/************************************************************************** * * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. * Copyright 2009 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "main/glheader.h" #include "main/context.h" #include "main/state.h" #include "main/api_validate.h" #include "main/api_noop.h" #include "main/varray.h" #include "main/bufferobj.h" #include "glapi/dispatch.h" #include "vbo_context.h" /** * Compute min and max elements for glDraw[Range]Elements() calls. */ void vbo_get_minmax_index(GLcontext *ctx, const struct _mesa_prim *prim, const struct _mesa_index_buffer *ib, GLuint *min_index, GLuint *max_index) { GLuint i; GLsizei count = prim->count; const void *indices; if (_mesa_is_bufferobj(ib->obj)) { const GLvoid *map = ctx->Driver.MapBuffer(ctx, GL_ELEMENT_ARRAY_BUFFER_ARB, GL_READ_ONLY, ib->obj); indices = ADD_POINTERS(map, ib->ptr); } else { indices = ib->ptr; } switch (ib->type) { case GL_UNSIGNED_INT: { const GLuint *ui_indices = (const GLuint *)indices; GLuint max_ui = ui_indices[count-1]; GLuint min_ui = ui_indices[0]; for (i = 0; i < count; i++) { if (ui_indices[i] > max_ui) max_ui = ui_indices[i]; if (ui_indices[i] < min_ui) min_ui = ui_indices[i]; } *min_index = min_ui; *max_index = max_ui; break; } case GL_UNSIGNED_SHORT: { const GLushort *us_indices = (const GLushort *)indices; GLuint max_us = us_indices[count-1]; GLuint min_us = us_indices[0]; for (i = 0; i < count; i++) { if (us_indices[i] > max_us) max_us = us_indices[i]; if (us_indices[i] < min_us) min_us = us_indices[i]; } *min_index = min_us; *max_index = max_us; break; } case GL_UNSIGNED_BYTE: { const GLubyte *ub_indices = (const GLubyte *)indices; GLuint max_ub = ub_indices[count-1]; GLuint min_ub = ub_indices[0]; for (i = 0; i < count; i++) { if (ub_indices[i] > max_ub) max_ub = ub_indices[i]; if (ub_indices[i] < min_ub) min_ub = ub_indices[i]; } *min_index = min_ub; *max_index = max_ub; break; } default: assert(0); break; } if (_mesa_is_bufferobj(ib->obj)) { ctx->Driver.UnmapBuffer(ctx, GL_ELEMENT_ARRAY_BUFFER_ARB, ib->obj); } } /** * Check that element 'j' of the array has reasonable data. * Map VBO if needed. */ static void check_array_data(GLcontext *ctx, struct gl_client_array *array, GLuint attrib, GLuint j) { if (array->Enabled) { const void *data = array->Ptr; if (_mesa_is_bufferobj(array->BufferObj)) { if (!array->BufferObj->Pointer) { /* need to map now */ array->BufferObj->Pointer = ctx->Driver.MapBuffer(ctx, GL_ARRAY_BUFFER_ARB, GL_READ_ONLY, array->BufferObj); } data = ADD_POINTERS(data, array->BufferObj->Pointer); } switch (array->Type) { case GL_FLOAT: { GLfloat *f = (GLfloat *) ((GLubyte *) data + array->StrideB * j); GLuint k; for (k = 0; k < array->Size; k++) { if (IS_INF_OR_NAN(f[k]) || f[k] >= 1.0e20 || f[k] <= -1.0e10) { _mesa_printf("Bad array data:\n"); _mesa_printf(" Element[%u].%u = %f\n", j, k, f[k]); _mesa_printf(" Array %u at %p\n", attrib, (void* ) array); _mesa_printf(" Type 0x%x, Size %d, Stride %d\n", array->Type, array->Size, array->Stride); _mesa_printf(" Address/offset %p in Buffer Object %u\n", array->Ptr, array->BufferObj->Name); f[k] = 1.0; /* XXX replace the bad value! */ } //assert(!IS_INF_OR_NAN(f[k])); } } break; default: ; } } } /** * Unmap the buffer object referenced by given array, if mapped. */ static void unmap_array_buffer(GLcontext *ctx, struct gl_client_array *array) { if (array->Enabled && _mesa_is_bufferobj(array->BufferObj) && _mesa_bufferobj_mapped(array->BufferObj)) { ctx->Driver.UnmapBuffer(ctx, GL_ARRAY_BUFFER_ARB, array->BufferObj); } } /** * Examine the array's data for NaNs, etc. */ static void check_draw_elements_data(GLcontext *ctx, GLsizei count, GLenum elemType, const void *elements) { struct gl_array_object *arrayObj = ctx->Array.ArrayObj; const void *elemMap; GLint i, k; if (_mesa_is_bufferobj(ctx->Array.ElementArrayBufferObj)) { elemMap = ctx->Driver.MapBuffer(ctx, GL_ELEMENT_ARRAY_BUFFER_ARB, GL_READ_ONLY, ctx->Array.ElementArrayBufferObj); elements = ADD_POINTERS(elements, elemMap); } for (i = 0; i < count; i++) { GLuint j; /* j = element[i] */ switch (elemType) { case GL_UNSIGNED_BYTE: j = ((const GLubyte *) elements)[i]; break; case GL_UNSIGNED_SHORT: j = ((const GLushort *) elements)[i]; break; case GL_UNSIGNED_INT: j = ((const GLuint *) elements)[i]; break; default: assert(0); } /* check element j of each enabled array */ check_array_data(ctx, &arrayObj->Vertex, VERT_ATTRIB_POS, j); check_array_data(ctx, &arrayObj->Normal, VERT_ATTRIB_NORMAL, j); check_array_data(ctx, &arrayObj->Color, VERT_ATTRIB_COLOR0, j); check_array_data(ctx, &arrayObj->SecondaryColor, VERT_ATTRIB_COLOR1, j); for (k = 0; k < Elements(arrayObj->TexCoord); k++) { check_array_data(ctx, &arrayObj->TexCoord[k], VERT_ATTRIB_TEX0 + k, j); } for (k = 0; k < Elements(arrayObj->VertexAttrib); k++) { check_array_data(ctx, &arrayObj->VertexAttrib[k], VERT_ATTRIB_GENERIC0 + k, j); } } if (_mesa_is_bufferobj(ctx->Array.ElementArrayBufferObj)) { ctx->Driver.UnmapBuffer(ctx, GL_ELEMENT_ARRAY_BUFFER_ARB, ctx->Array.ElementArrayBufferObj); } unmap_array_buffer(ctx, &arrayObj->Vertex); unmap_array_buffer(ctx, &arrayObj->Normal); unmap_array_buffer(ctx, &arrayObj->Color); for (k = 0; k < Elements(arrayObj->TexCoord); k++) { unmap_array_buffer(ctx, &arrayObj->TexCoord[k]); } for (k = 0; k < Elements(arrayObj->VertexAttrib); k++) { unmap_array_buffer(ctx, &arrayObj->VertexAttrib[k]); } } /** * Check array data, looking for NaNs, etc. */ static void check_draw_arrays_data(GLcontext *ctx, GLint start, GLsizei count) { /* TO DO */ } /** * Print info/data for glDrawArrays(). */ static void print_draw_arrays(GLcontext *ctx, struct vbo_exec_context *exec, GLenum mode, GLint start, GLsizei count) { int i; _mesa_printf("vbo_exec_DrawArrays(mode 0x%x, start %d, count %d):\n", mode, start, count); for (i = 0; i < 32; i++) { GLuint bufName = exec->array.inputs[i]->BufferObj->Name; GLint stride = exec->array.inputs[i]->Stride; _mesa_printf("attr %2d: size %d stride %d enabled %d " "ptr %p Bufobj %u\n", i, exec->array.inputs[i]->Size, stride, /*exec->array.inputs[i]->Enabled,*/ exec->array.legacy_array[i]->Enabled, exec->array.inputs[i]->Ptr, bufName); if (bufName) { struct gl_buffer_object *buf = _mesa_lookup_bufferobj(ctx, bufName); GLubyte *p = ctx->Driver.MapBuffer(ctx, GL_ARRAY_BUFFER_ARB, GL_READ_ONLY_ARB, buf); int offset = (int) (GLintptr) exec->array.inputs[i]->Ptr; float *f = (float *) (p + offset); int *k = (int *) f; int i; int n = (count * stride) / 4; if (n > 32) n = 32; _mesa_printf(" Data at offset %d:\n", offset); for (i = 0; i < n; i++) { _mesa_printf(" float[%d] = 0x%08x %f\n", i, k[i], f[i]); } ctx->Driver.UnmapBuffer(ctx, GL_ARRAY_BUFFER_ARB, buf); } } } /** * Just translate the arrayobj into a sane layout. */ static void bind_array_obj(GLcontext *ctx) { struct vbo_context *vbo = vbo_context(ctx); struct vbo_exec_context *exec = &vbo->exec; struct gl_array_object *arrayObj = ctx->Array.ArrayObj; GLuint i; /* TODO: Fix the ArrayObj struct to keep legacy arrays in an array * rather than as individual named arrays. Then this function can * go away. */ exec->array.legacy_array[VERT_ATTRIB_POS] = &arrayObj->Vertex; exec->array.legacy_array[VERT_ATTRIB_WEIGHT] = &arrayObj->Weight; exec->array.legacy_array[VERT_ATTRIB_NORMAL] = &arrayObj->Normal; exec->array.legacy_array[VERT_ATTRIB_COLOR0] = &arrayObj->Color; exec->array.legacy_array[VERT_ATTRIB_COLOR1] = &arrayObj->SecondaryColor; exec->array.legacy_array[VERT_ATTRIB_FOG] = &arrayObj->FogCoord; exec->array.legacy_array[VERT_ATTRIB_COLOR_INDEX] = &arrayObj->Index; if (arrayObj->PointSize.Enabled) { /* this aliases COLOR_INDEX */ exec->array.legacy_array[VERT_ATTRIB_POINT_SIZE] = &arrayObj->PointSize; } exec->array.legacy_array[VERT_ATTRIB_EDGEFLAG] = &arrayObj->EdgeFlag; for (i = 0; i < Elements(arrayObj->TexCoord); i++) exec->array.legacy_array[VERT_ATTRIB_TEX0 + i] = &arrayObj->TexCoord[i]; for (i = 0; i < Elements(arrayObj->VertexAttrib); i++) { assert(i < Elements(exec->array.generic_array)); exec->array.generic_array[i] = &arrayObj->VertexAttrib[i]; } exec->array.array_obj = arrayObj->Name; } static void recalculate_input_bindings(GLcontext *ctx) { struct vbo_context *vbo = vbo_context(ctx); struct vbo_exec_context *exec = &vbo->exec; const struct gl_client_array **inputs = &exec->array.inputs[0]; GLbitfield const_inputs = 0x0; GLuint i; exec->array.program_mode = get_program_mode(ctx); exec->array.enabled_flags = ctx->Array.ArrayObj->_Enabled; switch (exec->array.program_mode) { case VP_NONE: /* When no vertex program is active (or the vertex program is generated * from fixed-function state). We put the material values into the * generic slots. This is the only situation where material values * are available as per-vertex attributes. */ for (i = 0; i <= VERT_ATTRIB_TEX7; i++) { if (exec->array.legacy_array[i]->Enabled) inputs[i] = exec->array.legacy_array[i]; else { inputs[i] = &vbo->legacy_currval[i]; const_inputs |= 1 << i; } } for (i = 0; i < MAT_ATTRIB_MAX; i++) { inputs[VERT_ATTRIB_GENERIC0 + i] = &vbo->mat_currval[i]; const_inputs |= 1 << (VERT_ATTRIB_GENERIC0 + i); } /* Could use just about anything, just to fill in the empty * slots: */ for (i = MAT_ATTRIB_MAX; i < VERT_ATTRIB_MAX - VERT_ATTRIB_GENERIC0; i++) { inputs[VERT_ATTRIB_GENERIC0 + i] = &vbo->generic_currval[i]; const_inputs |= 1 << (VERT_ATTRIB_GENERIC0 + i); } break; case VP_NV: /* NV_vertex_program - attribute arrays alias and override * conventional, legacy arrays. No materials, and the generic * slots are vacant. */ for (i = 0; i <= VERT_ATTRIB_TEX7; i++) { if (exec->array.generic_array[i]->Enabled) inputs[i] = exec->array.generic_array[i]; else if (exec->array.legacy_array[i]->Enabled) inputs[i] = exec->array.legacy_array[i]; else { inputs[i] = &vbo->legacy_currval[i]; const_inputs |= 1 << i; } } /* Could use just about anything, just to fill in the empty * slots: */ for (i = VERT_ATTRIB_GENERIC0; i < VERT_ATTRIB_MAX; i++) { inputs[i] = &vbo->generic_currval[i - VERT_ATTRIB_GENERIC0]; const_inputs |= 1 << i; } break; case VP_ARB: /* GL_ARB_vertex_program or GLSL vertex shader - Only the generic[0] * attribute array aliases and overrides the legacy position array. * * Otherwise, legacy attributes available in the legacy slots, * generic attributes in the generic slots and materials are not * available as per-vertex attributes. */ if (exec->array.generic_array[0]->Enabled) inputs[0] = exec->array.generic_array[0]; else if (exec->array.legacy_array[0]->Enabled) inputs[0] = exec->array.legacy_array[0]; else { inputs[0] = &vbo->legacy_currval[0]; const_inputs |= 1 << 0; } for (i = 1; i <= VERT_ATTRIB_TEX7; i++) { if (exec->array.legacy_array[i]->Enabled) inputs[i] = exec->array.legacy_array[i]; else { inputs[i] = &vbo->legacy_currval[i]; const_inputs |= 1 << i; } } for (i = 0; i < MAX_VERTEX_GENERIC_ATTRIBS; i++) { if (exec->array.generic_array[i]->Enabled) inputs[VERT_ATTRIB_GENERIC0 + i] = exec->array.generic_array[i]; else { inputs[VERT_ATTRIB_GENERIC0 + i] = &vbo->generic_currval[i]; const_inputs |= 1 << (VERT_ATTRIB_GENERIC0 + i); } } break; } _mesa_set_varying_vp_inputs( ctx, ~const_inputs ); } static void bind_arrays(GLcontext *ctx) { #if 0 if (ctx->Array.ArrayObj.Name != exec->array.array_obj) { bind_array_obj(ctx); recalculate_input_bindings(ctx); } else if (exec->array.program_mode != get_program_mode(ctx) || exec->array.enabled_flags != ctx->Array.ArrayObj->_Enabled) { recalculate_input_bindings(ctx); } #else bind_array_obj(ctx); recalculate_input_bindings(ctx); #endif } /*********************************************************************** * API functions. */ static void GLAPIENTRY vbo_exec_DrawArrays(GLenum mode, GLint start, GLsizei count) { GET_CURRENT_CONTEXT(ctx); struct vbo_context *vbo = vbo_context(ctx); struct vbo_exec_context *exec = &vbo->exec; struct _mesa_prim prim[1]; if (!_mesa_validate_DrawArrays( ctx, mode, start, count )) return; FLUSH_CURRENT( ctx, 0 ); if (ctx->NewState) _mesa_update_state( ctx ); if (!vbo_validate_shaders(ctx)) { _mesa_error(ctx, GL_INVALID_OPERATION, "glDrawArrays(bad shader)"); return; } #if 0 check_draw_arrays_data(ctx, start, count); #else (void) check_draw_arrays_data; #endif bind_arrays( ctx ); /* Again... because we may have changed the bitmask of per-vertex varying * attributes. If we regenerate the fixed-function vertex program now * we may be able to prune down the number of vertex attributes which we * need in the shader. */ if (ctx->NewState) _mesa_update_state( ctx ); prim[0].begin = 1; prim[0].end = 1; prim[0].weak = 0; prim[0].pad = 0; prim[0].mode = mode; prim[0].start = start; prim[0].count = count; prim[0].indexed = 0; vbo->draw_prims( ctx, exec->array.inputs, prim, 1, NULL, GL_TRUE, start, start + count - 1 ); #if 0 print_draw_arrays(ctx, exec, mode, start, count); #else (void) print_draw_arrays; #endif } /** * Map GL_ELEMENT_ARRAY_BUFFER and print contents. */ static void dump_element_buffer(GLcontext *ctx, GLenum type) { const GLvoid *map = ctx->Driver.MapBuffer(ctx, GL_ELEMENT_ARRAY_BUFFER_ARB, GL_READ_ONLY, ctx->Array.ElementArrayBufferObj); switch (type) { case GL_UNSIGNED_BYTE: { const GLubyte *us = (const GLubyte *) map; GLuint i; for (i = 0; i < ctx->Array.ElementArrayBufferObj->Size; i++) { _mesa_printf("%02x ", us[i]); if (i % 32 == 31) _mesa_printf("\n"); } _mesa_printf("\n"); } break; case GL_UNSIGNED_SHORT: { const GLushort *us = (const GLushort *) map; GLuint i; for (i = 0; i < ctx->Array.ElementArrayBufferObj->Size / 2; i++) { _mesa_printf("%04x ", us[i]); if (i % 16 == 15) _mesa_printf("\n"); } _mesa_printf("\n"); } break; case GL_UNSIGNED_INT: { const GLuint *us = (const GLuint *) map; GLuint i; for (i = 0; i < ctx->Array.ElementArrayBufferObj->Size / 4; i++) { _mesa_printf("%08x ", us[i]); if (i % 8 == 7) _mesa_printf("\n"); } _mesa_printf("\n"); } break; default: ; } ctx->Driver.UnmapBuffer(ctx, GL_ELEMENT_ARRAY_BUFFER_ARB, ctx->Array.ElementArrayBufferObj); } /* Inner support for both _mesa_DrawElements and _mesa_DrawRangeElements */ static void vbo_validated_drawrangeelements(GLcontext *ctx, GLenum mode, GLboolean index_bounds_valid, GLuint start, GLuint end, GLsizei count, GLenum type, const GLvoid *indices) { struct vbo_context *vbo = vbo_context(ctx); struct vbo_exec_context *exec = &vbo->exec; struct _mesa_index_buffer ib; struct _mesa_prim prim[1]; FLUSH_CURRENT( ctx, 0 ); if (ctx->NewState) _mesa_update_state( ctx ); if (!vbo_validate_shaders(ctx)) { _mesa_error(ctx, GL_INVALID_OPERATION, "glDrawRangeElements(bad shader)"); return; } if (ctx->NewState) _mesa_update_state( ctx ); bind_arrays( ctx ); ib.count = count; ib.type = type; ib.obj = ctx->Array.ElementArrayBufferObj; ib.ptr = indices; prim[0].begin = 1; prim[0].end = 1; prim[0].weak = 0; prim[0].pad = 0; prim[0].mode = mode; prim[0].start = 0; prim[0].count = count; prim[0].indexed = 1; /* Need to give special consideration to rendering a range of * indices starting somewhere above zero. Typically the * application is issuing multiple DrawRangeElements() to draw * successive primitives layed out linearly in the vertex arrays. * Unless the vertex arrays are all in a VBO (or locked as with * CVA), the OpenGL semantics imply that we need to re-read or * re-upload the vertex data on each draw call. * * In the case of hardware tnl, we want to avoid starting the * upload at zero, as it will mean every draw call uploads an * increasing amount of not-used vertex data. Worse - in the * software tnl module, all those vertices might be transformed and * lit but never rendered. * * If we just upload or transform the vertices in start..end, * however, the indices will be incorrect. * * At this level, we don't know exactly what the requirements of * the backend are going to be, though it will likely boil down to * either: * * 1) Do nothing, everything is in a VBO and is processed once * only. * * 2) Adjust the indices and vertex arrays so that start becomes * zero. * * Rather than doing anything here, I'll provide a helper function * for the latter case elsewhere. */ vbo->draw_prims( ctx, exec->array.inputs, prim, 1, &ib, index_bounds_valid, start, end ); } static void GLAPIENTRY vbo_exec_DrawRangeElements(GLenum mode, GLuint start, GLuint end, GLsizei count, GLenum type, const GLvoid *indices) { GET_CURRENT_CONTEXT(ctx); if (!_mesa_validate_DrawRangeElements( ctx, mode, start, end, count, type, indices )) return; if (end >= ctx->Array.ArrayObj->_MaxElement) { /* the max element is out of bounds of one or more enabled arrays */ _mesa_warning(ctx, "glDraw[Range]Elements(start %u, end %u, count %d, " "type 0x%x, indices=%p)\n" "\tindex=%u is out of bounds (max=%u) " "Element Buffer %u (size %d)", start, end, count, type, indices, end, ctx->Array.ArrayObj->_MaxElement - 1, ctx->Array.ElementArrayBufferObj->Name, ctx->Array.ElementArrayBufferObj->Size); if (0) dump_element_buffer(ctx, type); if (0) _mesa_print_arrays(ctx); return; } else if (0) { _mesa_printf("glDraw[Range]Elements" "(start %u, end %u, type 0x%x, count %d) ElemBuf %u\n", start, end, type, count, ctx->Array.ElementArrayBufferObj->Name); } #if 0 check_draw_elements_data(ctx, count, type, indices); #else (void) check_draw_elements_data; #endif vbo_validated_drawrangeelements(ctx, mode, GL_TRUE, start, end, count, type, indices); } static void GLAPIENTRY vbo_exec_DrawElements(GLenum mode, GLsizei count, GLenum type, const GLvoid *indices) { GET_CURRENT_CONTEXT(ctx); if (!_mesa_validate_DrawElements( ctx, mode, count, type, indices )) return; vbo_validated_drawrangeelements(ctx, mode, GL_FALSE, ~0, ~0, count, type, indices); } /*********************************************************************** * Initialization */ void vbo_exec_array_init( struct vbo_exec_context *exec ) { #if 1 exec->vtxfmt.DrawArrays = vbo_exec_DrawArrays; exec->vtxfmt.DrawElements = vbo_exec_DrawElements; exec->vtxfmt.DrawRangeElements = vbo_exec_DrawRangeElements; #else exec->vtxfmt.DrawArrays = _mesa_noop_DrawArrays; exec->vtxfmt.DrawElements = _mesa_noop_DrawElements; exec->vtxfmt.DrawRangeElements = _mesa_noop_DrawRangeElements; #endif } void vbo_exec_array_destroy( struct vbo_exec_context *exec ) { /* nothing to do */ } /* This API entrypoint is not ordinarily used */ void GLAPIENTRY _mesa_DrawArrays(GLenum mode, GLint first, GLsizei count) { vbo_exec_DrawArrays(mode, first, count); } /* This API entrypoint is not ordinarily used */ void GLAPIENTRY _mesa_DrawElements(GLenum mode, GLsizei count, GLenum type, const GLvoid *indices) { vbo_exec_DrawElements(mode, count, type, indices); } /* This API entrypoint is not ordinarily used */ void GLAPIENTRY _mesa_DrawRangeElements(GLenum mode, GLuint start, GLuint end, GLsizei count, GLenum type, const GLvoid *indices) { vbo_exec_DrawRangeElements(mode, start, end, count, type, indices); }