summaryrefslogtreecommitdiff
path: root/src/amd/compiler/aco_insert_NOPs.cpp
blob: 2422db828f7b24dc6d22b30fd4ddc621d087a81e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
/*
 * Copyright © 2019 Valve Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

#include <algorithm>

#include "aco_ir.h"
#include <stack>

namespace aco {
namespace {

struct NOP_ctx_gfx8_9 {
   enum chip_class chip_class;
   unsigned vcc_physical;

   /* just initialize these with something less than max NOPs */
   int VALU_wrexec = -10;
   int VALU_wrvcc = -10;
   int VALU_wrsgpr = -10;

   NOP_ctx_gfx8_9(Program* program) : chip_class(program->chip_class) {
      vcc_physical = program->config->num_sgprs - 2;
   }
};

struct NOP_ctx_gfx10 {
   bool has_VOPC = false;
   bool has_nonVALU_exec_read = false;
   bool has_VMEM = false;
   bool has_branch_after_VMEM = false;
   bool has_DS = false;
   bool has_branch_after_DS = false;
   std::bitset<128> sgprs_read_by_VMEM;
   std::bitset<128> sgprs_read_by_SMEM;

   void join(const NOP_ctx_gfx10 &other) {
      has_VOPC |= other.has_VOPC;
      has_nonVALU_exec_read |= other.has_nonVALU_exec_read;
      has_VMEM |= other.has_VMEM;
      has_branch_after_VMEM |= other.has_branch_after_VMEM;
      has_DS |= other.has_DS;
      has_branch_after_DS |= other.has_branch_after_DS;
      sgprs_read_by_VMEM |= other.sgprs_read_by_VMEM;
      sgprs_read_by_SMEM |= other.sgprs_read_by_SMEM;
   }

   bool operator==(const NOP_ctx_gfx10 &other)
   {
      return
         has_VOPC == other.has_VOPC &&
         has_nonVALU_exec_read == other.has_nonVALU_exec_read &&
         has_VMEM == other.has_VMEM &&
         has_branch_after_VMEM == other.has_branch_after_VMEM &&
         has_DS == other.has_DS &&
         has_branch_after_DS == other.has_branch_after_DS &&
         sgprs_read_by_VMEM == other.sgprs_read_by_VMEM &&
         sgprs_read_by_SMEM == other.sgprs_read_by_SMEM;
   }
};

template <std::size_t N>
bool check_written_regs(const aco_ptr<Instruction> &instr, const std::bitset<N> &check_regs)
{
   return std::any_of(instr->definitions.begin(), instr->definitions.end(), [&check_regs](const Definition &def) -> bool {
      bool writes_any = false;
      for (unsigned i = 0; i < def.size(); i++) {
         unsigned def_reg = def.physReg() + i;
         writes_any |= def_reg < check_regs.size() && check_regs[def_reg];
      }
      return writes_any;
   });
}

template <std::size_t N>
void mark_read_regs(const aco_ptr<Instruction> &instr, std::bitset<N> &reg_reads)
{
   for (const Operand &op : instr->operands) {
      for (unsigned i = 0; i < op.size(); i++) {
         unsigned reg = op.physReg() + i;
         if (reg < reg_reads.size())
            reg_reads.set(reg);
      }
   }
}

bool VALU_writes_sgpr(aco_ptr<Instruction>& instr)
{
   if ((uint32_t) instr->format & (uint32_t) Format::VOPC)
      return true;
   if (instr->isVOP3() && instr->definitions.size() == 2)
      return true;
   if (instr->opcode == aco_opcode::v_readfirstlane_b32 || instr->opcode == aco_opcode::v_readlane_b32)
      return true;
   return false;
}

bool instr_reads_exec(const aco_ptr<Instruction>& instr)
{
   return std::any_of(instr->operands.begin(), instr->operands.end(), [](const Operand &op) -> bool {
      return op.physReg() == exec_lo || op.physReg() == exec_hi;
   });
}

bool instr_writes_exec(const aco_ptr<Instruction>& instr)
{
   return std::any_of(instr->definitions.begin(), instr->definitions.end(), [](const Definition &def) -> bool {
      return def.physReg() == exec_lo || def.physReg() == exec_hi;
   });
}

bool instr_writes_sgpr(const aco_ptr<Instruction>& instr)
{
   return std::any_of(instr->definitions.begin(), instr->definitions.end(), [](const Definition &def) -> bool {
      return def.getTemp().type() == RegType::sgpr;
   });
}

inline bool instr_is_branch(const aco_ptr<Instruction>& instr)
{
   return instr->opcode == aco_opcode::s_branch ||
          instr->opcode == aco_opcode::s_cbranch_scc0 ||
          instr->opcode == aco_opcode::s_cbranch_scc1 ||
          instr->opcode == aco_opcode::s_cbranch_vccz ||
          instr->opcode == aco_opcode::s_cbranch_vccnz ||
          instr->opcode == aco_opcode::s_cbranch_execz ||
          instr->opcode == aco_opcode::s_cbranch_execnz ||
          instr->opcode == aco_opcode::s_cbranch_cdbgsys ||
          instr->opcode == aco_opcode::s_cbranch_cdbguser ||
          instr->opcode == aco_opcode::s_cbranch_cdbgsys_or_user ||
          instr->opcode == aco_opcode::s_cbranch_cdbgsys_and_user ||
          instr->opcode == aco_opcode::s_subvector_loop_begin ||
          instr->opcode == aco_opcode::s_subvector_loop_end ||
          instr->opcode == aco_opcode::s_setpc_b64 ||
          instr->opcode == aco_opcode::s_swappc_b64 ||
          instr->opcode == aco_opcode::s_getpc_b64 ||
          instr->opcode == aco_opcode::s_call_b64;
}

bool regs_intersect(PhysReg a_reg, unsigned a_size, PhysReg b_reg, unsigned b_size)
{
   return a_reg > b_reg ?
          (a_reg - b_reg < b_size) :
          (b_reg - a_reg < a_size);
}

unsigned handle_SMEM_clause(aco_ptr<Instruction>& instr, int new_idx,
                            std::vector<aco_ptr<Instruction>>& new_instructions)
{
   //TODO: s_dcache_inv needs to be in it's own group on GFX10 (and previous versions?)
   const bool is_store = instr->definitions.empty();
   for (int pred_idx = new_idx - 1; pred_idx >= 0; pred_idx--) {
      aco_ptr<Instruction>& pred = new_instructions[pred_idx];
      if (pred->format != Format::SMEM)
         break;

      /* Don't allow clauses with store instructions since the clause's
       * instructions may use the same address. */
      if (is_store || pred->definitions.empty())
         return 1;

      Definition& instr_def = instr->definitions[0];
      Definition& pred_def = pred->definitions[0];

      /* ISA reference doesn't say anything about this, but best to be safe */
      if (regs_intersect(instr_def.physReg(), instr_def.size(), pred_def.physReg(), pred_def.size()))
         return 1;

      for (const Operand& op : pred->operands) {
         if (op.isConstant() || !op.isFixed())
            continue;
         if (regs_intersect(instr_def.physReg(), instr_def.size(), op.physReg(), op.size()))
            return 1;
      }
      for (const Operand& op : instr->operands) {
         if (op.isConstant() || !op.isFixed())
            continue;
         if (regs_intersect(pred_def.physReg(), pred_def.size(), op.physReg(), op.size()))
            return 1;
      }
   }

   return 0;
}

int handle_instruction_gfx8_9(NOP_ctx_gfx8_9& ctx, aco_ptr<Instruction>& instr,
                              std::vector<aco_ptr<Instruction>>& old_instructions,
                              std::vector<aco_ptr<Instruction>>& new_instructions)
{
   int new_idx = new_instructions.size();

   // TODO: setreg / getreg / m0 writes
   // TODO: try to schedule the NOP-causing instruction up to reduce the number of stall cycles

   /* break off from prevous SMEM clause if needed */
   if (instr->format == Format::SMEM && ctx.chip_class >= GFX8) {
      return handle_SMEM_clause(instr, new_idx, new_instructions);
   } else if (instr->isVALU() || instr->format == Format::VINTRP) {
      int NOPs = 0;

      if (instr->isDPP()) {
         /* VALU does not forward EXEC to DPP. */
         if (ctx.VALU_wrexec + 5 >= new_idx)
            NOPs = 5 + ctx.VALU_wrexec - new_idx + 1;

         /* VALU DPP reads VGPR written by VALU */
         for (int pred_idx = new_idx - 1; pred_idx >= 0 && pred_idx >= new_idx - 2; pred_idx--) {
            aco_ptr<Instruction>& pred = new_instructions[pred_idx];
            if ((pred->isVALU() || pred->format == Format::VINTRP) &&
                !pred->definitions.empty() &&
                pred->definitions[0].physReg() == instr->operands[0].physReg()) {
               NOPs = std::max(NOPs, 2 + pred_idx - new_idx + 1);
               break;
            }
         }
      }

      /* SALU writes M0 */
      if (instr->format == Format::VINTRP && new_idx > 0 && ctx.chip_class >= GFX9) {
         aco_ptr<Instruction>& pred = new_instructions.back();
         if (pred->isSALU() &&
             !pred->definitions.empty() &&
             pred->definitions[0].physReg() == m0)
            NOPs = std::max(NOPs, 1);
      }

      for (const Operand& op : instr->operands) {
         /* VALU which uses VCCZ */
         if (op.physReg() == PhysReg{251} &&
             ctx.VALU_wrvcc + 5 >= new_idx)
            NOPs = std::max(NOPs, 5 + ctx.VALU_wrvcc - new_idx + 1);

         /* VALU which uses EXECZ */
         if (op.physReg() == PhysReg{252} &&
             ctx.VALU_wrexec + 5 >= new_idx)
            NOPs = std::max(NOPs, 5 + ctx.VALU_wrexec - new_idx + 1);

         /* VALU which reads VCC as a constant */
         if (ctx.VALU_wrvcc + 1 >= new_idx) {
            for (unsigned k = 0; k < op.size(); k++) {
               unsigned reg = op.physReg() + k;
               if (reg == ctx.vcc_physical || reg == ctx.vcc_physical + 1)
                  NOPs = std::max(NOPs, 1);
            }
         }
      }

      switch (instr->opcode) {
         case aco_opcode::v_readlane_b32:
         case aco_opcode::v_writelane_b32: {
            if (ctx.VALU_wrsgpr + 4 < new_idx)
               break;
            PhysReg reg = instr->operands[1].physReg();
            for (int pred_idx = new_idx - 1; pred_idx >= 0 && pred_idx >= new_idx - 4; pred_idx--) {
               aco_ptr<Instruction>& pred = new_instructions[pred_idx];
               if (!pred->isVALU() || !VALU_writes_sgpr(pred))
                  continue;
               for (const Definition& def : pred->definitions) {
                  if (def.physReg() == reg)
                     NOPs = std::max(NOPs, 4 + pred_idx - new_idx + 1);
               }
            }
            break;
         }
         case aco_opcode::v_div_fmas_f32:
         case aco_opcode::v_div_fmas_f64: {
            if (ctx.VALU_wrvcc + 4 >= new_idx)
               NOPs = std::max(NOPs, 4 + ctx.VALU_wrvcc - new_idx + 1);
            break;
         }
         default:
            break;
      }

      /* Write VGPRs holding writedata > 64 bit from MIMG/MUBUF instructions */
      // FIXME: handle case if the last instruction of a block without branch is such store
      // TODO: confirm that DS instructions cannot cause WAR hazards here
      if (new_idx > 0) {
         aco_ptr<Instruction>& pred = new_instructions.back();
         if (pred->isVMEM() &&
             pred->operands.size() == 4 &&
             pred->operands[3].size() > 2 &&
             pred->operands[1].size() != 8 &&
             (pred->format != Format::MUBUF || pred->operands[2].physReg() >= 102)) {
            /* Ops that use a 256-bit T# do not need a wait state.
             * BUFFER_STORE_* operations that use an SGPR for "offset"
             * do not require any wait states. */
            PhysReg wrdata = pred->operands[3].physReg();
            unsigned size = pred->operands[3].size();
            assert(wrdata >= 256);
            for (const Definition& def : instr->definitions) {
               if (regs_intersect(def.physReg(), def.size(), wrdata, size))
                  NOPs = std::max(NOPs, 1);
            }
         }
      }

      if (VALU_writes_sgpr(instr)) {
         for (const Definition& def : instr->definitions) {
            if (def.physReg() == vcc)
               ctx.VALU_wrvcc = NOPs ? new_idx : new_idx + 1;
            else if (def.physReg() == exec)
               ctx.VALU_wrexec = NOPs ? new_idx : new_idx + 1;
            else if (def.physReg() <= 102)
               ctx.VALU_wrsgpr = NOPs ? new_idx : new_idx + 1;
         }
      }
      return NOPs;
   } else if (instr->isVMEM() && ctx.VALU_wrsgpr + 5 >= new_idx) {
      /* If the VALU writes the SGPR that is used by a VMEM, the user must add five wait states. */
      for (int pred_idx = new_idx - 1; pred_idx >= 0 && pred_idx >= new_idx - 5; pred_idx--) {
         aco_ptr<Instruction>& pred = new_instructions[pred_idx];
         if (!(pred->isVALU() && VALU_writes_sgpr(pred)))
            continue;

         for (const Definition& def : pred->definitions) {
            if (def.physReg() > 102)
               continue;

            if (instr->operands.size() > 1 &&
                regs_intersect(instr->operands[1].physReg(), instr->operands[1].size(),
                               def.physReg(), def.size())) {
                  return 5 + pred_idx - new_idx + 1;
            }

            if (instr->operands.size() > 2 &&
                regs_intersect(instr->operands[2].physReg(), instr->operands[2].size(),
                               def.physReg(), def.size())) {
                  return 5 + pred_idx - new_idx + 1;
            }
         }
      }
   }

   return 0;
}

void handle_block_gfx8_9(NOP_ctx_gfx8_9& ctx, Block& block)
{
   std::vector<aco_ptr<Instruction>> instructions;
   instructions.reserve(block.instructions.size());
   for (unsigned i = 0; i < block.instructions.size(); i++) {
      aco_ptr<Instruction>& instr = block.instructions[i];
      unsigned NOPs = handle_instruction_gfx8_9(ctx, instr, block.instructions, instructions);
      if (NOPs) {
         // TODO: try to move the instruction down
         /* create NOP */
         aco_ptr<SOPP_instruction> nop{create_instruction<SOPP_instruction>(aco_opcode::s_nop, Format::SOPP, 0, 0)};
         nop->imm = NOPs - 1;
         nop->block = -1;
         instructions.emplace_back(std::move(nop));
      }

      instructions.emplace_back(std::move(instr));
   }

   ctx.VALU_wrvcc -= instructions.size();
   ctx.VALU_wrexec -= instructions.size();
   ctx.VALU_wrsgpr -= instructions.size();
   block.instructions = std::move(instructions);
}

void insert_NOPs_gfx8_9(Program* program)
{
   NOP_ctx_gfx8_9 ctx(program);

   for (Block& block : program->blocks) {
      if (block.instructions.empty())
         continue;

      handle_block_gfx8_9(ctx, block);
   }
}

void handle_instruction_gfx10(Program *program, NOP_ctx_gfx10 &ctx, aco_ptr<Instruction>& instr,
                              std::vector<aco_ptr<Instruction>>& old_instructions,
                              std::vector<aco_ptr<Instruction>>& new_instructions)
{
   /* VMEMtoScalarWriteHazard
    * Handle EXEC/M0/SGPR write following a VMEM instruction without a VALU or "waitcnt vmcnt(0)" in-between.
    */
   if (instr->isVMEM() || instr->format == Format::FLAT || instr->format == Format::GLOBAL ||
       instr->format == Format::SCRATCH || instr->format == Format::DS) {
      /* Remember all SGPRs that are read by the VMEM instruction */
      mark_read_regs(instr, ctx.sgprs_read_by_VMEM);
      ctx.sgprs_read_by_VMEM.set(exec);
      if (program->wave_size == 64)
         ctx.sgprs_read_by_VMEM.set(exec_hi);
   } else if (instr->isSALU() || instr->format == Format::SMEM) {
      /* Check if SALU writes an SGPR that was previously read by the VALU */
      if (check_written_regs(instr, ctx.sgprs_read_by_VMEM)) {
         ctx.sgprs_read_by_VMEM.reset();

         /* Insert v_nop to mitigate the problem */
         aco_ptr<VOP1_instruction> nop{create_instruction<VOP1_instruction>(aco_opcode::v_nop, Format::VOP1, 0, 0)};
         new_instructions.emplace_back(std::move(nop));
      }
   } else if (instr->opcode == aco_opcode::s_waitcnt) {
      /* Hazard is mitigated by "s_waitcnt vmcnt(0)" */
      uint16_t imm = static_cast<SOPP_instruction*>(instr.get())->imm;
      unsigned vmcnt = (imm & 0xF) | ((imm & (0x3 << 14)) >> 10);
      if (vmcnt == 0)
         ctx.sgprs_read_by_VMEM.reset();
   } else if (instr->isVALU()) {
      /* Hazard is mitigated by any VALU instruction */
      ctx.sgprs_read_by_VMEM.reset();
   }

   /* VcmpxPermlaneHazard
    * Handle any permlane following a VOPC instruction, insert v_mov between them.
    */
   if (instr->format == Format::VOPC) {
      ctx.has_VOPC = true;
   } else if (ctx.has_VOPC &&
              (instr->opcode == aco_opcode::v_permlane16_b32 ||
               instr->opcode == aco_opcode::v_permlanex16_b32)) {
      ctx.has_VOPC = false;

      /* v_nop would be discarded by SQ, so use v_mov with the first operand of the permlane */
      aco_ptr<VOP1_instruction> v_mov{create_instruction<VOP1_instruction>(aco_opcode::v_mov_b32, Format::VOP1, 1, 1)};
      v_mov->definitions[0] = Definition(instr->operands[0].physReg(), v1);
      v_mov->operands[0] = Operand(instr->operands[0].physReg(), v1);
      new_instructions.emplace_back(std::move(v_mov));
   } else if (instr->isVALU() && instr->opcode != aco_opcode::v_nop) {
      ctx.has_VOPC = false;
   }

   /* VcmpxExecWARHazard
    * Handle any VALU instruction writing the exec mask after it was read by a non-VALU instruction.
    */
   if (!instr->isVALU() && instr_reads_exec(instr)) {
      ctx.has_nonVALU_exec_read = true;
   } else if (instr->isVALU()) {
      if (instr_writes_exec(instr)) {
         ctx.has_nonVALU_exec_read = false;

         /* Insert s_waitcnt_depctr instruction with magic imm to mitigate the problem */
         aco_ptr<SOPP_instruction> depctr{create_instruction<SOPP_instruction>(aco_opcode::s_waitcnt_depctr, Format::SOPP, 0, 1)};
         depctr->imm = 0xfffe;
         depctr->definitions[0] = Definition(sgpr_null, s1);
         new_instructions.emplace_back(std::move(depctr));
      } else if (instr_writes_sgpr(instr)) {
         /* Any VALU instruction that writes an SGPR mitigates the problem */
         ctx.has_nonVALU_exec_read = false;
      }
   } else if (instr->opcode == aco_opcode::s_waitcnt_depctr) {
      /* s_waitcnt_depctr can mitigate the problem if it has a magic imm */
      const SOPP_instruction *sopp = static_cast<const SOPP_instruction *>(instr.get());
      if ((sopp->imm & 0xfffe) == 0xfffe)
         ctx.has_nonVALU_exec_read = false;
   }

   /* SMEMtoVectorWriteHazard
    * Handle any VALU instruction writing an SGPR after an SMEM reads it.
    */
   if (instr->format == Format::SMEM) {
      /* Remember all SGPRs that are read by the SMEM instruction */
      mark_read_regs(instr, ctx.sgprs_read_by_SMEM);
   } else if (VALU_writes_sgpr(instr)) {
      /* Check if VALU writes an SGPR that was previously read by SMEM */
      if (check_written_regs(instr, ctx.sgprs_read_by_SMEM)) {
         ctx.sgprs_read_by_SMEM.reset();

         /* Insert s_mov to mitigate the problem */
         aco_ptr<SOP1_instruction> s_mov{create_instruction<SOP1_instruction>(aco_opcode::s_mov_b32, Format::SOP1, 1, 1)};
         s_mov->definitions[0] = Definition(sgpr_null, s1);
         s_mov->operands[0] = Operand(0u);
         new_instructions.emplace_back(std::move(s_mov));
      }
   } else if (instr->isSALU()) {
      if (instr->format != Format::SOPP) {
         /* SALU can mitigate the hazard */
         ctx.sgprs_read_by_SMEM.reset();
      } else {
         /* Reducing lgkmcnt count to 0 always mitigates the hazard. */
         const SOPP_instruction *sopp = static_cast<const SOPP_instruction *>(instr.get());
         if (sopp->opcode == aco_opcode::s_waitcnt_lgkmcnt) {
            if (sopp->imm == 0 && sopp->definitions[0].physReg() == sgpr_null)
               ctx.sgprs_read_by_SMEM.reset();
         } else if (sopp->opcode == aco_opcode::s_waitcnt) {
            unsigned lgkm = (sopp->imm >> 8) & 0x3f;
            if (lgkm == 0)
               ctx.sgprs_read_by_SMEM.reset();
         }
      }
   }

   /* LdsBranchVmemWARHazard
    * Handle VMEM/GLOBAL/SCRATCH->branch->DS and DS->branch->VMEM/GLOBAL/SCRATCH patterns.
    */
   if (instr->isVMEM() || instr->format == Format::GLOBAL || instr->format == Format::SCRATCH) {
      ctx.has_VMEM = true;
      ctx.has_branch_after_VMEM = false;
      /* Mitigation for DS is needed only if there was already a branch after */
      ctx.has_DS = ctx.has_branch_after_DS;
   } else if (instr->format == Format::DS) {
      ctx.has_DS = true;
      ctx.has_branch_after_DS = false;
      /* Mitigation for VMEM is needed only if there was already a branch after */
      ctx.has_VMEM = ctx.has_branch_after_VMEM;
   } else if (instr_is_branch(instr)) {
      ctx.has_branch_after_VMEM = ctx.has_VMEM;
      ctx.has_branch_after_DS = ctx.has_DS;
   } else if (instr->opcode == aco_opcode::s_waitcnt_vscnt) {
      /* Only s_waitcnt_vscnt can mitigate the hazard */
      const SOPK_instruction *sopk = static_cast<const SOPK_instruction *>(instr.get());
      if (sopk->definitions[0].physReg() == sgpr_null && sopk->imm == 0)
         ctx.has_VMEM = ctx.has_branch_after_VMEM = ctx.has_DS = ctx.has_branch_after_DS = false;
   }
   if ((ctx.has_VMEM && ctx.has_branch_after_DS) || (ctx.has_DS && ctx.has_branch_after_VMEM)) {
      ctx.has_VMEM = ctx.has_branch_after_VMEM = ctx.has_DS = ctx.has_branch_after_DS = false;

      /* Insert s_waitcnt_vscnt to mitigate the problem */
      aco_ptr<SOPK_instruction> wait{create_instruction<SOPK_instruction>(aco_opcode::s_waitcnt_vscnt, Format::SOPK, 0, 1)};
      wait->definitions[0] = Definition(sgpr_null, s1);
      wait->imm = 0;
      new_instructions.emplace_back(std::move(wait));
   }
}

void handle_block_gfx10(Program *program, NOP_ctx_gfx10& ctx, Block& block)
{
   if (block.instructions.empty())
      return;

   std::vector<aco_ptr<Instruction>> instructions;
   instructions.reserve(block.instructions.size());

   for (aco_ptr<Instruction>& instr : block.instructions) {
      handle_instruction_gfx10(program, ctx, instr, block.instructions, instructions);
      instructions.emplace_back(std::move(instr));
   }

   block.instructions = std::move(instructions);
}

void mitigate_hazards_gfx10(Program *program)
{
   NOP_ctx_gfx10 all_ctx[program->blocks.size()];
   std::stack<unsigned> loop_header_indices;

   for (unsigned i = 0; i < program->blocks.size(); i++) {
      Block& block = program->blocks[i];
      NOP_ctx_gfx10 &ctx = all_ctx[i];

      if (block.kind & block_kind_loop_header) {
         loop_header_indices.push(i);
      } else if (block.kind & block_kind_loop_exit) {
         /* Go through the whole loop again */
         for (unsigned idx = loop_header_indices.top(); idx < i; idx++) {
            NOP_ctx_gfx10 loop_block_ctx;
            for (unsigned b : program->blocks[idx].linear_preds)
               loop_block_ctx.join(all_ctx[b]);

            handle_block_gfx10(program, loop_block_ctx, program->blocks[idx]);

            /* We only need to continue if the loop header context changed */
            if (idx == loop_header_indices.top() && loop_block_ctx == all_ctx[idx])
               break;

            all_ctx[idx] = loop_block_ctx;
         }

         loop_header_indices.pop();
      }

      for (unsigned b : block.linear_preds)
         ctx.join(all_ctx[b]);

      handle_block_gfx10(program, ctx, block);
   }
}

} /* end namespace */

void insert_NOPs(Program* program)
{
   if (program->chip_class >= GFX10)
      mitigate_hazards_gfx10(program);
   else
      insert_NOPs_gfx8_9(program);
}

}