summaryrefslogtreecommitdiff
path: root/src/amd/compiler/aco_assembler.cpp
blob: 17a51cd7478ae369969d282e6c1080b6b000b9d2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
#include <vector>
#include <algorithm>

#include "aco_ir.h"
#include "aco_builder.h"
#include "common/sid.h"
#include "ac_shader_util.h"
#include "util/u_math.h"

namespace aco {

struct asm_context {
   Program *program;
   enum chip_class chip_class;
   std::vector<std::pair<int, SOPP_instruction*>> branches;
   std::vector<unsigned> constaddrs;
   const int16_t* opcode;
   // TODO: keep track of branch instructions referring blocks
   // and, when emitting the block, correct the offset in instr
   asm_context(Program* program) : program(program), chip_class(program->chip_class) {
      if (chip_class <= GFX7)
         opcode = &instr_info.opcode_gfx7[0];
      else if (chip_class <= GFX9)
         opcode = &instr_info.opcode_gfx9[0];
      else if (chip_class >= GFX10)
         opcode = &instr_info.opcode_gfx10[0];
   }

   int subvector_begin_pos = -1;
};

static uint32_t get_sdwa_sel(unsigned sel, PhysReg reg)
{
   if (sel & sdwa_isra) {
      unsigned size = sdwa_rasize & sel;
      if (size == 1)
         return reg.byte();
      else /* size == 2 */
         return sdwa_isword | (reg.byte() >> 1);
   }
   return sel & sdwa_asuint;
}

void emit_instruction(asm_context& ctx, std::vector<uint32_t>& out, Instruction* instr)
{
   /* lower remaining pseudo-instructions */
   if (instr->opcode == aco_opcode::p_constaddr) {
      unsigned dest = instr->definitions[0].physReg();
      unsigned offset = instr->operands[0].constantValue();

      /* s_getpc_b64 dest[0:1] */
      uint32_t encoding = (0b101111101 << 23);
      uint32_t opcode = ctx.opcode[(int)aco_opcode::s_getpc_b64];
      if (opcode >= 55 && ctx.chip_class <= GFX9) {
         assert(ctx.chip_class == GFX9 && opcode < 60);
         opcode = opcode - 4;
      }
      encoding |= dest << 16;
      encoding |= opcode << 8;
      out.push_back(encoding);

      /* s_add_u32 dest[0], dest[0], ... */
      encoding = (0b10 << 30);
      encoding |= ctx.opcode[(int)aco_opcode::s_add_u32] << 23;
      encoding |= dest << 16;
      encoding |= dest;
      encoding |= 255 << 8;
      out.push_back(encoding);
      ctx.constaddrs.push_back(out.size());
      out.push_back(offset);

      /* s_addc_u32 dest[1], dest[1], 0 */
      encoding = (0b10 << 30);
      encoding |= ctx.opcode[(int)aco_opcode::s_addc_u32] << 23;
      encoding |= (dest + 1) << 16;
      encoding |= dest + 1;
      encoding |= 128 << 8;
      out.push_back(encoding);
      return;
   }

   uint32_t opcode = ctx.opcode[(int)instr->opcode];
   if (opcode == (uint32_t)-1) {
      char *out;
      size_t outsize;
      FILE *memf = open_memstream(&out, &outsize);

      fprintf(memf, "Unsupported opcode: ");
      aco_print_instr(instr, memf);
      fclose(memf);

      aco_err(ctx.program, out);
      free(out);

      abort();
   }

   switch (instr->format) {
   case Format::SOP2: {
      uint32_t encoding = (0b10 << 30);
      encoding |= opcode << 23;
      encoding |= !instr->definitions.empty() ? instr->definitions[0].physReg() << 16 : 0;
      encoding |= instr->operands.size() >= 2 ? instr->operands[1].physReg() << 8 : 0;
      encoding |= !instr->operands.empty() ? instr->operands[0].physReg() : 0;
      out.push_back(encoding);
      break;
   }
   case Format::SOPK: {
      SOPK_instruction *sopk = static_cast<SOPK_instruction*>(instr);

      if (instr->opcode == aco_opcode::s_subvector_loop_begin) {
         assert(ctx.chip_class >= GFX10);
         assert(ctx.subvector_begin_pos == -1);
         ctx.subvector_begin_pos = out.size();
      } else if (instr->opcode == aco_opcode::s_subvector_loop_end) {
         assert(ctx.chip_class >= GFX10);
         assert(ctx.subvector_begin_pos != -1);
         /* Adjust s_subvector_loop_begin instruction to the address after the end  */
         out[ctx.subvector_begin_pos] |= (out.size() - ctx.subvector_begin_pos);
         /* Adjust s_subvector_loop_end instruction to the address after the beginning  */
         sopk->imm = (uint16_t)(ctx.subvector_begin_pos - (int)out.size());
         ctx.subvector_begin_pos = -1;
      }

      uint32_t encoding = (0b1011 << 28);
      encoding |= opcode << 23;
      encoding |=
         !instr->definitions.empty() && !(instr->definitions[0].physReg() == scc) ?
         instr->definitions[0].physReg() << 16 :
         !instr->operands.empty() && instr->operands[0].physReg() <= 127 ?
         instr->operands[0].physReg() << 16 : 0;
      encoding |= sopk->imm;
      out.push_back(encoding);
      break;
   }
   case Format::SOP1: {
      uint32_t encoding = (0b101111101 << 23);
      if (opcode >= 55 && ctx.chip_class <= GFX9) {
         assert(ctx.chip_class == GFX9 && opcode < 60);
         opcode = opcode - 4;
      }
      encoding |= !instr->definitions.empty() ? instr->definitions[0].physReg() << 16 : 0;
      encoding |= opcode << 8;
      encoding |= !instr->operands.empty() ? instr->operands[0].physReg() : 0;
      out.push_back(encoding);
      break;
   }
   case Format::SOPC: {
      uint32_t encoding = (0b101111110 << 23);
      encoding |= opcode << 16;
      encoding |= instr->operands.size() == 2 ? instr->operands[1].physReg() << 8 : 0;
      encoding |= !instr->operands.empty() ? instr->operands[0].physReg() : 0;
      out.push_back(encoding);
      break;
   }
   case Format::SOPP: {
      SOPP_instruction* sopp = static_cast<SOPP_instruction*>(instr);
      uint32_t encoding = (0b101111111 << 23);
      encoding |= opcode << 16;
      encoding |= (uint16_t) sopp->imm;
      if (sopp->block != -1) {
         sopp->pass_flags = 0;
         ctx.branches.emplace_back(out.size(), sopp);
      }
      out.push_back(encoding);
      break;
   }
   case Format::SMEM: {
      SMEM_instruction* smem = static_cast<SMEM_instruction*>(instr);
      bool soe = instr->operands.size() >= (!instr->definitions.empty() ? 3 : 4);
      bool is_load = !instr->definitions.empty();
      uint32_t encoding = 0;

      if (ctx.chip_class <= GFX7) {
         encoding = (0b11000 << 27);
         encoding |= opcode << 22;
         encoding |= instr->definitions.size() ? instr->definitions[0].physReg() << 15 : 0;
         encoding |= instr->operands.size() ? (instr->operands[0].physReg() >> 1) << 9 : 0;
         if (instr->operands.size() >= 2) {
            if (!instr->operands[1].isConstant() || instr->operands[1].constantValue() >= 1024) {
               encoding |= instr->operands[1].physReg().reg();
            } else {
               encoding |= instr->operands[1].constantValue() >> 2;
               encoding |= 1 << 8;
            }
         }
         out.push_back(encoding);
         /* SMRD instructions can take a literal on GFX6 & GFX7 */
         if (instr->operands.size() >= 2 && instr->operands[1].isConstant() && instr->operands[1].constantValue() >= 1024)
            out.push_back(instr->operands[1].constantValue() >> 2);
         return;
      }

      if (ctx.chip_class <= GFX9) {
         encoding = (0b110000 << 26);
         assert(!smem->dlc); /* Device-level coherent is not supported on GFX9 and lower */
         encoding |= smem->nv ? 1 << 15 : 0;
      } else {
         encoding = (0b111101 << 26);
         assert(!smem->nv); /* Non-volatile is not supported on GFX10 */
         encoding |= smem->dlc ? 1 << 14 : 0;
      }

      encoding |= opcode << 18;
      encoding |= smem->glc ? 1 << 16 : 0;

      if (ctx.chip_class <= GFX9) {
         if (instr->operands.size() >= 2)
            encoding |= instr->operands[1].isConstant() ? 1 << 17 : 0; /* IMM - immediate enable */
      }
      if (ctx.chip_class == GFX9) {
         encoding |= soe ? 1 << 14 : 0;
      }

      if (is_load || instr->operands.size() >= 3) { /* SDATA */
         encoding |= (is_load ? instr->definitions[0].physReg() : instr->operands[2].physReg()) << 6;
      }
      if (instr->operands.size() >= 1) { /* SBASE */
         encoding |= instr->operands[0].physReg() >> 1;
      }

      out.push_back(encoding);
      encoding = 0;

      int32_t offset = 0;
      uint32_t soffset = ctx.chip_class >= GFX10
                         ? sgpr_null /* On GFX10 this is disabled by specifying SGPR_NULL */
                         : 0;        /* On GFX9, it is disabled by the SOE bit (and it's not present on GFX8 and below) */
      if (instr->operands.size() >= 2) {
         const Operand &op_off1 = instr->operands[1];
         if (ctx.chip_class <= GFX9) {
            offset = op_off1.isConstant() ? op_off1.constantValue() : op_off1.physReg();
         } else {
            /* GFX10 only supports constants in OFFSET, so put the operand in SOFFSET if it's an SGPR */
            if (op_off1.isConstant()) {
               offset = op_off1.constantValue();
            } else {
               soffset = op_off1.physReg();
               assert(!soe); /* There is no place to put the other SGPR offset, if any */
            }
         }

         if (soe) {
            const Operand &op_off2 = instr->operands.back();
            assert(ctx.chip_class >= GFX9); /* GFX8 and below don't support specifying a constant and an SGPR at the same time */
            assert(!op_off2.isConstant());
            soffset = op_off2.physReg();
         }
      }
      encoding |= offset;
      encoding |= soffset << 25;

      out.push_back(encoding);
      return;
   }
   case Format::VOP2: {
      uint32_t encoding = 0;
      encoding |= opcode << 25;
      encoding |= (0xFF & instr->definitions[0].physReg()) << 17;
      encoding |= (0xFF & instr->operands[1].physReg()) << 9;
      encoding |= instr->operands[0].physReg();
      out.push_back(encoding);
      break;
   }
   case Format::VOP1: {
      uint32_t encoding = (0b0111111 << 25);
      if (!instr->definitions.empty())
         encoding |= (0xFF & instr->definitions[0].physReg()) << 17;
      encoding |= opcode << 9;
      if (!instr->operands.empty())
         encoding |= instr->operands[0].physReg();
      out.push_back(encoding);
      break;
   }
   case Format::VOPC: {
      uint32_t encoding = (0b0111110 << 25);
      encoding |= opcode << 17;
      encoding |= (0xFF & instr->operands[1].physReg()) << 9;
      encoding |= instr->operands[0].physReg();
      out.push_back(encoding);
      break;
   }
   case Format::VINTRP: {
      Interp_instruction* interp = static_cast<Interp_instruction*>(instr);
      uint32_t encoding = 0;

      if (instr->opcode == aco_opcode::v_interp_p1ll_f16 ||
          instr->opcode == aco_opcode::v_interp_p1lv_f16 ||
          instr->opcode == aco_opcode::v_interp_p2_legacy_f16 ||
          instr->opcode == aco_opcode::v_interp_p2_f16) {
         if (ctx.chip_class == GFX8 || ctx.chip_class == GFX9) {
            encoding = (0b110100 << 26);
         } else if (ctx.chip_class >= GFX10) {
            encoding = (0b110101 << 26);
         } else {
            unreachable("Unknown chip_class.");
         }

         encoding |= opcode << 16;
         encoding |= (0xFF & instr->definitions[0].physReg());
         out.push_back(encoding);

         encoding = 0;
         encoding |= interp->attribute;
         encoding |= interp->component << 6;
         encoding |= instr->operands[0].physReg() << 9;
         if (instr->opcode == aco_opcode::v_interp_p2_f16 ||
             instr->opcode == aco_opcode::v_interp_p2_legacy_f16 ||
             instr->opcode == aco_opcode::v_interp_p1lv_f16) {
            encoding |= instr->operands[2].physReg() << 18;
         }
         out.push_back(encoding);
      } else {
         if (ctx.chip_class == GFX8 || ctx.chip_class == GFX9) {
            encoding = (0b110101 << 26); /* Vega ISA doc says 110010 but it's wrong */
         } else {
            encoding = (0b110010 << 26);
         }

         assert(encoding);
         encoding |= (0xFF & instr->definitions[0].physReg()) << 18;
         encoding |= opcode << 16;
         encoding |= interp->attribute << 10;
         encoding |= interp->component << 8;
         if (instr->opcode == aco_opcode::v_interp_mov_f32)
            encoding |= (0x3 & instr->operands[0].constantValue());
         else
            encoding |= (0xFF & instr->operands[0].physReg());
         out.push_back(encoding);
      }
      break;
   }
   case Format::DS: {
      DS_instruction* ds = static_cast<DS_instruction*>(instr);
      uint32_t encoding = (0b110110 << 26);
      if (ctx.chip_class == GFX8 || ctx.chip_class == GFX9) {
         encoding |= opcode << 17;
         encoding |= (ds->gds ? 1 : 0) << 16;
      } else {
         encoding |= opcode << 18;
         encoding |= (ds->gds ? 1 : 0) << 17;
      }
      encoding |= ((0xFF & ds->offset1) << 8);
      encoding |= (0xFFFF & ds->offset0);
      out.push_back(encoding);
      encoding = 0;
      unsigned reg = !instr->definitions.empty() ? instr->definitions[0].physReg() : 0;
      encoding |= (0xFF & reg) << 24;
      reg = instr->operands.size() >= 3 && !(instr->operands[2].physReg() == m0)  ? instr->operands[2].physReg() : 0;
      encoding |= (0xFF & reg) << 16;
      reg = instr->operands.size() >= 2 && !(instr->operands[1].physReg() == m0) ? instr->operands[1].physReg() : 0;
      encoding |= (0xFF & reg) << 8;
      encoding |= (0xFF & instr->operands[0].physReg());
      out.push_back(encoding);
      break;
   }
   case Format::MUBUF: {
      MUBUF_instruction* mubuf = static_cast<MUBUF_instruction*>(instr);
      uint32_t encoding = (0b111000 << 26);
      encoding |= opcode << 18;
      encoding |= (mubuf->lds ? 1 : 0) << 16;
      encoding |= (mubuf->glc ? 1 : 0) << 14;
      encoding |= (mubuf->idxen ? 1 : 0) << 13;
      assert(!mubuf->addr64 || ctx.chip_class <= GFX7);
      if (ctx.chip_class == GFX6 || ctx.chip_class == GFX7)
         encoding |= (mubuf->addr64 ? 1 : 0) << 15;
      encoding |= (mubuf->offen ? 1 : 0) << 12;
      if (ctx.chip_class == GFX8 || ctx.chip_class == GFX9) {
         assert(!mubuf->dlc); /* Device-level coherent is not supported on GFX9 and lower */
         encoding |= (mubuf->slc ? 1 : 0) << 17;
      } else if (ctx.chip_class >= GFX10) {
         encoding |= (mubuf->dlc ? 1 : 0) << 15;
      }
      encoding |= 0x0FFF & mubuf->offset;
      out.push_back(encoding);
      encoding = 0;
      if (ctx.chip_class <= GFX7 || ctx.chip_class >= GFX10) {
         encoding |= (mubuf->slc ? 1 : 0) << 22;
      }
      encoding |= instr->operands[2].physReg() << 24;
      encoding |= (mubuf->tfe ? 1 : 0) << 23;
      encoding |= (instr->operands[0].physReg() >> 2) << 16;
      unsigned reg = instr->operands.size() > 3 ? instr->operands[3].physReg() : instr->definitions[0].physReg();
      encoding |= (0xFF & reg) << 8;
      encoding |= (0xFF & instr->operands[1].physReg());
      out.push_back(encoding);
      break;
   }
   case Format::MTBUF: {
      MTBUF_instruction* mtbuf = static_cast<MTBUF_instruction*>(instr);

      uint32_t img_format = ac_get_tbuffer_format(ctx.chip_class, mtbuf->dfmt, mtbuf->nfmt);
      uint32_t encoding = (0b111010 << 26);
      assert(img_format <= 0x7F);
      assert(!mtbuf->dlc || ctx.chip_class >= GFX10);
      encoding |= (mtbuf->dlc ? 1 : 0) << 15; /* DLC bit replaces one bit of the OPCODE on GFX10 */
      encoding |= (mtbuf->glc ? 1 : 0) << 14;
      encoding |= (mtbuf->idxen ? 1 : 0) << 13;
      encoding |= (mtbuf->offen ? 1 : 0) << 12;
      encoding |= 0x0FFF & mtbuf->offset;
      encoding |= (img_format << 19); /* Handles both the GFX10 FORMAT and the old NFMT+DFMT */

      if (ctx.chip_class == GFX8 || ctx.chip_class == GFX9) {
         encoding |= opcode << 15;
      } else {
         encoding |= (opcode & 0x07) << 16; /* 3 LSBs of 4-bit OPCODE */
      }

      out.push_back(encoding);
      encoding = 0;

      encoding |= instr->operands[2].physReg() << 24;
      encoding |= (mtbuf->tfe ? 1 : 0) << 23;
      encoding |= (mtbuf->slc ? 1 : 0) << 22;
      encoding |= (instr->operands[0].physReg() >> 2) << 16;
      unsigned reg = instr->operands.size() > 3 ? instr->operands[3].physReg() : instr->definitions[0].physReg();
      encoding |= (0xFF & reg) << 8;
      encoding |= (0xFF & instr->operands[1].physReg());

      if (ctx.chip_class >= GFX10) {
         encoding |= (((opcode & 0x08) >> 3) << 21); /* MSB of 4-bit OPCODE */
      }

      out.push_back(encoding);
      break;
   }
   case Format::MIMG: {
      MIMG_instruction* mimg = static_cast<MIMG_instruction*>(instr);
      uint32_t encoding = (0b111100 << 26);
      encoding |= mimg->slc ? 1 << 25 : 0;
      encoding |= opcode << 18;
      encoding |= mimg->lwe ? 1 << 17 : 0;
      encoding |= mimg->tfe ? 1 << 16 : 0;
      encoding |= mimg->glc ? 1 << 13 : 0;
      encoding |= mimg->unrm ? 1 << 12 : 0;
      if (ctx.chip_class <= GFX9) {
         assert(!mimg->dlc); /* Device-level coherent is not supported on GFX9 and lower */
         assert(!mimg->r128);
         encoding |= mimg->a16 ? 1 << 15 : 0;
         encoding |= mimg->da ? 1 << 14 : 0;
      } else {
         encoding |= mimg->r128 ? 1 << 15 : 0; /* GFX10: A16 moved to 2nd word, R128 replaces it in 1st word */
         encoding |= mimg->dim << 3; /* GFX10: dimensionality instead of declare array */
         encoding |= mimg->dlc ? 1 << 7 : 0;
      }
      encoding |= (0xF & mimg->dmask) << 8;
      out.push_back(encoding);
      encoding = (0xFF & instr->operands[2].physReg()); /* VADDR */
      if (!instr->definitions.empty()) {
         encoding |= (0xFF & instr->definitions[0].physReg()) << 8; /* VDATA */
      } else if (instr->operands[1].regClass().type() == RegType::vgpr) {
         encoding |= (0xFF & instr->operands[1].physReg()) << 8; /* VDATA */
      }
      encoding |= (0x1F & (instr->operands[0].physReg() >> 2)) << 16; /* T# (resource) */
      if (instr->operands[1].regClass().type() == RegType::sgpr)
         encoding |= (0x1F & (instr->operands[1].physReg() >> 2)) << 21; /* sampler */

      assert(!mimg->d16 || ctx.chip_class >= GFX9);
      encoding |= mimg->d16 ? 1 << 15 : 0;
      if (ctx.chip_class >= GFX10) {
         encoding |= mimg->a16 ? 1 << 14 : 0; /* GFX10: A16 still exists, but is in a different place */
      }

      out.push_back(encoding);
      break;
   }
   case Format::FLAT:
   case Format::SCRATCH:
   case Format::GLOBAL: {
      FLAT_instruction *flat = static_cast<FLAT_instruction*>(instr);
      uint32_t encoding = (0b110111 << 26);
      encoding |= opcode << 18;
      if (ctx.chip_class <= GFX9) {
         assert(flat->offset <= 0x1fff);
         encoding |= flat->offset & 0x1fff;
      } else if (instr->format == Format::FLAT) {
         /* GFX10 has a 12-bit immediate OFFSET field,
          * but it has a hw bug: it ignores the offset, called FlatSegmentOffsetBug
          */
         assert(flat->offset == 0);
      } else {
         assert(flat->offset <= 0xfff);
         encoding |= flat->offset & 0xfff;
      }
      if (instr->format == Format::SCRATCH)
         encoding |= 1 << 14;
      else if (instr->format == Format::GLOBAL)
         encoding |= 2 << 14;
      encoding |= flat->lds ? 1 << 13 : 0;
      encoding |= flat->glc ? 1 << 16 : 0;
      encoding |= flat->slc ? 1 << 17 : 0;
      if (ctx.chip_class >= GFX10) {
         assert(!flat->nv);
         encoding |= flat->dlc ? 1 << 12 : 0;
      } else {
         assert(!flat->dlc);
      }
      out.push_back(encoding);
      encoding = (0xFF & instr->operands[0].physReg());
      if (!instr->definitions.empty())
         encoding |= (0xFF & instr->definitions[0].physReg()) << 24;
      if (instr->operands.size() >= 3)
         encoding |= (0xFF & instr->operands[2].physReg()) << 8;
      if (!instr->operands[1].isUndefined()) {
         assert(ctx.chip_class >= GFX10 || instr->operands[1].physReg() != 0x7F);
         assert(instr->format != Format::FLAT);
         encoding |= instr->operands[1].physReg() << 16;
      } else if (instr->format != Format::FLAT || ctx.chip_class >= GFX10) { /* SADDR is actually used with FLAT on GFX10 */
         if (ctx.chip_class <= GFX9)
            encoding |= 0x7F << 16;
         else
            encoding |= sgpr_null << 16;
      }
      encoding |= flat->nv ? 1 << 23 : 0;
      out.push_back(encoding);
      break;
   }
   case Format::EXP: {
      Export_instruction* exp = static_cast<Export_instruction*>(instr);
      uint32_t encoding;
      if (ctx.chip_class == GFX8 || ctx.chip_class == GFX9) {
         encoding = (0b110001 << 26);
      } else {
         encoding = (0b111110 << 26);
      }

      encoding |= exp->valid_mask ? 0b1 << 12 : 0;
      encoding |= exp->done ? 0b1 << 11 : 0;
      encoding |= exp->compressed ? 0b1 << 10 : 0;
      encoding |= exp->dest << 4;
      encoding |= exp->enabled_mask;
      out.push_back(encoding);
      encoding = 0xFF & exp->operands[0].physReg();
      encoding |= (0xFF & exp->operands[1].physReg()) << 8;
      encoding |= (0xFF & exp->operands[2].physReg()) << 16;
      encoding |= (0xFF & exp->operands[3].physReg()) << 24;
      out.push_back(encoding);
      break;
   }
   case Format::PSEUDO:
   case Format::PSEUDO_BARRIER:
      if (instr->opcode != aco_opcode::p_unit_test)
         unreachable("Pseudo instructions should be lowered before assembly.");
      break;
   default:
      if ((uint16_t) instr->format & (uint16_t) Format::VOP3A) {
         VOP3A_instruction* vop3 = static_cast<VOP3A_instruction*>(instr);

         if ((uint16_t) instr->format & (uint16_t) Format::VOP2) {
            opcode = opcode + 0x100;
         } else if ((uint16_t) instr->format & (uint16_t) Format::VOP1) {
            if (ctx.chip_class == GFX8 || ctx.chip_class == GFX9)
               opcode = opcode + 0x140;
            else
               opcode = opcode + 0x180;
         } else if ((uint16_t) instr->format & (uint16_t) Format::VOPC) {
            opcode = opcode + 0x0;
         } else if ((uint16_t) instr->format & (uint16_t) Format::VINTRP) {
            opcode = opcode + 0x270;
         }

         uint32_t encoding;
         if (ctx.chip_class <= GFX9) {
            encoding = (0b110100 << 26);
         } else if (ctx.chip_class >= GFX10) {
            encoding = (0b110101 << 26);
         } else {
            unreachable("Unknown chip_class.");
         }

         if (ctx.chip_class <= GFX7) {
            encoding |= opcode << 17;
            encoding |= (vop3->clamp ? 1 : 0) << 11;
         } else {
            encoding |= opcode << 16;
            encoding |= (vop3->clamp ? 1 : 0) << 15;
         }
         encoding |= vop3->opsel << 11;
         for (unsigned i = 0; i < 3; i++)
            encoding |= vop3->abs[i] << (8+i);
         if (instr->definitions.size() == 2)
            encoding |= instr->definitions[1].physReg() << 8;
         encoding |= (0xFF & instr->definitions[0].physReg());
         out.push_back(encoding);
         encoding = 0;
         if (instr->opcode == aco_opcode::v_interp_mov_f32) {
            encoding = 0x3 & instr->operands[0].constantValue();
         } else {
            for (unsigned i = 0; i < instr->operands.size(); i++)
               encoding |= instr->operands[i].physReg() << (i * 9);
         }
         encoding |= vop3->omod << 27;
         for (unsigned i = 0; i < 3; i++)
            encoding |= vop3->neg[i] << (29+i);
         out.push_back(encoding);

      } else if (instr->format == Format::VOP3P) {
         VOP3P_instruction* vop3 = static_cast<VOP3P_instruction*>(instr);

         uint32_t encoding;
         if (ctx.chip_class == GFX9) {
            encoding = (0b110100111 << 23);
         } else if (ctx.chip_class >= GFX10) {
            encoding = (0b110011 << 26);
         } else {
            unreachable("Unknown chip_class.");
         }

         encoding |= opcode << 16;
         encoding |= (vop3->clamp ? 1 : 0) << 15;
         encoding |= vop3->opsel_lo << 11;
         encoding |= (vop3->opsel_hi & 0x4) ? 1 : 0 << 14;
         for (unsigned i = 0; i < 3; i++)
            encoding |= vop3->neg_hi[i] << (8+i);
         encoding |= (0xFF & instr->definitions[0].physReg());
         out.push_back(encoding);
         encoding = 0;
         for (unsigned i = 0; i < instr->operands.size(); i++)
            encoding |= instr->operands[i].physReg() << (i * 9);
         encoding |= vop3->opsel_hi & 0x3 << 27;
         for (unsigned i = 0; i < 3; i++)
            encoding |= vop3->neg_lo[i] << (29+i);
         out.push_back(encoding);

      } else if (instr->isDPP()){
         assert(ctx.chip_class >= GFX8);
         /* first emit the instruction without the DPP operand */
         Operand dpp_op = instr->operands[0];
         instr->operands[0] = Operand(PhysReg{250}, v1);
         instr->format = (Format) ((uint16_t) instr->format & ~(uint16_t)Format::DPP);
         emit_instruction(ctx, out, instr);
         DPP_instruction* dpp = static_cast<DPP_instruction*>(instr);
         uint32_t encoding = (0xF & dpp->row_mask) << 28;
         encoding |= (0xF & dpp->bank_mask) << 24;
         encoding |= dpp->abs[1] << 23;
         encoding |= dpp->neg[1] << 22;
         encoding |= dpp->abs[0] << 21;
         encoding |= dpp->neg[0] << 20;
         if (ctx.chip_class >= GFX10)
            encoding |= 1 << 18; /* set Fetch Inactive to match GFX9 behaviour */
         encoding |= dpp->bound_ctrl << 19;
         encoding |= dpp->dpp_ctrl << 8;
         encoding |= (0xFF) & dpp_op.physReg();
         out.push_back(encoding);
         return;
      } else if (instr->isSDWA()) {
         /* first emit the instruction without the SDWA operand */
         Operand sdwa_op = instr->operands[0];
         instr->operands[0] = Operand(PhysReg{249}, v1);
         instr->format = (Format) ((uint16_t) instr->format & ~(uint16_t)Format::SDWA);
         emit_instruction(ctx, out, instr);

         SDWA_instruction* sdwa = static_cast<SDWA_instruction*>(instr);
         uint32_t encoding = 0;

         if ((uint16_t)instr->format & (uint16_t)Format::VOPC) {
            if (instr->definitions[0].physReg() != vcc) {
               encoding |= instr->definitions[0].physReg() << 8;
               encoding |= 1 << 15;
            }
            encoding |= (sdwa->clamp ? 1 : 0) << 13;
         } else {
            encoding |= get_sdwa_sel(sdwa->dst_sel, instr->definitions[0].physReg()) << 8;
            uint32_t dst_u = sdwa->dst_sel & sdwa_sext ? 1 : 0;
            if (sdwa->dst_preserve || (sdwa->dst_sel & sdwa_isra))
               dst_u = 2;
            encoding |= dst_u << 11;
            encoding |= (sdwa->clamp ? 1 : 0) << 13;
            encoding |= sdwa->omod << 14;
         }

         encoding |= get_sdwa_sel(sdwa->sel[0], sdwa_op.physReg()) << 16;
         encoding |= sdwa->sel[0] & sdwa_sext ? 1 << 19 : 0;
         encoding |= sdwa->abs[0] << 21;
         encoding |= sdwa->neg[0] << 20;

         if (instr->operands.size() >= 2) {
            encoding |= get_sdwa_sel(sdwa->sel[1], instr->operands[1].physReg()) << 24;
            encoding |= sdwa->sel[1] & sdwa_sext ? 1 << 27 : 0;
            encoding |= sdwa->abs[1] << 29;
            encoding |= sdwa->neg[1] << 28;
         }

         encoding |= 0xFF & sdwa_op.physReg();
         encoding |= (sdwa_op.physReg() < 256) << 23;
         if (instr->operands.size() >= 2)
            encoding |= (instr->operands[1].physReg() < 256) << 31;
         out.push_back(encoding);
      } else {
         unreachable("unimplemented instruction format");
      }
      break;
   }

   /* append literal dword */
   for (const Operand& op : instr->operands) {
      if (op.isLiteral()) {
         out.push_back(op.constantValue());
         break;
      }
   }
}

void emit_block(asm_context& ctx, std::vector<uint32_t>& out, Block& block)
{
   for (aco_ptr<Instruction>& instr : block.instructions) {
#if 0
      int start_idx = out.size();
      std::cerr << "Encoding:\t" << std::endl;
      aco_print_instr(&*instr, stderr);
      std::cerr << std::endl;
#endif
      emit_instruction(ctx, out, instr.get());
#if 0
      for (int i = start_idx; i < out.size(); i++)
         std::cerr << "encoding: " << "0x" << std::setfill('0') << std::setw(8) << std::hex << out[i] << std::endl;
#endif
   }
}

void fix_exports(asm_context& ctx, std::vector<uint32_t>& out, Program* program)
{
   bool exported = false;
   for (Block& block : program->blocks) {
      if (!(block.kind & block_kind_export_end))
         continue;
      std::vector<aco_ptr<Instruction>>::reverse_iterator it = block.instructions.rbegin();
      while ( it != block.instructions.rend())
      {
         if ((*it)->format == Format::EXP) {
            Export_instruction* exp = static_cast<Export_instruction*>((*it).get());
            if (program->stage & (hw_vs | hw_ngg_gs)) {
               if (exp->dest >= V_008DFC_SQ_EXP_POS && exp->dest <= (V_008DFC_SQ_EXP_POS + 3)) {
                  exp->done = true;
                  exported = true;
                  break;
               }
            } else {
               exp->done = true;
               exp->valid_mask = true;
               exported = true;
               break;
            }
         } else if ((*it)->definitions.size() && (*it)->definitions[0].physReg() == exec)
            break;
         ++it;
      }
   }

   if (!exported) {
      /* Abort in order to avoid a GPU hang. */
      aco_err(program, "Missing export in %s shader:", (program->stage & hw_vs) ? "vertex" : "fragment");
      aco_print_program(program, stderr);
      abort();
   }
}

static void insert_code(asm_context& ctx, std::vector<uint32_t>& out, unsigned insert_before,
                        unsigned insert_count, const uint32_t *insert_data)
{
   out.insert(out.begin() + insert_before, insert_data, insert_data + insert_count);

   /* Update the offset of each affected block */
   for (Block& block : ctx.program->blocks) {
      if (block.offset >= insert_before)
         block.offset += insert_count;
   }

   /* Find first branch after the inserted code */
   auto branch_it = std::find_if(ctx.branches.begin(), ctx.branches.end(), [insert_before](const auto &branch) -> bool {
      return (unsigned)branch.first >= insert_before;
   });

   /* Update the locations of branches */
   for (; branch_it != ctx.branches.end(); ++branch_it)
      branch_it->first += insert_count;

   /* Find first constant address after the inserted code */
   auto caddr_it = std::find_if(ctx.constaddrs.begin(), ctx.constaddrs.end(), [insert_before](const int &caddr_pos) -> bool {
      return (unsigned)caddr_pos >= insert_before;
   });

   /* Update the locations of constant addresses */
   for (; caddr_it != ctx.constaddrs.end(); ++caddr_it)
      (*caddr_it) += insert_count;
}

static void fix_branches_gfx10(asm_context& ctx, std::vector<uint32_t>& out)
{
   /* Branches with an offset of 0x3f are buggy on GFX10, we workaround by inserting NOPs if needed. */
   bool gfx10_3f_bug = false;

   do {
      auto buggy_branch_it = std::find_if(ctx.branches.begin(), ctx.branches.end(), [&ctx](const auto &branch) -> bool {
         return ((int)ctx.program->blocks[branch.second->block].offset - branch.first - 1) == 0x3f;
      });

      gfx10_3f_bug = buggy_branch_it != ctx.branches.end();

      if (gfx10_3f_bug) {
         /* Insert an s_nop after the branch */
         constexpr uint32_t s_nop_0 = 0xbf800000u;
         insert_code(ctx, out, buggy_branch_it->first + 1, 1, &s_nop_0);
      }
   } while (gfx10_3f_bug);
}

void emit_long_jump(asm_context& ctx, SOPP_instruction *branch, bool backwards, std::vector<uint32_t>& out)
{
   Builder bld(ctx.program);

   Definition def_tmp_lo(branch->definitions[0].physReg(), s1);
   Operand op_tmp_lo(branch->definitions[0].physReg(), s1);
   Definition def_tmp_hi(branch->definitions[0].physReg().advance(4), s1);
   Operand op_tmp_hi(branch->definitions[0].physReg().advance(4), s1);

   aco_ptr<Instruction> instr;

   if (branch->opcode != aco_opcode::s_branch) {
      /* for conditional branches, skip the long jump if the condition is false */
      aco_opcode inv;
      switch (branch->opcode) {
      case aco_opcode::s_cbranch_scc0:
         inv = aco_opcode::s_cbranch_scc1;
         break;
      case aco_opcode::s_cbranch_scc1:
         inv = aco_opcode::s_cbranch_scc0;
         break;
      case aco_opcode::s_cbranch_vccz:
         inv = aco_opcode::s_cbranch_vccnz;
         break;
      case aco_opcode::s_cbranch_vccnz:
         inv = aco_opcode::s_cbranch_vccz;
         break;
      case aco_opcode::s_cbranch_execz:
         inv = aco_opcode::s_cbranch_execnz;
         break;
      case aco_opcode::s_cbranch_execnz:
         inv = aco_opcode::s_cbranch_execz;
         break;
      default:
         unreachable("Unhandled long jump.");
      }
      instr.reset(bld.sopp(inv, -1, 7));
      emit_instruction(ctx, out, instr.get());
   }

   /* create the new PC and stash SCC in the LSB */
   instr.reset(bld.sop1(aco_opcode::s_getpc_b64, branch->definitions[0]).instr);
   emit_instruction(ctx, out, instr.get());

   instr.reset(bld.sop2(aco_opcode::s_addc_u32, def_tmp_lo, op_tmp_lo, Operand(0u)).instr);
   instr->operands[1].setFixed(PhysReg{255}); /* this operand has to be a literal */
   emit_instruction(ctx, out, instr.get());
   branch->pass_flags = out.size();

   instr.reset(bld.sop2(aco_opcode::s_addc_u32, def_tmp_hi, op_tmp_hi, Operand(backwards ? UINT32_MAX : 0u)).instr);
   emit_instruction(ctx, out, instr.get());

   /* restore SCC and clear the LSB of the new PC */
   instr.reset(bld.sopc(aco_opcode::s_bitcmp1_b32, def_tmp_lo, op_tmp_lo, Operand(0u)).instr);
   emit_instruction(ctx, out, instr.get());
   instr.reset(bld.sop1(aco_opcode::s_bitset0_b32, def_tmp_lo, Operand(0u)).instr);
   emit_instruction(ctx, out, instr.get());

   /* create the s_setpc_b64 to jump */
   instr.reset(bld.sop1(aco_opcode::s_setpc_b64, Operand(branch->definitions[0].physReg(), s2)).instr);
   emit_instruction(ctx, out, instr.get());
}

void fix_branches(asm_context& ctx, std::vector<uint32_t>& out)
{
   bool repeat = false;
   do {
      repeat = false;

      if (ctx.chip_class == GFX10)
         fix_branches_gfx10(ctx, out);

      for (std::pair<int, SOPP_instruction*> &branch : ctx.branches) {
         int offset = (int)ctx.program->blocks[branch.second->block].offset - branch.first - 1;
         if ((offset < INT16_MIN || offset > INT16_MAX) && !branch.second->pass_flags) {
            std::vector<uint32_t> long_jump;
            bool backwards = ctx.program->blocks[branch.second->block].offset < (unsigned)branch.first;
            emit_long_jump(ctx, branch.second, backwards, long_jump);

            out[branch.first] = long_jump[0];
            insert_code(ctx, out, branch.first + 1, long_jump.size() - 1, long_jump.data() + 1);

            repeat = true;
            break;
         }

         if (branch.second->pass_flags) {
            int after_getpc = branch.first + branch.second->pass_flags - 2;
            offset = (int)ctx.program->blocks[branch.second->block].offset - after_getpc;
            out[branch.first + branch.second->pass_flags - 1] = offset * 4;
         } else {
            out[branch.first] &= 0xffff0000u;
            out[branch.first] |= (uint16_t) offset;
         }
      }
   } while (repeat);
}

void fix_constaddrs(asm_context& ctx, std::vector<uint32_t>& out)
{
   for (unsigned addr : ctx.constaddrs)
      out[addr] += (out.size() - addr + 1u) * 4u;
}

unsigned emit_program(Program* program,
                      std::vector<uint32_t>& code)
{
   asm_context ctx(program);

   if (program->stage & (hw_vs | hw_fs | hw_ngg_gs))
      fix_exports(ctx, code, program);

   for (Block& block : program->blocks) {
      block.offset = code.size();
      emit_block(ctx, code, block);
   }

   fix_branches(ctx, code);

   unsigned exec_size = code.size() * sizeof(uint32_t);

   if (program->chip_class >= GFX10) {
      /* Pad output with s_code_end so instruction prefetching doesn't cause
       * page faults */
      unsigned final_size = align(code.size() + 3 * 16, 16);
      while (code.size() < final_size)
         code.push_back(0xbf9f0000u);
   }

   fix_constaddrs(ctx, code);

   while (program->constant_data.size() % 4u)
      program->constant_data.push_back(0);
   /* Copy constant data */
   code.insert(code.end(), (uint32_t*)program->constant_data.data(),
               (uint32_t*)(program->constant_data.data() + program->constant_data.size()));

   return exec_size;
}

}