/* * Mesa 3-D graphics library * * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "main/glheader.h" #include "main/colormac.h" #include "main/feedback.h" #include "main/light.h" #include "main/macros.h" #include "main/simple_list.h" #include "main/mtypes.h" #include "math/m_matrix.h" #include "tnl/tnl.h" /** * Clip a point against the view volume. * * \param v vertex vector describing the point to clip. * * \return zero if outside view volume, or one if inside. */ static GLuint viewclip_point_xy( const GLfloat v[] ) { if ( v[0] > v[3] || v[0] < -v[3] || v[1] > v[3] || v[1] < -v[3] ) { return 0; } else { return 1; } } /** * Clip a point against the far/near Z clipping planes. * * \param v vertex vector describing the point to clip. * * \return zero if outside view volume, or one if inside. */ static GLuint viewclip_point_z( const GLfloat v[] ) { if (v[2] > v[3] || v[2] < -v[3] ) { return 0; } else { return 1; } } /** * Clip a point against the user clipping planes. * * \param ctx GL context. * \param v vertex vector describing the point to clip. * * \return zero if the point was clipped, or one otherwise. */ static GLuint userclip_point( struct gl_context *ctx, const GLfloat v[] ) { GLuint p; for (p = 0; p < ctx->Const.MaxClipPlanes; p++) { if (ctx->Transform.ClipPlanesEnabled & (1 << p)) { GLfloat dot = v[0] * ctx->Transform._ClipUserPlane[p][0] + v[1] * ctx->Transform._ClipUserPlane[p][1] + v[2] * ctx->Transform._ClipUserPlane[p][2] + v[3] * ctx->Transform._ClipUserPlane[p][3]; if (dot < 0.0F) { return 0; } } } return 1; } /** * Compute lighting for the raster position. RGB modes computed. * \param ctx the context * \param vertex vertex location * \param normal normal vector * \param Rcolor returned color * \param Rspec returned specular color (if separate specular enabled) */ static void shade_rastpos(struct gl_context *ctx, const GLfloat vertex[4], const GLfloat normal[3], GLfloat Rcolor[4], GLfloat Rspec[4]) { /*const*/ GLfloat (*base)[3] = ctx->Light._BaseColor; const struct gl_light *light; GLfloat diffuseColor[4], specularColor[4]; /* for RGB mode only */ COPY_3V(diffuseColor, base[0]); diffuseColor[3] = CLAMP( ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3], 0.0F, 1.0F ); ASSIGN_4V(specularColor, 0.0, 0.0, 0.0, 1.0); foreach (light, &ctx->Light.EnabledList) { GLfloat attenuation = 1.0; GLfloat VP[3]; /* vector from vertex to light pos */ GLfloat n_dot_VP; GLfloat diffuseContrib[3], specularContrib[3]; if (!(light->_Flags & LIGHT_POSITIONAL)) { /* light at infinity */ COPY_3V(VP, light->_VP_inf_norm); attenuation = light->_VP_inf_spot_attenuation; } else { /* local/positional light */ GLfloat d; /* VP = vector from vertex pos to light[i].pos */ SUB_3V(VP, light->_Position, vertex); /* d = length(VP) */ d = (GLfloat) LEN_3FV( VP ); if (d > 1.0e-6) { /* normalize VP */ GLfloat invd = 1.0F / d; SELF_SCALE_SCALAR_3V(VP, invd); } /* atti */ attenuation = 1.0F / (light->ConstantAttenuation + d * (light->LinearAttenuation + d * light->QuadraticAttenuation)); if (light->_Flags & LIGHT_SPOT) { GLfloat PV_dot_dir = - DOT3(VP, light->_NormSpotDirection); if (PV_dot_dir_CosCutoff) { continue; } else { GLfloat spot = powf(PV_dot_dir, light->SpotExponent); attenuation *= spot; } } } if (attenuation < 1e-3) continue; n_dot_VP = DOT3( normal, VP ); if (n_dot_VP < 0.0F) { ACC_SCALE_SCALAR_3V(diffuseColor, attenuation, light->_MatAmbient[0]); continue; } /* Ambient + diffuse */ COPY_3V(diffuseContrib, light->_MatAmbient[0]); ACC_SCALE_SCALAR_3V(diffuseContrib, n_dot_VP, light->_MatDiffuse[0]); /* Specular */ { const GLfloat *h; GLfloat n_dot_h; ASSIGN_3V(specularContrib, 0.0, 0.0, 0.0); if (ctx->Light.Model.LocalViewer) { GLfloat v[3]; COPY_3V(v, vertex); NORMALIZE_3FV(v); SUB_3V(VP, VP, v); NORMALIZE_3FV(VP); h = VP; } else if (light->_Flags & LIGHT_POSITIONAL) { ACC_3V(VP, ctx->_EyeZDir); NORMALIZE_3FV(VP); h = VP; } else { h = light->_h_inf_norm; } n_dot_h = DOT3(normal, h); if (n_dot_h > 0.0F) { GLfloat shine; GLfloat spec_coef; shine = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SHININESS][0]; spec_coef = powf(n_dot_h, shine); if (spec_coef > 1.0e-10) { if (ctx->Light.Model.ColorControl==GL_SEPARATE_SPECULAR_COLOR) { ACC_SCALE_SCALAR_3V( specularContrib, spec_coef, light->_MatSpecular[0]); } else { ACC_SCALE_SCALAR_3V( diffuseContrib, spec_coef, light->_MatSpecular[0]); } } } } ACC_SCALE_SCALAR_3V( diffuseColor, attenuation, diffuseContrib ); ACC_SCALE_SCALAR_3V( specularColor, attenuation, specularContrib ); } Rcolor[0] = CLAMP(diffuseColor[0], 0.0F, 1.0F); Rcolor[1] = CLAMP(diffuseColor[1], 0.0F, 1.0F); Rcolor[2] = CLAMP(diffuseColor[2], 0.0F, 1.0F); Rcolor[3] = CLAMP(diffuseColor[3], 0.0F, 1.0F); Rspec[0] = CLAMP(specularColor[0], 0.0F, 1.0F); Rspec[1] = CLAMP(specularColor[1], 0.0F, 1.0F); Rspec[2] = CLAMP(specularColor[2], 0.0F, 1.0F); Rspec[3] = CLAMP(specularColor[3], 0.0F, 1.0F); } /** * Do texgen needed for glRasterPos. * \param ctx rendering context * \param vObj object-space vertex coordinate * \param vEye eye-space vertex coordinate * \param normal vertex normal * \param unit texture unit number * \param texcoord incoming texcoord and resulting texcoord */ static void compute_texgen(struct gl_context *ctx, const GLfloat vObj[4], const GLfloat vEye[4], const GLfloat normal[3], GLuint unit, GLfloat texcoord[4]) { const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit]; /* always compute sphere map terms, just in case */ GLfloat u[3], two_nu, rx, ry, rz, m, mInv; COPY_3V(u, vEye); NORMALIZE_3FV(u); two_nu = 2.0F * DOT3(normal, u); rx = u[0] - normal[0] * two_nu; ry = u[1] - normal[1] * two_nu; rz = u[2] - normal[2] * two_nu; m = rx * rx + ry * ry + (rz + 1.0F) * (rz + 1.0F); if (m > 0.0F) mInv = 0.5F * INV_SQRTF(m); else mInv = 0.0F; if (texUnit->TexGenEnabled & S_BIT) { switch (texUnit->GenS.Mode) { case GL_OBJECT_LINEAR: texcoord[0] = DOT4(vObj, texUnit->GenS.ObjectPlane); break; case GL_EYE_LINEAR: texcoord[0] = DOT4(vEye, texUnit->GenS.EyePlane); break; case GL_SPHERE_MAP: texcoord[0] = rx * mInv + 0.5F; break; case GL_REFLECTION_MAP: texcoord[0] = rx; break; case GL_NORMAL_MAP: texcoord[0] = normal[0]; break; default: _mesa_problem(ctx, "Bad S texgen in compute_texgen()"); return; } } if (texUnit->TexGenEnabled & T_BIT) { switch (texUnit->GenT.Mode) { case GL_OBJECT_LINEAR: texcoord[1] = DOT4(vObj, texUnit->GenT.ObjectPlane); break; case GL_EYE_LINEAR: texcoord[1] = DOT4(vEye, texUnit->GenT.EyePlane); break; case GL_SPHERE_MAP: texcoord[1] = ry * mInv + 0.5F; break; case GL_REFLECTION_MAP: texcoord[1] = ry; break; case GL_NORMAL_MAP: texcoord[1] = normal[1]; break; default: _mesa_problem(ctx, "Bad T texgen in compute_texgen()"); return; } } if (texUnit->TexGenEnabled & R_BIT) { switch (texUnit->GenR.Mode) { case GL_OBJECT_LINEAR: texcoord[2] = DOT4(vObj, texUnit->GenR.ObjectPlane); break; case GL_EYE_LINEAR: texcoord[2] = DOT4(vEye, texUnit->GenR.EyePlane); break; case GL_REFLECTION_MAP: texcoord[2] = rz; break; case GL_NORMAL_MAP: texcoord[2] = normal[2]; break; default: _mesa_problem(ctx, "Bad R texgen in compute_texgen()"); return; } } if (texUnit->TexGenEnabled & Q_BIT) { switch (texUnit->GenQ.Mode) { case GL_OBJECT_LINEAR: texcoord[3] = DOT4(vObj, texUnit->GenQ.ObjectPlane); break; case GL_EYE_LINEAR: texcoord[3] = DOT4(vEye, texUnit->GenQ.EyePlane); break; default: _mesa_problem(ctx, "Bad Q texgen in compute_texgen()"); return; } } } /** * glRasterPos transformation. Typically called via ctx->Driver.RasterPos(). * XXX some of this code (such as viewport xform, clip testing and setting * of ctx->Current.Raster* fields) could get lifted up into the * main/rasterpos.c code. * * \param vObj vertex position in object space */ void _tnl_RasterPos(struct gl_context *ctx, const GLfloat vObj[4]) { if (ctx->VertexProgram._Enabled) { /* XXX implement this */ _mesa_problem(ctx, "Vertex programs not implemented for glRasterPos"); return; } else { GLfloat eye[4], clip[4], ndc[3], d; GLfloat *norm, eyenorm[3]; GLfloat *objnorm = ctx->Current.Attrib[VERT_ATTRIB_NORMAL]; /* apply modelview matrix: eye = MV * obj */ TRANSFORM_POINT( eye, ctx->ModelviewMatrixStack.Top->m, vObj ); /* apply projection matrix: clip = Proj * eye */ TRANSFORM_POINT( clip, ctx->ProjectionMatrixStack.Top->m, eye ); /* clip to view volume. */ if (!ctx->Transform.DepthClamp) { if (viewclip_point_z(clip) == 0) { ctx->Current.RasterPosValid = GL_FALSE; return; } } if (!ctx->Transform.RasterPositionUnclipped) { if (viewclip_point_xy(clip) == 0) { ctx->Current.RasterPosValid = GL_FALSE; return; } } /* clip to user clipping planes */ if (ctx->Transform.ClipPlanesEnabled && !userclip_point(ctx, clip)) { ctx->Current.RasterPosValid = GL_FALSE; return; } /* ndc = clip / W */ d = (clip[3] == 0.0F) ? 1.0F : 1.0F / clip[3]; ndc[0] = clip[0] * d; ndc[1] = clip[1] * d; ndc[2] = clip[2] * d; /* wincoord = viewport_mapping(ndc) */ ctx->Current.RasterPos[0] = (ndc[0] * ctx->ViewportArray[0]._WindowMap.m[MAT_SX] + ctx->ViewportArray[0]._WindowMap.m[MAT_TX]); ctx->Current.RasterPos[1] = (ndc[1] * ctx->ViewportArray[0]._WindowMap.m[MAT_SY] + ctx->ViewportArray[0]._WindowMap.m[MAT_TY]); ctx->Current.RasterPos[2] = (ndc[2] * ctx->ViewportArray[0]._WindowMap.m[MAT_SZ] + ctx->ViewportArray[0]._WindowMap.m[MAT_TZ]) / ctx->DrawBuffer->_DepthMaxF; ctx->Current.RasterPos[3] = clip[3]; if (ctx->Transform.DepthClamp) { ctx->Current.RasterPos[3] = CLAMP(ctx->Current.RasterPos[3], ctx->ViewportArray[0].Near, ctx->ViewportArray[0].Far); } /* compute raster distance */ if (ctx->Fog.FogCoordinateSource == GL_FOG_COORDINATE_EXT) ctx->Current.RasterDistance = ctx->Current.Attrib[VERT_ATTRIB_FOG][0]; else ctx->Current.RasterDistance = sqrtf( eye[0]*eye[0] + eye[1]*eye[1] + eye[2]*eye[2] ); /* compute transformed normal vector (for lighting or texgen) */ if (ctx->_NeedEyeCoords) { const GLfloat *inv = ctx->ModelviewMatrixStack.Top->inv; TRANSFORM_NORMAL( eyenorm, objnorm, inv ); norm = eyenorm; } else { norm = objnorm; } /* update raster color */ if (ctx->Light.Enabled) { /* lighting */ shade_rastpos( ctx, vObj, norm, ctx->Current.RasterColor, ctx->Current.RasterSecondaryColor ); } else { /* use current color */ COPY_4FV(ctx->Current.RasterColor, ctx->Current.Attrib[VERT_ATTRIB_COLOR0]); COPY_4FV(ctx->Current.RasterSecondaryColor, ctx->Current.Attrib[VERT_ATTRIB_COLOR1]); } /* texture coords */ { GLuint u; for (u = 0; u < ctx->Const.MaxTextureCoordUnits; u++) { GLfloat tc[4]; COPY_4V(tc, ctx->Current.Attrib[VERT_ATTRIB_TEX0 + u]); if (ctx->Texture.Unit[u].TexGenEnabled) { compute_texgen(ctx, vObj, eye, norm, u, tc); } TRANSFORM_POINT(ctx->Current.RasterTexCoords[u], ctx->TextureMatrixStack[u].Top->m, tc); } } ctx->Current.RasterPosValid = GL_TRUE; } if (ctx->RenderMode == GL_SELECT) { _mesa_update_hitflag( ctx, ctx->Current.RasterPos[2] ); } }