);
         break;
      }
      break;
   case GLSL_TYPE_INT:
      switch (b) {
      case GLSL_TYPE_UINT:
         result = new(ctx) ir_expression(ir_unop_u2i, src);
         break;
      case GLSL_TYPE_FLOAT:
         result = new(ctx) ir_expression(ir_unop_f2i, src);
         break;
      case GLSL_TYPE_BOOL:
         result = new(ctx) ir_expression(ir_unop_b2i, src);
         break;
      case GLSL_TYPE_DOUBLE:
         result = new(ctx) ir_expression(ir_unop_d2i, src);
         break;
      case GLSL_TYPE_UINT64:
         result = new(ctx) ir_expression(ir_unop_u642i, src);
         break;
      case GLSL_TYPE_INT64:
         result = new(ctx) ir_expression(ir_unop_i642i, src);
         break;
      }
      break;
   case GLSL_TYPE_FLOAT:
      switch (b) {
      case GLSL_TYPE_UINT:
         result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
         break;
      case GLSL_TYPE_INT:
         result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
         break;
      case GLSL_TYPE_BOOL:
         result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
         break;
      case GLSL_TYPE_DOUBLE:
         result = new(ctx) ir_expression(ir_unop_d2f, desired_type, src, NULL);
         break;
      case GLSL_TYPE_UINT64:
         result = new(ctx) ir_expression(ir_unop_u642f, desired_type, src, NULL);
         break;
      case GLSL_TYPE_INT64:
         result = new(ctx) ir_expression(ir_unop_i642f, desired_type, src, NULL);
         break;
      }
      break;
   case GLSL_TYPE_BOOL:
      switch (b) {
      case GLSL_TYPE_UINT:
         result = new(ctx) ir_expression(ir_unop_i2b,
                                         new(ctx) ir_expression(ir_unop_u2i,
                                                                src));
         break;
      case GLSL_TYPE_INT:
         result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
         break;
      case GLSL_TYPE_FLOAT:
         result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
         break;
      case GLSL_TYPE_DOUBLE:
         result = new(ctx) ir_expression(ir_unop_d2b, desired_type, src, NULL);
         break;
      case GLSL_TYPE_UINT64:
         result = new(ctx) ir_expression(ir_unop_i642b,
                                         new(ctx) ir_expression(ir_unop_u642i64,
                                                                src));
         break;
      case GLSL_TYPE_INT64:
         result = new(ctx) ir_expression(ir_unop_i642b, desired_type, src, NULL);
         break;
      }
      break;
   case GLSL_TYPE_DOUBLE:
      switch (b) {
      case GLSL_TYPE_INT:
         result = new(ctx) ir_expression(ir_unop_i2d, src);
         break;
      case GLSL_TYPE_UINT:
         result = new(ctx) ir_expression(ir_unop_u2d, src);
         break;
      case GLSL_TYPE_BOOL:
         result = new(ctx) ir_expression(ir_unop_f2d,
                                         new(ctx) ir_expression(ir_unop_b2f,
                                                                src));
         break;
      case GLSL_TYPE_FLOAT:
         result = new(ctx) ir_expression(ir_unop_f2d, desired_type, src, NULL);
         break;
      case GLSL_TYPE_UINT64:
         result = new(ctx) ir_expression(ir_unop_u642d, desired_type, src, NULL);
         break;
      case GLSL_TYPE_INT64:
         result = new(ctx) ir_expression(ir_unop_i642d, desired_type, src, NULL);
         break;
      }
      break;
   case GLSL_TYPE_UINT64:
      switch (b) {
      case GLSL_TYPE_INT:
         result = new(ctx) ir_expression(ir_unop_i2u64, src);
         break;
      case GLSL_TYPE_UINT:
         result = new(ctx) ir_expression(ir_unop_u2u64, src);
         break;
      case GLSL_TYPE_BOOL:
         result = new(ctx) ir_expression(ir_unop_i642u64,
                                         new(ctx) ir_expression(ir_unop_b2i64,
                                                                src));
         break;
      case GLSL_TYPE_FLOAT:
         result = new(ctx) ir_expression(ir_unop_f2u64, src);
         break;
      case GLSL_TYPE_DOUBLE:
         result = new(ctx) ir_expression(ir_unop_d2u64, src);
         break;
      case GLSL_TYPE_INT64:
         result = new(ctx) ir_expression(ir_unop_i642u64, src);
         break;
      }
      break;
   case GLSL_TYPE_INT64:
      switch (b) {
      case GLSL_TYPE_INT:
         result = new(ctx) ir_expression(ir_unop_i2i64, src);
         break;
      case GLSL_TYPE_UINT:
         result = new(ctx) ir_expression(ir_unop_u2i64, src);
         break;
      case GLSL_TYPE_BOOL:
         result = new(ctx) ir_expression(ir_unop_b2i64, src);
         break;
      case GLSL_TYPE_FLOAT:
         result = new(ctx) ir_expression(ir_unop_f2i64, src);
         break;
      case GLSL_TYPE_DOUBLE:
         result = new(ctx) ir_expression(ir_unop_d2i64, src);
         break;
      case GLSL_TYPE_UINT64:
         result = new(ctx) ir_expression(ir_unop_u642i64, src);
         break;
      }
      break;
   case GLSL_TYPE_SAMPLER:
      switch (b) {
      case GLSL_TYPE_UINT:
         result = new(ctx)
            ir_expression(ir_unop_pack_sampler_2x32, desired_type, src);
         break;
      }
      break;
   case GLSL_TYPE_IMAGE:
      switch (b) {
      case GLSL_TYPE_UINT:
         result = new(ctx)
            ir_expression(ir_unop_pack_image_2x32, desired_type, src);
         break;
      }
      break;
   }

   assert(result != NULL);
   assert(result->type == desired_type);

   /* Try constant folding; it may fold in the conversion we just added. */
   ir_constant *const constant = result->constant_expression_value(ctx);
   return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
}


/**
 * Perform automatic type and constant conversion of constructor parameters
 *
 * This implements the rules in the "Implicit Conversions" rules, not the
 * "Conversion and Scalar Constructors".
 *
 * After attempting the implicit conversion, an attempt to convert into a
 * constant valued expression is also done.
 *
 * The \c from \c ir_rvalue is converted "in place".
 *
 * \param from   Operand that is being converted
 * \param to     Base type the operand will be converted to
 * \param state  GLSL compiler state
 *
 * \return
 * If the attempt to convert into a constant expression succeeds, \c true is
 * returned. Otherwise \c false is returned.
 */
static bool
implicitly_convert_component(ir_rvalue * &from, const glsl_base_type to,
                             struct _mesa_glsl_parse_state *state)
{
   void *mem_ctx = state;
   ir_rvalue *result = from;

   if (to != from->type->base_type) {
      const glsl_type *desired_type =
         glsl_type::get_instance(to,
                                 from->type->vector_elements,
                                 from->type->matrix_columns);

      if (from->type->can_implicitly_convert_to(desired_type, state)) {
         /* Even though convert_component() implements the constructor
          * conversion rules (not the implicit conversion rules), its safe
          * to use it here because we already checked that the implicit
          * conversion is legal.
          */
         result = convert_component(from, desired_type);
      }
   }

   ir_rvalue *const constant = result->constant_expression_value(mem_ctx);

   if (constant != NULL)
      result = constant;

   if (from != result) {
      from->replace_with(result);
      from = result;
   }

   return constant != NULL;
}


/**
 * Dereference a specific component from a scalar, vector, or matrix
 */
static ir_rvalue *
dereference_component(ir_rvalue *src, unsigned component)
{
   void *ctx = ralloc_parent(src);
   assert(component < src->type->components());

   /* If the source is a constant, just create a new constant instead of a
    * dereference of the existing constant.
    */
   ir_constant *constant = src->as_constant();
   if (constant)
      return new(ctx) ir_constant(constant, component);

   if (src->type->is_scalar()) {
      return src;
   } else if (src->type->is_vector()) {
      return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
   } else {
      assert(src->type->is_matrix());

      /* Dereference a row of the matrix, then call this function again to get
       * a specific element from that row.
       */
      const int c = component / src->type->column_type()->vector_elements;
      const int r = component % src->type->column_type()->vector_elements;
      ir_constant *const col_index = new(ctx) ir_constant(c);
      ir_dereference *const col = new(ctx) ir_dereference_array(src,
                                                                col_index);

      col->type = src->type->column_type();

      return dereference_component(col, r);
   }

   assert(!"Should not get here.");
   return NULL;
}


static ir_rvalue *
process_vec_mat_constructor(exec_list *instructions,
                            const glsl_type *constructor_type,
                            YYLTYPE *loc, exec_list *parameters,
                            struct _mesa_glsl_parse_state *state)
{
   void *ctx = state;

   /* The ARB_shading_language_420pack spec says:
    *
    * "If an initializer is a list of initializers enclosed in curly braces,
    *  the variable being declared must be a vector, a matrix, an array, or a
    *  structure.
    *
    *      int i = { 1 }; // illegal, i is not an aggregate"
    */
   if (constructor_type->vector_elements <= 1) {
      _mesa_glsl_error(loc, state, "aggregates can only initialize vectors, "
                       "matrices, arrays, and structs");
      return ir_rvalue::error_value(ctx);
   }

   exec_list actual_parameters;
   const unsigned parameter_count =
      process_parameters(instructions, &actual_parameters, parameters, state);

   if (parameter_count == 0
       || (constructor_type->is_vector() &&
           constructor_type->vector_elements != parameter_count)
       || (constructor_type->is_matrix() &&
           constructor_type->matrix_columns != parameter_count)) {
      _mesa_glsl_error(loc, state, "%s constructor must have %u parameters",
                       constructor_type->is_vector() ? "vector" : "matrix",
                       constructor_type->vector_elements);
      return ir_rvalue::error_value(ctx);
   }

   bool all_parameters_are_constant = true;

   /* Type cast each parameter and, if possible, fold constants. */
   foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
      /* Apply implicit conversions (not the scalar constructor rules, see the
       * spec quote above!) and attempt to convert the parameter to a constant
       * valued expression. After doing so, track whether or not all the
       * parameters to the constructor are trivially constant valued
       * expressions.
       */
      all_parameters_are_constant &=
         implicitly_convert_component(ir, constructor_type->base_type, state);

      if (constructor_type->is_matrix()) {
         if (ir->type != constructor_type->column_type()) {
            _mesa_glsl_error(loc, state, "type error in matrix constructor: "
                             "expected: %s, found %s",
                             constructor_type->column_type()->name,
                             ir->type->name);
            return ir_rvalue::error_value(ctx);
         }
      } else if (ir->type != constructor_type->get_scalar_type()) {
         _mesa_glsl_error(loc, state, "type error in vector constructor: "
                          "expected: %s, found %s",
                          constructor_type->get_scalar_type()->name,
                          ir->type->name);
         return ir_rvalue::error_value(ctx);
      }
   }

   if (all_parameters_are_constant)
      return new(ctx) ir_constant(constructor_type, &actual_parameters);

   ir_variable *var = new(ctx) ir_variable(constructor_type, "vec_mat_ctor",
                                           ir_var_temporary);
   instructions->push_tail(var);

   int i = 0;

   foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
      ir_instruction *assignment = NULL;

      if (var->type->is_matrix()) {
         ir_rvalue *lhs =
            new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
         assignment = new(ctx) ir_assignment(lhs, rhs);
      } else {
         /* use writemask rather than index for vector */
         assert(var->type->is_vector());
         assert(i < 4);
         ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
         assignment = new(ctx) ir_assignment(lhs, rhs, NULL,
                                             (unsigned)(1 << i));
      }

      instructions->push_tail(assignment);

      i++;
   }

   return new(ctx) ir_dereference_variable(var);
}


static ir_rvalue *
process_array_constructor(exec_list *instructions,
                          const glsl_type *constructor_type,
                          YYLTYPE *loc, exec_list *parameters,
                          struct _mesa_glsl_parse_state *state)
{
   void *ctx = state;
   /* Array constructors come in two forms: sized and unsized.  Sized array
    * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
    * variables.  In this case the number of parameters must exactly match the
    * specified size of the array.
    *
    * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
    * are vec4 variables.  In this case the size of the array being constructed
    * is determined by the number of parameters.
    *
    * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
    *
    *    "There must be exactly the same number of arguments as the size of
    *    the array being constructed. If no size is present in the
    *    constructor, then the array is explicitly sized to the number of
    *    arguments provided. The arguments are assigned in order, starting at
    *    element 0, to the elements of the constructed array. Each argument
    *    must be the same type as the element type of the array, or be a type
    *    that can be converted to the element type of the array according to
    *    Section 4.1.10 "Implicit Conversions.""
    */
   exec_list actual_parameters;
   const unsigned parameter_count =
      process_parameters(instructions, &actual_parameters, parameters, state);
   bool is_unsized_array = constructor_type->is_unsized_array();

   if ((parameter_count == 0) ||
       (!is_unsized_array && (constructor_type->length != parameter_count))) {
      const unsigned min_param = is_unsized_array
         ? 1 : constructor_type->length;

      _mesa_glsl_error(loc, state, "array constructor must have %s %u "
                       "parameter%s",
                       is_unsized_array ? "at least" : "exactly",
                       min_param, (min_param <= 1) ? "" : "s");
      return ir_rvalue::error_value(ctx);
   }

   if (is_unsized_array) {
      constructor_type =
         glsl_type::get_array_instance(constructor_type->fields.array,
                                       parameter_count);
      assert(constructor_type != NULL);
      assert(constructor_type->length == parameter_count);
   }

   bool all_parameters_are_constant = true;
   const glsl_type *element_type = constructor_type->fields.array;

   /* Type cast each parameter and, if possible, fold constants. */
   foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
      /* Apply implicit conversions (not the scalar constructor rules, see the
       * spec quote above!) and attempt to convert the parameter to a constant
       * valued expression. After doing so, track whether or not all the
       * parameters to the constructor are trivially constant valued
       * expressions.
       */
      all_parameters_are_constant &=
         implicitly_convert_component(ir, element_type->base_type, state);

      if (constructor_type->fields.array->is_unsized_array()) {
         /* As the inner parameters of the constructor are created without
          * knowledge of each other we need to check to make sure unsized
          * parameters of unsized constructors all end up with the same size.
          *
          * e.g we make sure to fail for a constructor like this:
          * vec4[][] a = vec4[][](vec4[](vec4(0.0), vec4(1.0)),
          *                       vec4[](vec4(0.0), vec4(1.0), vec4(1.0)),
          *                       vec4[](vec4(0.0), vec4(1.0)));
          */
         if (element_type->is_unsized_array()) {
            /* This is the first parameter so just get the type */
            element_type = ir->type;
         } else if (element_type != ir->type) {
            _mesa_glsl_error(loc, state, "type error in array constructor: "
                             "expected: %s, found %s",
                             element_type->name,
                             ir->type->name);
            return ir_rvalue::error_value(ctx);
         }
      } else if (ir->type != constructor_type->fields.array) {
         _mesa_glsl_error(loc, state, "type error in array constructor: "
                          "expected: %s, found %s",
                          constructor_type->fields.array->name,
                          ir->type->name);
         return ir_rvalue::error_value(ctx);
      } else {
         element_type = ir->type;
      }
   }

   if (constructor_type->fields.array->is_unsized_array()) {
      constructor_type =
         glsl_type::get_array_instance(element_type,
                                       parameter_count);
      assert(constructor_type != NULL);
      assert(constructor_type->length == parameter_count);
   }

   if (all_parameters_are_constant)
      return new(ctx) ir_constant(constructor_type, &actual_parameters);

   ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
                                           ir_var_temporary);
   instructions->push_tail(var);

   int i = 0;
   foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
      ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
                                                     new(ctx) ir_constant(i));

      ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs);
      instructions->push_tail(assignment);

      i++;
   }

   return new(ctx) ir_dereference_variable(var);
}


/**
 * Determine if a list consists of a single scalar r-value
 */
static bool
single_scalar_parameter(exec_list *parameters)
{
   const ir_rvalue *const p = (ir_rvalue *) parameters->get_head_raw();
   assert(((ir_rvalue *)p)->as_rvalue() != NULL);

   return (p->type->is_scalar() && p->next->is_tail_sentinel());
}


/**
 * Generate inline code for a vector constructor
 *
 * The generated constructor code will consist of a temporary variable
 * declaration of the same type as the constructor.  A sequence of assignments
 * from constructor parameters to the temporary will follow.
 *
 * \return
 * An \c ir_dereference_variable of the temprorary generated in the constructor
 * body.
 */
static ir_rvalue *
emit_inline_vector_constructor(const glsl_type *type,
                               exec_list *instructions,
                               exec_list *parameters,
                               void *ctx)
{
   assert(!parameters->is_empty());

   ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
   instructions->push_tail(var);

   /* There are three kinds of vector constructors.
    *
    *  - Construct a vector from a single scalar by replicating that scalar to
    *    all components of the vector.
    *
    *  - Construct a vector from at least a matrix. This case should already
    *    have been taken care of in ast_function_expression::hir by breaking
    *    down the matrix into a series of column vectors.
    *
    *  - Construct a vector from an arbirary combination of vectors and
    *    scalars.  The components of the constructor parameters are assigned
    *    to the vector in order until the vector is full.
    */
   const unsigned lhs_components = type->components();
   if (single_scalar_parameter(parameters)) {
      ir_rvalue *first_param = (ir_rvalue *)parameters->get_head_raw();
      ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
                                           lhs_components);
      ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
      const unsigned mask = (1U << lhs_components) - 1;

      assert(rhs->type == lhs->type);

      ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
      instructions->push_tail(inst);
   } else {
      unsigned base_component = 0;
      unsigned base_lhs_component = 0;
      ir_constant_data data;
      unsigned constant_mask = 0, constant_components = 0;

      memset(&data, 0, sizeof(data));

      foreach_in_list(ir_rvalue, param, parameters) {
         unsigned rhs_components = param->type->components();

         /* Do not try to assign more components to the vector than it has! */
         if ((rhs_components + base_lhs_component) > lhs_components) {
            rhs_components = lhs_components - base_lhs_component;
         }

         const ir_constant *const c = param->as_constant();
         if (c != NULL) {
            for (unsigned i = 0; i < rhs_components; i++) {
               switch (c->type->base_type) {
               case GLSL_TYPE_UINT:
                  data.u[i + base_component] = c->get_uint_component(i);
                  break;
               case GLSL_TYPE_INT:
                  data.i[i + base_component] = c->get_int_component(i);
                  break;
               case GLSL_TYPE_FLOAT:
                  data.f[i + base_component] = c->get_float_component(i);
                  break;
               case GLSL_TYPE_DOUBLE:
                  data.d[i + base_component] = c->get_double_component(i);
                  break;
               case GLSL_TYPE_BOOL:
                  data.b[i + base_component] = c->get_bool_component(i);
                  break;
               case GLSL_TYPE_UINT64:
                  data.u64[i + base_component] = c->get_uint64_component(i);
                  break;
               case GLSL_TYPE_INT64:
                  data.i64[i + base_component] = c->get_int64_component(i);
                  break;
               default:
                  assert(!"Should not get here.");
                  break;
               }
            }

            /* Mask of fields to be written in the assignment. */
            constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
            constant_components += rhs_components;

            base_component += rhs_components;
         }
         /* Advance the component index by the number of components
          * that were just assigned.
          */
         base_lhs_component += rhs_components;
      }

      if (constant_mask != 0) {
         ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
         const glsl_type *rhs_type =
            glsl_type::get_instance(var->type->base_type,
                                    constant_components,
                                    1);
         ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);

         ir_instruction *inst =
            new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
         instructions->push_tail(inst);
      }

      base_component = 0;
      foreach_in_list(ir_rvalue, param, parameters) {
         unsigned rhs_components = param->type->components();

         /* Do not try to assign more components to the vector than it has! */
         if ((rhs_components + base_component) > lhs_components) {
            rhs_components = lhs_components - base_component;
         }

         /* If we do not have any components left to copy, break out of the
          * loop. This can happen when initializing a vec4 with a mat3 as the
          * mat3 would have been broken into a series of column vectors.
          */
         if (rhs_components == 0) {
            break;
         }

         const ir_constant *const c = param->as_constant();
         if (c == NULL) {
            /* Mask of fields to be written in the assignment. */
            const unsigned write_mask = ((1U << rhs_components) - 1)
               << base_component;

            ir_dereference *lhs = new(ctx) ir_dereference_variable(var);

            /* Generate a swizzle so that LHS and RHS sizes match. */
            ir_rvalue *rhs =
               new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);

            ir_instruction *inst =
               new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
            instructions->push_tail(inst);
         }

         /* Advance the component index by the number of components that were
          * just assigned.
          */
         base_component += rhs_components;
      }
   }
   return new(ctx) ir_dereference_variable(var);
}


/**
 * Generate assignment of a portion of a vector to a portion of a matrix column
 *
 * \param src_base  First component of the source to be used in assignment
 * \param column    Column of destination to be assiged
 * \param row_base  First component of the destination column to be assigned
 * \param count     Number of components to be assigned
 *
 * \note
 * \c src_base + \c count must be less than or equal to the number of
 * components in the source vector.
 */
static ir_instruction *
assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
                        ir_rvalue *src, unsigned src_base, unsigned count,
                        void *mem_ctx)
{
   ir_constant *col_idx = new(mem_ctx) ir_constant(column);
   ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var,
                                                                  col_idx);

   assert(column_ref->type->components() >= (row_base + count));
   assert(src->type->components() >= (src_base + count));

   /* Generate a swizzle that extracts the number of components from the source
    * that are to be assigned to the column of the matrix.
    */
   if (count < src->type->vector_elements) {
      src = new(mem_ctx) ir_swizzle(src,
                                    src_base + 0, src_base + 1,
                                    src_base + 2, src_base + 3,
                                    count);
   }

   /* Mask of fields to be written in the assignment. */
   const unsigned write_mask = ((1U << count) - 1) << row_base;

   return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
}


/**
 * Generate inline code for a matrix constructor
 *
 * The generated constructor code will consist of a temporary variable
 * declaration of the same type as the constructor.  A sequence of assignments
 * from constructor parameters to the temporary will follow.
 *
 * \return
 * An \c ir_dereference_variable of the temprorary generated in the constructor
 * body.
 */
static ir_rvalue *
emit_inline_matrix_constructor(const glsl_type *type,
                               exec_list *instructions,
                               exec_list *parameters,
                               void *ctx)
{
   assert(!parameters->is_empty());

   ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
   instructions->push_tail(var);

   /* There are three kinds of matrix constructors.
    *
    *  - Construct a matrix from a single scalar by replicating that scalar to
    *    along the diagonal of the matrix and setting all other components to
    *    zero.
    *
    *  - Construct a matrix from an arbirary combination of vectors and
    *    scalars.  The components of the constructor parameters are assigned
    *    to the matrix in column-major order until the matrix is full.
    *
    *  - Construct a matrix from a single matrix.  The source matrix is copied
    *    to the upper left portion of the constructed matrix, and the remaining
    *    elements take values from the identity matrix.
    */
   ir_rvalue *const first_param = (ir_rvalue *) parameters->get_head_raw();
   if (single_scalar_parameter(parameters)) {
      /* Assign the scalar to the X component of a vec4, and fill the remaining
       * components with zero.
       */
      glsl_base_type param_base_type = first_param->type->base_type;
      assert(first_param->type->is_float() || first_param->type->is_double());
      ir_variable *rhs_var =
         new(ctx) ir_variable(glsl_type::get_instance(param_base_type, 4, 1),
                              "mat_ctor_vec",
                              ir_var_temporary);
      instructions->push_tail(rhs_var);

      ir_constant_data zero;
      for (unsigned i = 0; i < 4; i++)
         if (first_param->type->is_float())
            zero.f[i] = 0.0;
         else
            zero.d[i] = 0.0;

      ir_instruction *inst =
         new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
                                new(ctx) ir_constant(rhs_var->type, &zero));
      instructions->push_tail(inst);

      ir_dereference *const rhs_ref =
         new(ctx) ir_dereference_variable(rhs_var);

      inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
      instructions->push_tail(inst);

      /* Assign the temporary vector to each column of the destination matrix
       * with a swizzle that puts the X component on the diagonal of the
       * matrix.  In some cases this may mean that the X component does not
       * get assigned into the column at all (i.e., when the matrix has more
       * columns than rows).
       */
      static const unsigned rhs_swiz[4][4] = {
         { 0, 1, 1, 1 },
         { 1, 0, 1, 1 },
         { 1, 1, 0, 1 },
         { 1, 1, 1, 0 }
      };

      const unsigned cols_to_init = MIN2(type->matrix_columns,
                                         type->vector_elements);
      for (unsigned i = 0; i < cols_to_init; i++) {
         ir_constant *const col_idx = new(ctx) ir_constant(i);
         ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var,
                                                                  col_idx);

         ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
         ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
                                                    type->vector_elements);

         inst = new(ctx) ir_assignment(col_ref, rhs);
         instructions->push_tail(inst);
      }

      for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
         ir_constant *const col_idx = new(ctx) ir_constant(i);
         ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var,
                                                                  col_idx);

         ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
         ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
                                                    type->vector_elements);

         inst = new(ctx) ir_assignment(col_ref, rhs);
         instructions->push_tail(inst);
      }
   } else if (first_param->type->is_matrix()) {
      /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
       *
       *     "If a matrix is constructed from a matrix, then each component
       *     (column i, row j) in the result that has a corresponding
       *     component (column i, row j) in the argument will be initialized
       *     from there. All other components will be initialized to the
       *     identity matrix. If a matrix argument is given to a matrix
       *     constructor, it is an error to have any other arguments."
       */
      assert(first_param->next->is_tail_sentinel());
      ir_rvalue *const src_matrix = first_param;

      /* If the source matrix is smaller, pre-initialize the relavent parts of
       * the destination matrix to the identity matrix.
       */
      if ((src_matrix->type->matrix_columns < var->type->matrix_columns) ||
          (src_matrix->type->vector_elements < var->type->vector_elements)) {

         /* If the source matrix has fewer rows, every column of the
          * destination must be initialized.  Otherwise only the columns in
          * the destination that do not exist in the source must be
          * initialized.
          */
         unsigned col =
            (src_matrix->type->vector_elements < var->type->vector_elements)
            ? 0 : src_matrix->type->matrix_columns;

         const glsl_type *const col_type = var->type->column_type();
         for (/* empty */; col < var->type->matrix_columns; col++) {
            ir_constant_data ident;

            if (!col_type->is_double()) {
               ident.f[0] = 0.0f;
               ident.f[1] = 0.0f;
               ident.f[2] = 0.0f;
               ident.f[3] = 0.0f;
               ident.f[col] = 1.0f;
            } else {
               ident.d[0] = 0.0;
               ident.d[1] = 0.0;
               ident.d[2] = 0.0;
               ident.d[3] = 0.0;
               ident.d[col] = 1.0;
            }

            ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);

            ir_rvalue *const lhs =
               new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));

            ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs);
            instructions->push_tail(inst);
         }
      }

      /* Assign columns from the source matrix to the destination matrix.
       *
       * Since the parameter will be used in the RHS of multiple assignments,
       * generate a temporary and copy the paramter there.
       */
      ir_variable *const rhs_var =
         new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
                              ir_var_temporary);
      instructions->push_tail(rhs_var);

      ir_dereference *const rhs_var_ref =
         new(ctx) ir_dereference_variable(rhs_var);
      ir_instruction *const inst =
         new(ctx) ir_assignment(rhs_var_ref, first_param);
      instructions->push_tail(inst);

      const unsigned last_row = MIN2(src_matrix->type->vector_elements,
                                     var->type->vector_elements);
      const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
                                     var->type->matrix_columns);

      unsigned swiz[4] = { 0, 0, 0, 0 };
      for (unsigned i = 1; i < last_row; i++)
         swiz[i] = i;

      const unsigned write_mask = (1U << last_row) - 1;

      for (unsigned i = 0; i < last_col; i++) {
         ir_dereference *const lhs =
            new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
         ir_rvalue *const rhs_col =
            new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));

         /* If one matrix has columns that are smaller than the columns of the
          * other matrix, wrap the column access of the larger with a swizzle
          * so that the LHS and RHS of the assignment have the same size (and
          * therefore have the same type).
          *
          * It would be perfectly valid to unconditionally generate the
          * swizzles, this this will typically result in a more compact IR
          * tree.
          */
         ir_rvalue *rhs;
         if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
            rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
         } else {
            rhs = rhs_col;
         }

         ir_instruction *inst =
            new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
         instructions->push_tail(inst);
      }
   } else {
      const unsigned cols = type->matrix_columns;
      const unsigned rows = type->vector_elements;
      unsigned remaining_slots = rows * cols;
      unsigned col_idx = 0;
      unsigned row_idx = 0;

      foreach_in_list(ir_rvalue, rhs, parameters) {
         unsigned rhs_components = rhs->type->components();
         unsigned rhs_base = 0;

         if (remaining_slots == 0)
            break;

         /* Since the parameter might be used in the RHS of two assignments,
          * generate a temporary and copy the paramter there.
          */
         ir_variable *rhs_var =
            new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
         instructions->push_tail(rhs_var);

         ir_dereference *rhs_var_ref =
            new(ctx) ir_dereference_variable(rhs_var);
         ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs);
         instructions->push_tail(inst);

         do {
            /* Assign the current parameter to as many components of the matrix
             * as it will fill.
             *
             * NOTE: A single vector parameter can span two matrix columns.  A
             * single vec4, for example, can completely fill a mat2.
             */
            unsigned count = MIN2(rows - row_idx,
                                  rhs_components - rhs_base);

            rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
            ir_instruction *inst = assign_to_matrix_column(var, col_idx,
                                                           row_idx,
                                                           rhs_var_ref,
                                                           rhs_base,
                                                           count, ctx);
            instructions->push_tail(inst);
            rhs_base += count;
            row_idx += count;
            remaining_slots -= count;

            /* Sometimes, there is still data left in the parameters and
             * components left to be set in the destination but in other
             * column.
             */
            if (row_idx >= rows) {
               row_idx = 0;
               col_idx++;
            }
         } while(remaining_slots > 0 && rhs_base < rhs_components);
      }
   }

   return new(ctx) ir_dereference_variable(var);
}


static ir_rvalue *
emit_inline_record_constructor(const glsl_type *type,
                               exec_list *instructions,
                               exec_list *parameters,
                               void *mem_ctx)
{
   ir_variable *const var =
      new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
   ir_dereference_variable *const d =
      new(mem_ctx) ir_dereference_variable(var);

   instructions->push_tail(var);

   exec_node *node = parameters->get_head_raw();
   for (unsigned i = 0; i < type->length; i++) {
      assert(!node->is_tail_sentinel());

      ir_dereference *const lhs =
         new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
                                            type->fields.structure[i].name);

      ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
      assert(rhs != NULL);

      ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs);

      instructions->push_tail(assign);
      node = node->next;
   }

   return d;
}


static ir_rvalue *
process_record_constructor(exec_list *instructions,
                           const glsl_type *constructor_type,
                           YYLTYPE *loc, exec_list *parameters,
                           struct _mesa_glsl_parse_state *state)
{
   void *ctx = state;
   /* From page 32 (page 38 of the PDF) of the GLSL 1.20 spec:
    *
    *    "The arguments to the constructor will be used to set the structure's
    *     fields, in order, using one argument per field. Each argument must
    *     be the same type as the field it sets, or be a type that can be
    *     converted to the field's type according to Section 4.1.10 “Implicit
    *     Conversions.”"
    *
    * From page 35 (page 41 of the PDF) of the GLSL 4.20 spec:
    *
    *    "In all cases, the innermost initializer (i.e., not a list of
    *     initializers enclosed in curly braces) applied to an object must
    *     have the same type as the object being initialized or be a type that
    *     can be converted to the object's type according to section 4.1.10
    *     "Implicit Conversions". In the latter case, an implicit conversion
    *     will be done on the initializer before the assignment is done."
    */
   exec_list actual_parameters;

   const unsigned parameter_count =
         process_parameters(instructions, &actual_parameters, parameters,
                            state);

   if (parameter_count != constructor_type->length) {
      _mesa_glsl_error(loc, state,
                       "%s parameters in constructor for `%s'",
                       parameter_count > constructor_type->length
                       ? "too many": "insufficient",
                       constructor_type->name);
      return ir_rvalue::error_value(ctx);
   }

   bool all_parameters_are_constant = true;

   int i = 0;
   /* Type cast each parameter and, if possible, fold constants. */
   foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {

      const glsl_struct_field *struct_field =
         &constructor_type->fields.structure[i];

      /* Apply implicit conversions (not the scalar constructor rules, see the
       * spec quote above!) and attempt to convert the parameter to a constant
       * valued expression. After doing so, track whether or not all the
       * parameters to the constructor are trivially constant valued
       * expressions.
       */
      all_parameters_are_constant &=
         implicitly_convert_component(ir, struct_field->type->base_type,
                                      state);

      if (ir->type != struct_field->type) {
         _mesa_glsl_error(loc, state,
                          "parameter type mismatch in constructor for `%s.%s' "
                          "(%s vs %s)",
                          constructor_type->name,
                          struct_field->name,
                          ir->type->name,
                          struct_field->type->name);
         return ir_rvalue::error_value(ctx);
      }

      i++;
   }

   if (all_parameters_are_constant) {
      return new(ctx) ir_constant(constructor_type, &actual_parameters);
   } else {
      return emit_inline_record_constructor(constructor_type, instructions,
                                            &actual_parameters, state);
   }
}

ir_rvalue *
ast_function_expression::handle_method(exec_list *instructions,
                                       struct _mesa_glsl_parse_state *state)
{
   const ast_expression *field = subexpressions[0];
   ir_rvalue *op;
   ir_rvalue *result;
   void *ctx = state;
   /* Handle "method calls" in GLSL 1.20 - namely, array.length() */
   YYLTYPE loc = get_location();
   state->check_version(120, 300, &loc, "methods not supported");

   const char *method;
   method = field->primary_expression.identifier;

   /* This would prevent to raise "uninitialized variable" warnings when
    * calling array.length.
    */
   field->subexpressions[0]->set_is_lhs(true);
   op = field->subexpressions[0]->hir(instructions, state);
   if (strcmp(method, "length") == 0) {
      if (!this->expressions.is_empty()) {
         _mesa_glsl_error(&loc, state, "length method takes no arguments");
         goto fail;
      }

      if (op->type->is_array()) {
         if (op->type->is_unsized_array()) {
            if (!state->has_shader_storage_buffer_objects()) {
               _mesa_glsl_error(&loc, state,
                                "length called on unsized array"
                                " only available with"
                                " ARB_shader_storage_buffer_object");
            }
            /* Calculate length of an unsized array in run-time */
            result = new(ctx) ir_expression(ir_unop_ssbo_unsized_array_length,
                                            op);
         } else {
            result = new(ctx) ir_constant(op->type->array_size());
         }
      } else if (op->type->is_vector()) {
         if (state->has_420pack()) {
            /* .length() returns int. */
            result = new(ctx) ir_constant((int) op->type->vector_elements);
         } else {
            _mesa_glsl_error(&loc, state, "length method on matrix only"
                             " available with ARB_shading_language_420pack");
            goto fail;
         }
      } else if (op->type->is_matrix()) {
         if (state->has_420pack()) {
            /* .length() returns int. */
            result = new(ctx) ir_constant((int) op->type->matrix_columns);
         } else {
            _mesa_glsl_error(&loc, state, "length method on matrix only"
                             " available with ARB_shading_language_420pack");
            goto fail;
         }
      } else {
         _mesa_glsl_error(&loc, state, "length called on scalar.");
         goto fail;
      }
   } else {
      _mesa_glsl_error(&loc, state, "unknown method: `%s'", method);
      goto fail;
   }
   return result;
 fail:
   return ir_rvalue::error_value(ctx);
}

static inline bool is_valid_constructor(const glsl_type *type,
                                        struct _mesa_glsl_parse_state *state)
{
   return type->is_numeric() || type->is_boolean() ||
          (state->has_bindless() && (type->is_sampler() || type->is_image()));
}

ir_rvalue *
ast_function_expression::hir(exec_list *instructions,
                             struct _mesa_glsl_parse_state *state)
{
   void *ctx = state;
   /* There are three sorts of function calls.
    *
    * 1. constructors - The first subexpression is an ast_type_specifier.
    * 2. methods - Only the .length() method of array types.
    * 3. functions - Calls to regular old functions.
    *
    */
   if (is_constructor()) {
      const ast_type_specifier *type =
         (ast_type_specifier *) subexpressions[0];
      YYLTYPE loc = type->get_location();
      const char *name;

      const glsl_type *const constructor_type = type->glsl_type(& name, state);

      /* constructor_type can be NULL if a variable with the same name as the
       * structure has come into scope.
       */
      if (constructor_type == NULL) {
         _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
                          "may be shadowed by a variable with the same name)",
                          type->type_name);
         return ir_rvalue::error_value(ctx);
      }


      /* Constructors for opaque types are illegal.
       *
       * From section 4.1.7 of the ARB_bindless_texture spec:
       *
       * "Samplers are represented using 64-bit integer handles, and may be "
       *  converted to and from 64-bit integers using constructors."
       *
       * From section 4.1.X of the ARB_bindless_texture spec:
       *
       * "Images are represented using 64-bit integer handles, and may be
       *  converted to and from 64-bit integers using constructors."
       */
      if (constructor_type->contains_atomic() ||
          (!state->has_bindless() && constructor_type->contains_opaque())) {
         _mesa_glsl_error(& loc, state, "cannot construct %s type `%s'",
                          state->has_bindless() ? "atomic" : "opaque",
                          constructor_type->name);
         return ir_rvalue::error_value(ctx);
      }

      if (constructor_type->is_subroutine()) {
         _mesa_glsl_error(& loc, state,
                          "subroutine name cannot be a constructor `%s'",
                          constructor_type->name);
         return ir_rvalue::error_value(ctx);
      }

      if (constructor_type->is_array()) {
         if (!state->check_version(120, 300, &loc,
                                   "array constructors forbidden")) {
            return ir_rvalue::error_value(ctx);
         }

         return process_array_constructor(instructions, constructor_type,
                                          & loc, &this->expressions, state);
      }


      /* There are two kinds of constructor calls.  Constructors for arrays and
       * structures must have the exact number of arguments with matching types
       * in the correct order.  These constructors follow essentially the same
       * type matching rules as functions.
       *
       * Constructors for built-in language types, such as mat4 and vec2, are
       * free form.  The only requirements are that the parameters must provide
       * enough values of the correct scalar type and that no arguments are
       * given past the last used argument.
       *
       * When using the C-style initializer syntax from GLSL 4.20, constructors
       * must have the exact number of arguments with matching types in the
       * correct order.
       */
      if (constructor_type->is_record()) {
         return process_record_constructor(instructions, constructor_type,
                                           &loc, &this->expressions,
                                           state);
      }

      if (!is_valid_constructor(constructor_type, state))
         return ir_rvalue::error_value(ctx);

      /* Total number of components of the type being constructed. */
      const unsigned type_components = constructor_type->components();

      /* Number of components from parameters that have actually been
       * consumed.  This is used to perform several kinds of error checking.
       */
      unsigned components_used = 0;

      unsigned matrix_parameters = 0;
      unsigned nonmatrix_parameters = 0;
      exec_list actual_parameters;

      foreach_list_typed(ast_node, ast, link, &this->expressions) {
         ir_rvalue *result = ast->hir(instructions, state);

         /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
          *
          *    "It is an error to provide extra arguments beyond this
          *    last used argument."
          */
         if (components_used >= type_components) {
            _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
                             "constructor",
                             constructor_type->name);
            return ir_rvalue::error_value(ctx);
         }

         if (!is_valid_constructor(result->type, state)) {
            _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
                             "non-numeric data type",
                             constructor_type->name);
            return ir_rvalue::error_value(ctx);
         }

         /* Count the number of matrix and nonmatrix parameters.  This
          * is used below to enforce some of the constructor rules.
          */
         if (result->type->is_matrix())
            matrix_parameters++;
         else
            nonmatrix_parameters++;

         actual_parameters.push_tail(result);
         components_used += result->type->components();
      }

      /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
       *
       *    "It is an error to construct matrices from other matrices. This
       *    is reserved for future use."
       */
      if (matrix_parameters > 0
          && constructor_type->is_matrix()
          && !state->check_version(120, 100, &loc,
                                   "cannot construct `%s' from a matrix",
                                   constructor_type->name)) {
         return ir_rvalue::error_value(ctx);
      }

      /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
       *
       *    "If a matrix argument is given to a matrix constructor, it is
       *    an error to have any other arguments."
       */
      if ((matrix_parameters > 0)
          && ((matrix_parameters + nonmatrix_parameters) > 1)
          && constructor_type->is_matrix()) {
         _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
                          "matrix must be only parameter",
                          constructor_type->name);
         return ir_rvalue::error_value(ctx);
      }

      /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
       *
       *    "In these cases, there must be enough components provided in the
       *    arguments to provide an initializer for every component in the
       *    constructed value."
       */
      if (components_used < type_components && components_used != 1
          && matrix_parameters == 0) {
         _mesa_glsl_error(& loc, state, "too few components to construct "
                          "`%s'",
                          constructor_type->name);
         return ir_rvalue::error_value(ctx);
      }

      /* Matrices can never be consumed as is by any constructor but matrix
       * constructors. If the constructor type is not matrix, always break the
       * matrix up into a series of column vectors.
       */
      if (!constructor_type->is_matrix()) {
         foreach_in_list_safe(ir_rvalue, matrix, &actual_parameters) {
            if (!matrix->type->is_matrix())
               continue;

            /* Create a temporary containing the matrix. */
            ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
                                                    ir_var_temporary);
            instructions->push_tail(var);
            instructions->push_tail(
               new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
                                      matrix));
            var->constant_value = matrix->constant_expression_value(ctx);

            /* Replace the matrix with dereferences of its columns. */
            for (int i = 0; i < matrix->type->matrix_columns; i++) {
               matrix->insert_before(
                  new (ctx) ir_dereference_array(var,
                                                 new(ctx) ir_constant(i)));
            }
            matrix->remove();
         }
      }

      bool all_parameters_are_constant = true;

      /* Type cast each parameter and, if possible, fold constants.*/
      foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
         const glsl_type *desired_type;

         /* From section 5.4.1 of the ARB_bindless_texture spec:
          *
          * "In the following four constructors, the low 32 bits of the sampler
          *  type correspond to the .x component of the uvec2 and the high 32
          *  bits correspond to the .y component."
          *
          *  uvec2(any sampler type)     // Converts a sampler type to a
          *                              //   pair of 32-bit unsigned integers
          *  any sampler type(uvec2)     // Converts a pair of 32-bit unsigned integers to
          *                              //   a sampler type
          *  uvec2(any image type)       // Converts an image type to a
          *                              //   pair of 32-bit unsigned integers
          *  any image type(uvec2)       // Converts a pair of 32-bit unsigned integers to
          *                              //   an image type
          */
         if (ir->type->is_sampler() || ir->type->is_image()) {
            /* Convert a sampler/image type to a pair of 32-bit unsigned
             * integers as defined by ARB_bindless_texture.
             */
            if (constructor_type != glsl_type::uvec2_type) {
               _mesa_glsl_error(&loc, state, "sampler and image types can only "
                                "be converted to a pair of 32-bit unsigned "
                                "integers");
            }
            desired_type = glsl_type::uvec2_type;
         } else if (constructor_type->is_sampler() ||
                    constructor_type->is_image()) {
            /* Convert a pair of 32-bit unsigned integers to a sampler or image
             * type as defined by ARB_bindless_texture.
             */
            if (ir->type != glsl_type::uvec2_type) {
               _mesa_glsl_error(&loc, state, "sampler and image types can only "
                                "be converted from a pair of 32-bit unsigned "
                                "integers");
            }
            desired_type = constructor_type;
         } else {
            desired_type =
               glsl_type::get_instance(constructor_type->base_type,
                                       ir->type->vector_elements,
                                       ir->type->matrix_columns);
         }

         ir_rvalue *result = convert_component(ir, desired_type);

         /* Attempt to convert the parameter to a constant valued expression.
          * After doing so, track whether or not all the parameters to the
          * constructor are trivially constant valued expressions.
          */
         ir_rvalue *const constant = result->constant_expression_value(ctx);

         if (constant != NULL)
            result = constant;
         else
            all_parameters_are_constant = false;

         if (result != ir) {
            ir->replace_with(result);
         }
      }

      /* If all of the parameters are trivially constant, create a
       * constant representing the complete collection of parameters.
       */
      if (all_parameters_are_constant) {
         return new(ctx) ir_constant(constructor_type, &actual_parameters);
      } else if (constructor_type->is_scalar()) {
         return dereference_component((ir_rvalue *)
                                      actual_parameters.get_head_raw(),
                                      0);
      } else if (constructor_type->is_vector()) {
         return emit_inline_vector_constructor(constructor_type,
                                               instructions,
                                               &actual_parameters,
                                               ctx);
      } else {
         assert(constructor_type->is_matrix());
         return emit_inline_matrix_constructor(constructor_type,
                                               instructions,
                                               &actual_parameters,
                                               ctx);
      }
   } else if (subexpressions[0]->oper == ast_field_selection) {
      return handle_method(instructions, state);
   } else {
      const ast_expression *id = subexpressions[0];
      const char *func_name = NULL;
      YYLTYPE loc = get_location();
      exec_list actual_parameters;
      ir_variable *sub_var = NULL;
      ir_rvalue *array_idx = NULL;

      process_parameters(instructions, &actual_parameters, &this->expressions,
                         state);

      if (id->oper == ast_array_index) {
         array_idx = generate_array_index(ctx, instructions, state, loc,
                                          id->subexpressions[0],
                                          id->subexpressions[1], &func_name,
                                          &actual_parameters);
      } else if (id->oper == ast_identifier) {
         func_name = id->primary_expression.identifier;
      } else {
         _mesa_glsl_error(&loc, state, "function name is not an identifier");
      }

      /* an error was emitted earlier */
      if (!func_name)
         return ir_rvalue::error_value(ctx);

      ir_function_signature *sig =
         match_function_by_name(func_name, &actual_parameters, state);

      ir_rvalue *value = NULL;
      if (sig == NULL) {
         sig = match_subroutine_by_name(func_name, &actual_parameters,
                                        state, &sub_var);
      }

      if (sig == NULL) {
         no_matching_function_error(func_name, &loc,
                                    &actual_parameters, state);
         value = ir_rvalue::error_value(ctx);
      } else if (!verify_parameter_modes(state, sig,
                                         actual_parameters,
                                         this->expressions)) {
         /* an error has already been emitted */
         value = ir_rvalue::error_value(ctx);
      } else if (sig->is_builtin() && strcmp(func_name, "ftransform") == 0) {
         /* ftransform refers to global variables, and we don't have any code
          * for remapping the variable references in the built-in shader.
          */
         ir_variable *mvp =
            state->symbols->get_variable("gl_ModelViewProjectionMatrix");
         ir_variable *vtx = state->symbols->get_variable("gl_Vertex");
         value = new(ctx) ir_expression(ir_binop_mul, glsl_type::vec4_type,
                                        new(ctx) ir_dereference_variable(mvp),
                                        new(ctx) ir_dereference_variable(vtx));
      } else {
         if (state->stage == MESA_SHADER_TESS_CTRL &&
             sig->is_builtin() && strcmp(func_name, "barrier") == 0) {
            if (state->current_function == NULL ||
                strcmp(state->current_function->function_name(), "main") != 0) {
               _mesa_glsl_error(&loc, state,
                                "barrier() may only be used in main()");
            }

            if (state->found_return) {
               _mesa_glsl_error(&loc, state,
                                "barrier() may not be used after return");
            }

            if (instructions != &state->current_function->body) {
               _mesa_glsl_error(&loc, state,
                                "barrier() may not be used in control flow");
            }
         }

         value = generate_call(instructions, sig, &actual_parameters, sub_var,
                               array_idx, state);
         if (!value) {
            ir_variable *const tmp = new(ctx) ir_variable(glsl_type::void_type,
                                                          "void_var",
                                                          ir_var_temporary);
            instructions->push_tail(tmp);
            value = new(ctx) ir_dereference_variable(tmp);
         }
      }

      return value;
   }

   unreachable("not reached");
}

bool
ast_function_expression::has_sequence_subexpression() const
{
   foreach_list_typed(const ast_node, ast, link, &this->expressions) {
      if (ast->has_sequence_subexpression())
         return true;
   }

   return false;
}

ir_rvalue *
ast_aggregate_initializer::hir(exec_list *instructions,
                               struct _mesa_glsl_parse_state *state)
{
   void *ctx = state;
   YYLTYPE loc = this->get_location();

   if (!this->constructor_type) {
      _mesa_glsl_error(&loc, state, "type of C-style initializer unknown");
      return ir_rvalue::error_value(ctx);
   }
   const glsl_type *const constructor_type = this->constructor_type;

   if (!state->has_420pack()) {
      _mesa_glsl_error(&loc, state, "C-style initialization requires the "
                       "GL_ARB_shading_language_420pack extension");
      return ir_rvalue::error_value(ctx);
   }

   if (constructor_type->is_array()) {
      return process_array_constructor(instructions, constructor_type, &loc,
                                       &this->expressions, state);
   }

   if (constructor_type->is_record()) {
      return process_record_constructor(instructions, constructor_type, &loc,
                                        &this->expressions, state);
   }

   return process_vec_mat_constructor(instructions, constructor_type, &loc,
                                      &this->expressions, state);
}