/* * Mesa 3-D graphics library * * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. * Copyright (C) 2009 VMware, Inc. All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "main/glheader.h" #include "main/context.h" #include "main/colormac.h" #include "main/imports.h" #include "main/pixeltransfer.h" #include "main/samplerobj.h" #include "program/prog_instruction.h" #include "s_context.h" #include "s_texcombine.h" /** * Pointer to array of float[4] * This type makes the code below more concise and avoids a lot of casting. */ typedef float (*float4_array)[4]; /** * Return array of texels for given unit. */ static inline float4_array get_texel_array(SWcontext *swrast, GLuint unit) { #ifdef _OPENMP return (float4_array) (swrast->TexelBuffer + unit * SWRAST_MAX_WIDTH * 4 * omp_get_num_threads() + (SWRAST_MAX_WIDTH * 4 * omp_get_thread_num())); #else return (float4_array) (swrast->TexelBuffer + unit * SWRAST_MAX_WIDTH * 4); #endif } /** * Do texture application for: * GL_EXT_texture_env_combine * GL_ARB_texture_env_combine * GL_EXT_texture_env_dot3 * GL_ARB_texture_env_dot3 * GL_ATI_texture_env_combine3 * GL_NV_texture_env_combine4 * conventional GL texture env modes * * \param ctx rendering context * \param unit the texture combiner unit * \param primary_rgba incoming fragment color array * \param texelBuffer pointer to texel colors for all texture units * * \param span two fields are used in this function: * span->end: number of fragments to process * span->array->rgba: incoming/result fragment colors */ static void texture_combine( struct gl_context *ctx, GLuint unit, const float4_array primary_rgba, const GLfloat *texelBuffer, SWspan *span ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); const struct gl_texture_unit *textureUnit = &(ctx->Texture.Unit[unit]); const struct gl_tex_env_combine_state *combine = textureUnit->_CurrentCombine; float4_array argRGB[MAX_COMBINER_TERMS]; float4_array argA[MAX_COMBINER_TERMS]; const GLfloat scaleRGB = (GLfloat) (1 << combine->ScaleShiftRGB); const GLfloat scaleA = (GLfloat) (1 << combine->ScaleShiftA); const GLuint numArgsRGB = combine->_NumArgsRGB; const GLuint numArgsA = combine->_NumArgsA; float4_array ccolor[4], rgba; GLuint i, term; GLuint n = span->end; GLchan (*rgbaChan)[4] = span->array->rgba; /* alloc temp pixel buffers */ rgba = malloc(4 * n * sizeof(GLfloat)); if (!rgba) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "texture_combine"); return; } for (i = 0; i < numArgsRGB || i < numArgsA; i++) { ccolor[i] = malloc(4 * n * sizeof(GLfloat)); if (!ccolor[i]) { while (i) { free(ccolor[i]); i--; } _mesa_error(ctx, GL_OUT_OF_MEMORY, "texture_combine"); free(rgba); return; } } for (i = 0; i < n; i++) { rgba[i][RCOMP] = CHAN_TO_FLOAT(rgbaChan[i][RCOMP]); rgba[i][GCOMP] = CHAN_TO_FLOAT(rgbaChan[i][GCOMP]); rgba[i][BCOMP] = CHAN_TO_FLOAT(rgbaChan[i][BCOMP]); rgba[i][ACOMP] = CHAN_TO_FLOAT(rgbaChan[i][ACOMP]); } /* printf("modeRGB 0x%x modeA 0x%x srcRGB1 0x%x srcA1 0x%x srcRGB2 0x%x srcA2 0x%x\n", combine->ModeRGB, combine->ModeA, combine->SourceRGB[0], combine->SourceA[0], combine->SourceRGB[1], combine->SourceA[1]); */ /* * Do operand setup for up to 4 operands. Loop over the terms. */ for (term = 0; term < numArgsRGB; term++) { const GLenum srcRGB = combine->SourceRGB[term]; const GLenum operandRGB = combine->OperandRGB[term]; switch (srcRGB) { case GL_TEXTURE: argRGB[term] = get_texel_array(swrast, unit); break; case GL_PRIMARY_COLOR: argRGB[term] = primary_rgba; break; case GL_PREVIOUS: argRGB[term] = rgba; break; case GL_CONSTANT: { float4_array c = ccolor[term]; GLfloat red = textureUnit->EnvColor[0]; GLfloat green = textureUnit->EnvColor[1]; GLfloat blue = textureUnit->EnvColor[2]; GLfloat alpha = textureUnit->EnvColor[3]; for (i = 0; i < n; i++) { ASSIGN_4V(c[i], red, green, blue, alpha); } argRGB[term] = ccolor[term]; } break; /* GL_ATI_texture_env_combine3 allows GL_ZERO & GL_ONE as sources. */ case GL_ZERO: { float4_array c = ccolor[term]; for (i = 0; i < n; i++) { ASSIGN_4V(c[i], 0.0F, 0.0F, 0.0F, 0.0F); } argRGB[term] = ccolor[term]; } break; case GL_ONE: { float4_array c = ccolor[term]; for (i = 0; i < n; i++) { ASSIGN_4V(c[i], 1.0F, 1.0F, 1.0F, 1.0F); } argRGB[term] = ccolor[term]; } break; default: /* ARB_texture_env_crossbar source */ { const GLuint srcUnit = srcRGB - GL_TEXTURE0; ASSERT(srcUnit < ctx->Const.MaxTextureUnits); if (!ctx->Texture.Unit[srcUnit]._ReallyEnabled) goto end; argRGB[term] = get_texel_array(swrast, srcUnit); } } if (operandRGB != GL_SRC_COLOR) { float4_array src = argRGB[term]; float4_array dst = ccolor[term]; /* point to new arg[term] storage */ argRGB[term] = ccolor[term]; switch (operandRGB) { case GL_ONE_MINUS_SRC_COLOR: for (i = 0; i < n; i++) { dst[i][RCOMP] = 1.0F - src[i][RCOMP]; dst[i][GCOMP] = 1.0F - src[i][GCOMP]; dst[i][BCOMP] = 1.0F - src[i][BCOMP]; } break; case GL_SRC_ALPHA: for (i = 0; i < n; i++) { dst[i][RCOMP] = dst[i][GCOMP] = dst[i][BCOMP] = src[i][ACOMP]; } break; case GL_ONE_MINUS_SRC_ALPHA: for (i = 0; i < n; i++) { dst[i][RCOMP] = dst[i][GCOMP] = dst[i][BCOMP] = 1.0F - src[i][ACOMP]; } break; default: _mesa_problem(ctx, "Bad operandRGB"); } } } /* * Set up the argA[term] pointers */ for (term = 0; term < numArgsA; term++) { const GLenum srcA = combine->SourceA[term]; const GLenum operandA = combine->OperandA[term]; switch (srcA) { case GL_TEXTURE: argA[term] = get_texel_array(swrast, unit); break; case GL_PRIMARY_COLOR: argA[term] = primary_rgba; break; case GL_PREVIOUS: argA[term] = rgba; break; case GL_CONSTANT: { float4_array c = ccolor[term]; GLfloat alpha = textureUnit->EnvColor[3]; for (i = 0; i < n; i++) c[i][ACOMP] = alpha; argA[term] = ccolor[term]; } break; /* GL_ATI_texture_env_combine3 allows GL_ZERO & GL_ONE as sources. */ case GL_ZERO: { float4_array c = ccolor[term]; for (i = 0; i < n; i++) c[i][ACOMP] = 0.0F; argA[term] = ccolor[term]; } break; case GL_ONE: { float4_array c = ccolor[term]; for (i = 0; i < n; i++) c[i][ACOMP] = 1.0F; argA[term] = ccolor[term]; } break; default: /* ARB_texture_env_crossbar source */ { const GLuint srcUnit = srcA - GL_TEXTURE0; ASSERT(srcUnit < ctx->Const.MaxTextureUnits); if (!ctx->Texture.Unit[srcUnit]._ReallyEnabled) goto end; argA[term] = get_texel_array(swrast, srcUnit); } } if (operandA == GL_ONE_MINUS_SRC_ALPHA) { float4_array src = argA[term]; float4_array dst = ccolor[term]; argA[term] = ccolor[term]; for (i = 0; i < n; i++) { dst[i][ACOMP] = 1.0F - src[i][ACOMP]; } } } /* RGB channel combine */ { float4_array arg0 = argRGB[0]; float4_array arg1 = argRGB[1]; float4_array arg2 = argRGB[2]; float4_array arg3 = argRGB[3]; switch (combine->ModeRGB) { case GL_REPLACE: for (i = 0; i < n; i++) { rgba[i][RCOMP] = arg0[i][RCOMP] * scaleRGB; rgba[i][GCOMP] = arg0[i][GCOMP] * scaleRGB; rgba[i][BCOMP] = arg0[i][BCOMP] * scaleRGB; } break; case GL_MODULATE: for (i = 0; i < n; i++) { rgba[i][RCOMP] = arg0[i][RCOMP] * arg1[i][RCOMP] * scaleRGB; rgba[i][GCOMP] = arg0[i][GCOMP] * arg1[i][GCOMP] * scaleRGB; rgba[i][BCOMP] = arg0[i][BCOMP] * arg1[i][BCOMP] * scaleRGB; } break; case GL_ADD: if (textureUnit->EnvMode == GL_COMBINE4_NV) { /* (a * b) + (c * d) */ for (i = 0; i < n; i++) { rgba[i][RCOMP] = (arg0[i][RCOMP] * arg1[i][RCOMP] + arg2[i][RCOMP] * arg3[i][RCOMP]) * scaleRGB; rgba[i][GCOMP] = (arg0[i][GCOMP] * arg1[i][GCOMP] + arg2[i][GCOMP] * arg3[i][GCOMP]) * scaleRGB; rgba[i][BCOMP] = (arg0[i][BCOMP] * arg1[i][BCOMP] + arg2[i][BCOMP] * arg3[i][BCOMP]) * scaleRGB; } } else { /* 2-term addition */ for (i = 0; i < n; i++) { rgba[i][RCOMP] = (arg0[i][RCOMP] + arg1[i][RCOMP]) * scaleRGB; rgba[i][GCOMP] = (arg0[i][GCOMP] + arg1[i][GCOMP]) * scaleRGB; rgba[i][BCOMP] = (arg0[i][BCOMP] + arg1[i][BCOMP]) * scaleRGB; } } break; case GL_ADD_SIGNED: if (textureUnit->EnvMode == GL_COMBINE4_NV) { /* (a * b) + (c * d) - 0.5 */ for (i = 0; i < n; i++) { rgba[i][RCOMP] = (arg0[i][RCOMP] * arg1[i][RCOMP] + arg2[i][RCOMP] * arg3[i][RCOMP] - 0.5F) * scaleRGB; rgba[i][GCOMP] = (arg0[i][GCOMP] * arg1[i][GCOMP] + arg2[i][GCOMP] * arg3[i][GCOMP] - 0.5F) * scaleRGB; rgba[i][BCOMP] = (arg0[i][BCOMP] * arg1[i][BCOMP] + arg2[i][BCOMP] * arg3[i][BCOMP] - 0.5F) * scaleRGB; } } else { for (i = 0; i < n; i++) { rgba[i][RCOMP] = (arg0[i][RCOMP] + arg1[i][RCOMP] - 0.5F) * scaleRGB; rgba[i][GCOMP] = (arg0[i][GCOMP] + arg1[i][GCOMP] - 0.5F) * scaleRGB; rgba[i][BCOMP] = (arg0[i][BCOMP] + arg1[i][BCOMP] - 0.5F) * scaleRGB; } } break; case GL_INTERPOLATE: for (i = 0; i < n; i++) { rgba[i][RCOMP] = (arg0[i][RCOMP] * arg2[i][RCOMP] + arg1[i][RCOMP] * (1.0F - arg2[i][RCOMP])) * scaleRGB; rgba[i][GCOMP] = (arg0[i][GCOMP] * arg2[i][GCOMP] + arg1[i][GCOMP] * (1.0F - arg2[i][GCOMP])) * scaleRGB; rgba[i][BCOMP] = (arg0[i][BCOMP] * arg2[i][BCOMP] + arg1[i][BCOMP] * (1.0F - arg2[i][BCOMP])) * scaleRGB; } break; case GL_SUBTRACT: for (i = 0; i < n; i++) { rgba[i][RCOMP] = (arg0[i][RCOMP] - arg1[i][RCOMP]) * scaleRGB; rgba[i][GCOMP] = (arg0[i][GCOMP] - arg1[i][GCOMP]) * scaleRGB; rgba[i][BCOMP] = (arg0[i][BCOMP] - arg1[i][BCOMP]) * scaleRGB; } break; case GL_DOT3_RGB_EXT: case GL_DOT3_RGBA_EXT: /* Do not scale the result by 1 2 or 4 */ for (i = 0; i < n; i++) { GLfloat dot = ((arg0[i][RCOMP] - 0.5F) * (arg1[i][RCOMP] - 0.5F) + (arg0[i][GCOMP] - 0.5F) * (arg1[i][GCOMP] - 0.5F) + (arg0[i][BCOMP] - 0.5F) * (arg1[i][BCOMP] - 0.5F)) * 4.0F; dot = CLAMP(dot, 0.0F, 1.0F); rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = dot; } break; case GL_DOT3_RGB: case GL_DOT3_RGBA: /* DO scale the result by 1 2 or 4 */ for (i = 0; i < n; i++) { GLfloat dot = ((arg0[i][RCOMP] - 0.5F) * (arg1[i][RCOMP] - 0.5F) + (arg0[i][GCOMP] - 0.5F) * (arg1[i][GCOMP] - 0.5F) + (arg0[i][BCOMP] - 0.5F) * (arg1[i][BCOMP] - 0.5F)) * 4.0F * scaleRGB; dot = CLAMP(dot, 0.0F, 1.0F); rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = dot; } break; case GL_MODULATE_ADD_ATI: for (i = 0; i < n; i++) { rgba[i][RCOMP] = ((arg0[i][RCOMP] * arg2[i][RCOMP]) + arg1[i][RCOMP]) * scaleRGB; rgba[i][GCOMP] = ((arg0[i][GCOMP] * arg2[i][GCOMP]) + arg1[i][GCOMP]) * scaleRGB; rgba[i][BCOMP] = ((arg0[i][BCOMP] * arg2[i][BCOMP]) + arg1[i][BCOMP]) * scaleRGB; } break; case GL_MODULATE_SIGNED_ADD_ATI: for (i = 0; i < n; i++) { rgba[i][RCOMP] = ((arg0[i][RCOMP] * arg2[i][RCOMP]) + arg1[i][RCOMP] - 0.5F) * scaleRGB; rgba[i][GCOMP] = ((arg0[i][GCOMP] * arg2[i][GCOMP]) + arg1[i][GCOMP] - 0.5F) * scaleRGB; rgba[i][BCOMP] = ((arg0[i][BCOMP] * arg2[i][BCOMP]) + arg1[i][BCOMP] - 0.5F) * scaleRGB; } break; case GL_MODULATE_SUBTRACT_ATI: for (i = 0; i < n; i++) { rgba[i][RCOMP] = ((arg0[i][RCOMP] * arg2[i][RCOMP]) - arg1[i][RCOMP]) * scaleRGB; rgba[i][GCOMP] = ((arg0[i][GCOMP] * arg2[i][GCOMP]) - arg1[i][GCOMP]) * scaleRGB; rgba[i][BCOMP] = ((arg0[i][BCOMP] * arg2[i][BCOMP]) - arg1[i][BCOMP]) * scaleRGB; } break; case GL_BUMP_ENVMAP_ATI: /* this produces a fixed rgba color, and the coord calc is done elsewhere */ for (i = 0; i < n; i++) { /* rgba result is 0,0,0,1 */ rgba[i][RCOMP] = 0.0; rgba[i][GCOMP] = 0.0; rgba[i][BCOMP] = 0.0; rgba[i][ACOMP] = 1.0; } goto end; /* no alpha processing */ default: _mesa_problem(ctx, "invalid combine mode"); } } /* Alpha channel combine */ { float4_array arg0 = argA[0]; float4_array arg1 = argA[1]; float4_array arg2 = argA[2]; float4_array arg3 = argA[3]; switch (combine->ModeA) { case GL_REPLACE: for (i = 0; i < n; i++) { rgba[i][ACOMP] = arg0[i][ACOMP] * scaleA; } break; case GL_MODULATE: for (i = 0; i < n; i++) { rgba[i][ACOMP] = arg0[i][ACOMP] * arg1[i][ACOMP] * scaleA; } break; case GL_ADD: if (textureUnit->EnvMode == GL_COMBINE4_NV) { /* (a * b) + (c * d) */ for (i = 0; i < n; i++) { rgba[i][ACOMP] = (arg0[i][ACOMP] * arg1[i][ACOMP] + arg2[i][ACOMP] * arg3[i][ACOMP]) * scaleA; } } else { /* two-term add */ for (i = 0; i < n; i++) { rgba[i][ACOMP] = (arg0[i][ACOMP] + arg1[i][ACOMP]) * scaleA; } } break; case GL_ADD_SIGNED: if (textureUnit->EnvMode == GL_COMBINE4_NV) { /* (a * b) + (c * d) - 0.5 */ for (i = 0; i < n; i++) { rgba[i][ACOMP] = (arg0[i][ACOMP] * arg1[i][ACOMP] + arg2[i][ACOMP] * arg3[i][ACOMP] - 0.5F) * scaleA; } } else { /* a + b - 0.5 */ for (i = 0; i < n; i++) { rgba[i][ACOMP] = (arg0[i][ACOMP] + arg1[i][ACOMP] - 0.5F) * scaleA; } } break; case GL_INTERPOLATE: for (i = 0; i < n; i++) { rgba[i][ACOMP] = (arg0[i][ACOMP] * arg2[i][ACOMP] + arg1[i][ACOMP] * (1.0F - arg2[i][ACOMP])) * scaleA; } break; case GL_SUBTRACT: for (i = 0; i < n; i++) { rgba[i][ACOMP] = (arg0[i][ACOMP] - arg1[i][ACOMP]) * scaleA; } break; case GL_MODULATE_ADD_ATI: for (i = 0; i < n; i++) { rgba[i][ACOMP] = ((arg0[i][ACOMP] * arg2[i][ACOMP]) + arg1[i][ACOMP]) * scaleA; } break; case GL_MODULATE_SIGNED_ADD_ATI: for (i = 0; i < n; i++) { rgba[i][ACOMP] = ((arg0[i][ACOMP] * arg2[i][ACOMP]) + arg1[i][ACOMP] - 0.5F) * scaleA; } break; case GL_MODULATE_SUBTRACT_ATI: for (i = 0; i < n; i++) { rgba[i][ACOMP] = ((arg0[i][ACOMP] * arg2[i][ACOMP]) - arg1[i][ACOMP]) * scaleA; } break; default: _mesa_problem(ctx, "invalid combine mode"); } } /* Fix the alpha component for GL_DOT3_RGBA_EXT/ARB combining. * This is kind of a kludge. It would have been better if the spec * were written such that the GL_COMBINE_ALPHA value could be set to * GL_DOT3. */ if (combine->ModeRGB == GL_DOT3_RGBA_EXT || combine->ModeRGB == GL_DOT3_RGBA) { for (i = 0; i < n; i++) { rgba[i][ACOMP] = rgba[i][RCOMP]; } } for (i = 0; i < n; i++) { UNCLAMPED_FLOAT_TO_CHAN(rgbaChan[i][RCOMP], rgba[i][RCOMP]); UNCLAMPED_FLOAT_TO_CHAN(rgbaChan[i][GCOMP], rgba[i][GCOMP]); UNCLAMPED_FLOAT_TO_CHAN(rgbaChan[i][BCOMP], rgba[i][BCOMP]); UNCLAMPED_FLOAT_TO_CHAN(rgbaChan[i][ACOMP], rgba[i][ACOMP]); } /* The span->array->rgba values are of CHAN type so set * span->array->ChanType field accordingly. */ span->array->ChanType = CHAN_TYPE; end: for (i = 0; i < numArgsRGB || i < numArgsA; i++) { free(ccolor[i]); } free(rgba); } /** * Apply X/Y/Z/W/0/1 swizzle to an array of colors/texels. * See GL_EXT_texture_swizzle. */ static void swizzle_texels(GLuint swizzle, GLuint count, float4_array texels) { const GLuint swzR = GET_SWZ(swizzle, 0); const GLuint swzG = GET_SWZ(swizzle, 1); const GLuint swzB = GET_SWZ(swizzle, 2); const GLuint swzA = GET_SWZ(swizzle, 3); GLfloat vector[6]; GLuint i; vector[SWIZZLE_ZERO] = 0; vector[SWIZZLE_ONE] = 1.0F; for (i = 0; i < count; i++) { vector[SWIZZLE_X] = texels[i][0]; vector[SWIZZLE_Y] = texels[i][1]; vector[SWIZZLE_Z] = texels[i][2]; vector[SWIZZLE_W] = texels[i][3]; texels[i][RCOMP] = vector[swzR]; texels[i][GCOMP] = vector[swzG]; texels[i][BCOMP] = vector[swzB]; texels[i][ACOMP] = vector[swzA]; } } /** * Apply texture mapping to a span of fragments. */ void _swrast_texture_span( struct gl_context *ctx, SWspan *span ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); float4_array primary_rgba; GLuint unit; if (!swrast->TexelBuffer) { #ifdef _OPENMP const GLint maxThreads = omp_get_max_threads(); #else const GLint maxThreads = 1; #endif /* TexelBuffer is also global and normally shared by all SWspan * instances; when running with multiple threads, create one per * thread. */ swrast->TexelBuffer = malloc(ctx->Const.FragmentProgram.MaxTextureImageUnits * maxThreads * SWRAST_MAX_WIDTH * 4 * sizeof(GLfloat)); if (!swrast->TexelBuffer) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "texture_combine"); return; } } primary_rgba = malloc(span->end * 4 * sizeof(GLfloat)); if (!primary_rgba) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "texture_span"); return; } ASSERT(span->end <= SWRAST_MAX_WIDTH); /* * Save copy of the incoming fragment colors (the GL_PRIMARY_COLOR) */ if (swrast->_TextureCombinePrimary) { GLuint i; for (i = 0; i < span->end; i++) { primary_rgba[i][RCOMP] = CHAN_TO_FLOAT(span->array->rgba[i][RCOMP]); primary_rgba[i][GCOMP] = CHAN_TO_FLOAT(span->array->rgba[i][GCOMP]); primary_rgba[i][BCOMP] = CHAN_TO_FLOAT(span->array->rgba[i][BCOMP]); primary_rgba[i][ACOMP] = CHAN_TO_FLOAT(span->array->rgba[i][ACOMP]); } } /* First must sample all bump maps */ for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) { const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit]; if (texUnit->_ReallyEnabled && texUnit->_CurrentCombine->ModeRGB == GL_BUMP_ENVMAP_ATI) { const GLfloat (*texcoords)[4] = (const GLfloat (*)[4]) span->array->attribs[VARYING_SLOT_TEX0 + unit]; float4_array targetcoords = span->array->attribs[VARYING_SLOT_TEX0 + ctx->Texture.Unit[unit].BumpTarget - GL_TEXTURE0]; const struct gl_sampler_object *samp = _mesa_get_samplerobj(ctx, unit); GLfloat *lambda = span->array->lambda[unit]; float4_array texels = get_texel_array(swrast, unit); GLuint i; GLfloat rotMatrix00 = ctx->Texture.Unit[unit].RotMatrix[0]; GLfloat rotMatrix01 = ctx->Texture.Unit[unit].RotMatrix[1]; GLfloat rotMatrix10 = ctx->Texture.Unit[unit].RotMatrix[2]; GLfloat rotMatrix11 = ctx->Texture.Unit[unit].RotMatrix[3]; /* adjust texture lod (lambda) */ if (span->arrayMask & SPAN_LAMBDA) { if (texUnit->LodBias + samp->LodBias != 0.0F) { /* apply LOD bias, but don't clamp yet */ const GLfloat bias = CLAMP(texUnit->LodBias + samp->LodBias, -ctx->Const.MaxTextureLodBias, ctx->Const.MaxTextureLodBias); GLuint i; for (i = 0; i < span->end; i++) { lambda[i] += bias; } } if (samp->MinLod != -1000.0 || samp->MaxLod != 1000.0) { /* apply LOD clamping to lambda */ const GLfloat min = samp->MinLod; const GLfloat max = samp->MaxLod; GLuint i; for (i = 0; i < span->end; i++) { GLfloat l = lambda[i]; lambda[i] = CLAMP(l, min, max); } } } /* Sample the texture (span->end = number of fragments) */ swrast->TextureSample[unit]( ctx, samp, ctx->Texture.Unit[unit]._Current, span->end, texcoords, lambda, texels ); /* manipulate the span values of the bump target not sure this can work correctly even ignoring the problem that channel is unsigned */ for (i = 0; i < span->end; i++) { targetcoords[i][0] += (texels[i][0] * rotMatrix00 + texels[i][1] * rotMatrix01) / targetcoords[i][3]; targetcoords[i][1] += (texels[i][0] * rotMatrix10 + texels[i][1] * rotMatrix11) / targetcoords[i][3]; } } } /* * Must do all texture sampling before combining in order to * accomodate GL_ARB_texture_env_crossbar. */ for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) { const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit]; if (texUnit->_ReallyEnabled && texUnit->_CurrentCombine->ModeRGB != GL_BUMP_ENVMAP_ATI) { const GLfloat (*texcoords)[4] = (const GLfloat (*)[4]) span->array->attribs[VARYING_SLOT_TEX0 + unit]; const struct gl_texture_object *curObj = texUnit->_Current; const struct gl_sampler_object *samp = _mesa_get_samplerobj(ctx, unit); GLfloat *lambda = span->array->lambda[unit]; float4_array texels = get_texel_array(swrast, unit); /* adjust texture lod (lambda) */ if (span->arrayMask & SPAN_LAMBDA) { if (texUnit->LodBias + samp->LodBias != 0.0F) { /* apply LOD bias, but don't clamp yet */ const GLfloat bias = CLAMP(texUnit->LodBias + samp->LodBias, -ctx->Const.MaxTextureLodBias, ctx->Const.MaxTextureLodBias); GLuint i; for (i = 0; i < span->end; i++) { lambda[i] += bias; } } if (samp->MinLod != -1000.0 || samp->MaxLod != 1000.0) { /* apply LOD clamping to lambda */ const GLfloat min = samp->MinLod; const GLfloat max = samp->MaxLod; GLuint i; for (i = 0; i < span->end; i++) { GLfloat l = lambda[i]; lambda[i] = CLAMP(l, min, max); } } } else if (samp->MaxAnisotropy > 1.0 && samp->MinFilter == GL_LINEAR_MIPMAP_LINEAR) { /* sample_lambda_2d_aniso is beeing used as texture_sample_func, * it requires the current SWspan *span as an additional parameter. * In order to keep the same function signature, the unused lambda * parameter will be modified to actually contain the SWspan pointer. * This is a Hack. To make it right, the texture_sample_func * signature and all implementing functions need to be modified. */ /* "hide" SWspan struct; cast to (GLfloat *) to suppress warning */ lambda = (GLfloat *)span; } /* Sample the texture (span->end = number of fragments) */ swrast->TextureSample[unit]( ctx, samp, ctx->Texture.Unit[unit]._Current, span->end, texcoords, lambda, texels ); /* GL_EXT_texture_swizzle */ if (curObj->_Swizzle != SWIZZLE_NOOP) { swizzle_texels(curObj->_Swizzle, span->end, texels); } } } /* * OK, now apply the texture (aka texture combine/blend). * We modify the span->color.rgba values. */ for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) { if (ctx->Texture.Unit[unit]._ReallyEnabled) texture_combine(ctx, unit, primary_rgba, swrast->TexelBuffer, span); } free(primary_rgba); }