/* * Mesa 3-D graphics library * Version: 6.4 * * Copyright (C) 1999-2005 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "glheader.h" #include "context.h" #include "colormac.h" #include "convolve.h" #include "histogram.h" #include "image.h" #include "macros.h" #include "imports.h" #include "pixel.h" #include "s_context.h" #include "s_depth.h" #include "s_pixeltex.h" #include "s_span.h" #include "s_stencil.h" #include "s_texture.h" #include "s_zoom.h" /* * Determine if there's overlap in an image copy. * This test also compensates for the fact that copies are done from * bottom to top and overlaps can sometimes be handled correctly * without making a temporary image copy. */ static GLboolean regions_overlap(GLint srcx, GLint srcy, GLint dstx, GLint dsty, GLint width, GLint height, GLfloat zoomX, GLfloat zoomY) { if (zoomX == 1.0 && zoomY == 1.0) { /* no zoom */ if (srcx >= dstx + width || (srcx + width <= dstx)) { return GL_FALSE; } else if (srcy < dsty) { /* this is OK */ return GL_FALSE; } else if (srcy > dsty + height) { return GL_FALSE; } else { return GL_TRUE; } } else { /* add one pixel of slop when zooming, just to be safe */ if ((srcx > dstx + (width * zoomX) + 1) || (srcx + width + 1 < dstx)) { return GL_FALSE; } else if ((srcy < dsty) && (srcy + height < dsty + (height * zoomY))) { return GL_FALSE; } else if ((srcy > dsty) && (srcy + height > dsty + (height * zoomY))) { return GL_FALSE; } else { return GL_TRUE; } } } /** * Convert GLfloat[n][4] colors to GLchan[n][4]. * XXX maybe move into image.c */ static void float_span_to_chan(GLuint n, CONST GLfloat in[][4], GLchan out[][4]) { GLuint i; for (i = 0; i < n; i++) { UNCLAMPED_FLOAT_TO_CHAN(out[i][RCOMP], in[i][RCOMP]); UNCLAMPED_FLOAT_TO_CHAN(out[i][GCOMP], in[i][GCOMP]); UNCLAMPED_FLOAT_TO_CHAN(out[i][BCOMP], in[i][BCOMP]); UNCLAMPED_FLOAT_TO_CHAN(out[i][ACOMP], in[i][ACOMP]); } } /** * Convert GLchan[n][4] colors to GLfloat[n][4]. * XXX maybe move into image.c */ static void chan_span_to_float(GLuint n, CONST GLchan in[][4], GLfloat out[][4]) { GLuint i; for (i = 0; i < n; i++) { out[i][RCOMP] = CHAN_TO_FLOAT(in[i][RCOMP]); out[i][GCOMP] = CHAN_TO_FLOAT(in[i][GCOMP]); out[i][BCOMP] = CHAN_TO_FLOAT(in[i][BCOMP]); out[i][ACOMP] = CHAN_TO_FLOAT(in[i][ACOMP]); } } /* * RGBA copypixels with convolution. */ static void copy_conv_rgba_pixels(GLcontext *ctx, GLint srcx, GLint srcy, GLint width, GLint height, GLint destx, GLint desty) { struct gl_renderbuffer *drawRb = NULL; GLboolean quick_draw; GLint row; GLboolean changeBuffer; const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F; const GLuint transferOps = ctx->_ImageTransferState; GLfloat *dest, *tmpImage, *convImage; struct sw_span span; INIT_SPAN(span, GL_BITMAP, 0, 0, SPAN_RGBA); if (ctx->Depth.Test) _swrast_span_default_z(ctx, &span); if (ctx->Fog.Enabled) _swrast_span_default_fog(ctx, &span); if (SWRAST_CONTEXT(ctx)->_RasterMask == 0 && !zoom && destx >= 0 && destx + width <= (GLint) ctx->DrawBuffer->Width) { quick_draw = GL_TRUE; drawRb = ctx->DrawBuffer->_ColorDrawBuffers[0][0]; } else { quick_draw = GL_FALSE; } /* If read and draw buffer are different we must do buffer switching */ changeBuffer = ctx->Pixel.ReadBuffer != ctx->Color.DrawBuffer[0] || ctx->DrawBuffer != ctx->ReadBuffer; /* allocate space for GLfloat image */ tmpImage = (GLfloat *) MALLOC(width * height * 4 * sizeof(GLfloat)); if (!tmpImage) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyPixels"); return; } convImage = (GLfloat *) MALLOC(width * height * 4 * sizeof(GLfloat)); if (!convImage) { FREE(tmpImage); _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyPixels"); return; } if (changeBuffer) { /* choose the read buffer */ _swrast_use_read_buffer(ctx); } /* read source image */ dest = tmpImage; for (row = 0; row < height; row++) { GLchan rgba[MAX_WIDTH][4]; /* Read GLchan and convert to GLfloat */ _swrast_read_rgba_span(ctx, ctx->ReadBuffer->_ColorReadBuffer, width, srcx, srcy + row, rgba); chan_span_to_float(width, (CONST GLchan (*)[4]) rgba, (GLfloat (*)[4]) dest); dest += 4 * width; } if (changeBuffer) { /* restore default src/dst buffer */ _swrast_use_draw_buffer(ctx); } /* do the image transfer ops which preceed convolution */ for (row = 0; row < height; row++) { GLfloat (*rgba)[4] = (GLfloat (*)[4]) (tmpImage + row * width * 4); _mesa_apply_rgba_transfer_ops(ctx, transferOps & IMAGE_PRE_CONVOLUTION_BITS, width, rgba); } /* do convolution */ if (ctx->Pixel.Convolution2DEnabled) { _mesa_convolve_2d_image(ctx, &width, &height, tmpImage, convImage); } else { ASSERT(ctx->Pixel.Separable2DEnabled); _mesa_convolve_sep_image(ctx, &width, &height, tmpImage, convImage); } FREE(tmpImage); /* do remaining post-convolution image transfer ops */ for (row = 0; row < height; row++) { GLfloat (*rgba)[4] = (GLfloat (*)[4]) (convImage + row * width * 4); _mesa_apply_rgba_transfer_ops(ctx, transferOps & IMAGE_POST_CONVOLUTION_BITS, width, rgba); } /* write the new image */ for (row = 0; row < height; row++) { const GLfloat *src = convImage + row * width * 4; GLint dy; /* convert floats back to chan */ float_span_to_chan(width, (const GLfloat (*)[4]) src, span.array->rgba); if (ctx->Pixel.PixelTextureEnabled && ctx->Texture._EnabledUnits) { span.end = width; _swrast_pixel_texture(ctx, &span); } /* write row to framebuffer */ dy = desty + row; if (quick_draw && dy >= 0 && dy < (GLint) ctx->DrawBuffer->Height) { drawRb->PutRow(ctx, drawRb, width, destx, dy, span.array->rgba, NULL); } else if (zoom) { span.x = destx; span.y = dy; span.end = width; _swrast_write_zoomed_rgba_span(ctx, &span, (CONST GLchan (*)[4])span.array->rgba, desty, 0); } else { span.x = destx; span.y = dy; span.end = width; _swrast_write_rgba_span(ctx, &span); } } FREE(convImage); } /* * RGBA copypixels */ static void copy_rgba_pixels(GLcontext *ctx, GLint srcx, GLint srcy, GLint width, GLint height, GLint destx, GLint desty) { struct gl_renderbuffer *drawRb; GLchan *tmpImage,*p; GLboolean quick_draw; GLint sy, dy, stepy, j; GLboolean changeBuffer; const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F; GLint overlapping; const GLuint transferOps = ctx->_ImageTransferState; struct sw_span span; if (!ctx->ReadBuffer->_ColorReadBuffer) { /* no readbuffer - OK */ return; } INIT_SPAN(span, GL_BITMAP, 0, 0, SPAN_RGBA); if (ctx->Pixel.Convolution2DEnabled || ctx->Pixel.Separable2DEnabled) { copy_conv_rgba_pixels(ctx, srcx, srcy, width, height, destx, desty); return; } /* Determine if copy should be done bottom-to-top or top-to-bottom */ if (srcy < desty) { /* top-down max-to-min */ sy = srcy + height - 1; dy = desty + height - 1; stepy = -1; } else { /* bottom-up min-to-max */ sy = srcy; dy = desty; stepy = 1; } if (ctx->DrawBuffer == ctx->ReadBuffer) { overlapping = regions_overlap(srcx, srcy, destx, desty, width, height, ctx->Pixel.ZoomX, ctx->Pixel.ZoomY); } else { overlapping = GL_FALSE; } if (ctx->Depth.Test) _swrast_span_default_z(ctx, &span); if (ctx->Fog.Enabled) _swrast_span_default_fog(ctx, &span); if (SWRAST_CONTEXT(ctx)->_RasterMask == 0 && !zoom && destx >= 0 && destx + width <= (GLint) ctx->DrawBuffer->Width) { quick_draw = GL_TRUE; drawRb = ctx->DrawBuffer->_ColorDrawBuffers[0][0]; } else { quick_draw = GL_FALSE; drawRb = NULL; } /* If read and draw buffer are different we must do buffer switching */ changeBuffer = ctx->Pixel.ReadBuffer != ctx->Color.DrawBuffer[0] || ctx->DrawBuffer != ctx->ReadBuffer; if (overlapping) { GLint ssy = sy; tmpImage = (GLchan *) MALLOC(width * height * sizeof(GLchan) * 4); if (!tmpImage) { _mesa_error( ctx, GL_OUT_OF_MEMORY, "glCopyPixels" ); return; } /* setup source */ if (changeBuffer) _swrast_use_read_buffer(ctx); /* read the source image */ p = tmpImage; for (j = 0; j < height; j++, ssy += stepy) { _swrast_read_rgba_span( ctx, ctx->ReadBuffer->_ColorReadBuffer, width, srcx, ssy, (GLchan (*)[4]) p ); p += width * 4; } p = tmpImage; /* restore dest */ if (changeBuffer) { _swrast_use_draw_buffer(ctx); changeBuffer = GL_FALSE; } } else { tmpImage = NULL; /* silence compiler warnings */ p = NULL; } for (j = 0; j < height; j++, sy += stepy, dy += stepy) { /* Get source pixels */ if (overlapping) { /* get from buffered image */ ASSERT(width < MAX_WIDTH); MEMCPY(span.array->rgba, p, width * sizeof(GLchan) * 4); p += width * 4; } else { /* get from framebuffer */ if (changeBuffer) _swrast_use_read_buffer(ctx); ASSERT(width < MAX_WIDTH); _swrast_read_rgba_span( ctx, ctx->ReadBuffer->_ColorReadBuffer, width, srcx, sy, span.array->rgba ); if (changeBuffer) _swrast_use_draw_buffer(ctx); } if (transferOps) { DEFMARRAY(GLfloat, rgbaFloat, MAX_WIDTH, 4); /* mac 32k limitation */ CHECKARRAY(rgbaFloat, return); /* convert to float, transfer, convert back to chan */ chan_span_to_float(width, (CONST GLchan (*)[4]) span.array->rgba, rgbaFloat); _mesa_apply_rgba_transfer_ops(ctx, transferOps, width, rgbaFloat); float_span_to_chan(width, (CONST GLfloat (*)[4]) rgbaFloat, span.array->rgba); UNDEFARRAY(rgbaFloat); /* mac 32k limitation */ } if (ctx->Pixel.PixelTextureEnabled && ctx->Texture._EnabledUnits) { span.end = width; _swrast_pixel_texture(ctx, &span); } /* Write color span */ if (quick_draw && dy >= 0 && dy < (GLint) ctx->DrawBuffer->Height) { drawRb->PutRow(ctx, drawRb, width, destx, dy, span.array->rgba, NULL); } else if (zoom) { span.x = destx; span.y = dy; span.end = width; _swrast_write_zoomed_rgba_span(ctx, &span, (CONST GLchan (*)[4]) span.array->rgba, desty, 0); } else { span.x = destx; span.y = dy; span.end = width; _swrast_write_rgba_span(ctx, &span); } } if (overlapping) FREE(tmpImage); } static void copy_ci_pixels( GLcontext *ctx, GLint srcx, GLint srcy, GLint width, GLint height, GLint destx, GLint desty ) { GLuint *tmpImage,*p; GLint sy, dy, stepy; GLint j; GLboolean changeBuffer; const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F; const GLboolean shift_or_offset = ctx->Pixel.IndexShift || ctx->Pixel.IndexOffset; GLint overlapping; struct sw_span span; if (!ctx->ReadBuffer->_ColorReadBuffer) { /* no readbuffer - OK */ return; } INIT_SPAN(span, GL_BITMAP, 0, 0, SPAN_INDEX); /* Determine if copy should be bottom-to-top or top-to-bottom */ if (srcyDrawBuffer == ctx->ReadBuffer) { overlapping = regions_overlap(srcx, srcy, destx, desty, width, height, ctx->Pixel.ZoomX, ctx->Pixel.ZoomY); } else { overlapping = GL_FALSE; } if (ctx->Depth.Test) _swrast_span_default_z(ctx, &span); if (ctx->Fog.Enabled) _swrast_span_default_fog(ctx, &span); /* If read and draw buffer are different we must do buffer switching */ changeBuffer = ctx->Pixel.ReadBuffer != ctx->Color.DrawBuffer[0] || ctx->DrawBuffer != ctx->ReadBuffer; if (overlapping) { GLint ssy = sy; tmpImage = (GLuint *) MALLOC(width * height * sizeof(GLuint)); if (!tmpImage) { _mesa_error( ctx, GL_OUT_OF_MEMORY, "glCopyPixels" ); return; } /* setup source */ if (changeBuffer) _swrast_use_read_buffer(ctx); /* read the image */ p = tmpImage; for (j = 0; j < height; j++, ssy += stepy) { _swrast_read_index_span( ctx, ctx->ReadBuffer->_ColorReadBuffer, width, srcx, ssy, p ); p += width; } p = tmpImage; /* restore to draw buffer */ if (changeBuffer) { _swrast_use_draw_buffer(ctx); changeBuffer = GL_FALSE; } } else { tmpImage = NULL; /* silence compiler warning */ p = NULL; } for (j = 0; j < height; j++, sy += stepy, dy += stepy) { /* Get color indexes */ if (overlapping) { MEMCPY(span.array->index, p, width * sizeof(GLuint)); p += width; } else { if (changeBuffer) _swrast_use_read_buffer(ctx); _swrast_read_index_span( ctx, ctx->ReadBuffer->_ColorReadBuffer, width, srcx, sy, span.array->index ); if (changeBuffer) _swrast_use_draw_buffer(ctx); } /* Apply shift, offset, look-up table */ if (shift_or_offset) { _mesa_shift_and_offset_ci( ctx, width, span.array->index ); } if (ctx->Pixel.MapColorFlag) { _mesa_map_ci( ctx, width, span.array->index ); } /* write color indexes */ span.x = destx; span.y = dy; span.end = width; if (zoom) _swrast_write_zoomed_index_span(ctx, &span, desty, 0); else _swrast_write_index_span(ctx, &span); } if (overlapping) FREE(tmpImage); } /* * TODO: Optimize!!!! */ static void copy_depth_pixels( GLcontext *ctx, GLint srcx, GLint srcy, GLint width, GLint height, GLint destx, GLint desty ) { const GLfloat depthMax = ctx->DrawBuffer->_DepthMaxF; struct gl_renderbuffer *readRb = ctx->ReadBuffer->Attachment[BUFFER_DEPTH].Renderbuffer; GLfloat *p, *tmpImage; GLint sy, dy, stepy; GLint i, j; const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F; GLint overlapping; struct sw_span span; if (!readRb) { /* no readbuffer - OK */ return; } INIT_SPAN(span, GL_BITMAP, 0, 0, SPAN_Z); if (!ctx->Visual.depthBits) { _mesa_error( ctx, GL_INVALID_OPERATION, "glCopyPixels" ); return; } /* Determine if copy should be bottom-to-top or top-to-bottom */ if (srcyDrawBuffer == ctx->ReadBuffer) { overlapping = regions_overlap(srcx, srcy, destx, desty, width, height, ctx->Pixel.ZoomX, ctx->Pixel.ZoomY); } else { overlapping = GL_FALSE; } _swrast_span_default_color(ctx, &span); if (ctx->Fog.Enabled) _swrast_span_default_fog(ctx, &span); if (overlapping) { GLint ssy = sy; tmpImage = (GLfloat *) MALLOC(width * height * sizeof(GLfloat)); if (!tmpImage) { _mesa_error( ctx, GL_OUT_OF_MEMORY, "glCopyPixels" ); return; } p = tmpImage; for (j = 0; j < height; j++, ssy += stepy) { _swrast_read_depth_span_float(ctx, readRb, width, srcx, ssy, p); p += width; } p = tmpImage; } else { tmpImage = NULL; /* silence compiler warning */ p = NULL; } for (j = 0; j < height; j++, sy += stepy, dy += stepy) { GLfloat depth[MAX_WIDTH]; /* get depth values */ if (overlapping) { MEMCPY(depth, p, width * sizeof(GLfloat)); p += width; } else { _swrast_read_depth_span_float(ctx, readRb, width, srcx, sy, depth); } /* apply scale and bias */ for (i = 0; i < width; i++) { GLfloat d = depth[i] * ctx->Pixel.DepthScale + ctx->Pixel.DepthBias; span.array->z[i] = (GLdepth) (CLAMP(d, 0.0F, 1.0F) * depthMax); } /* write depth values */ span.x = destx; span.y = dy; span.end = width; if (ctx->Visual.rgbMode) { if (zoom) _swrast_write_zoomed_rgba_span( ctx, &span, (const GLchan (*)[4])span.array->rgba, desty, 0 ); else _swrast_write_rgba_span(ctx, &span); } else { if (zoom) _swrast_write_zoomed_index_span( ctx, &span, desty, 0 ); else _swrast_write_index_span(ctx, &span); } } if (overlapping) FREE(tmpImage); } static void copy_stencil_pixels( GLcontext *ctx, GLint srcx, GLint srcy, GLint width, GLint height, GLint destx, GLint desty ) { struct gl_renderbuffer *rb = ctx->ReadBuffer->Attachment[BUFFER_STENCIL].Renderbuffer; GLint sy, dy, stepy; GLint j; GLstencil *p, *tmpImage; const GLboolean zoom = ctx->Pixel.ZoomX != 1.0F || ctx->Pixel.ZoomY != 1.0F; const GLboolean shift_or_offset = ctx->Pixel.IndexShift || ctx->Pixel.IndexOffset; GLint overlapping; if (!ctx->Visual.stencilBits) { _mesa_error( ctx, GL_INVALID_OPERATION, "glCopyPixels" ); return; } if (!rb) { /* no readbuffer - OK */ return; } /* Determine if copy should be bottom-to-top or top-to-bottom */ if (srcy < desty) { /* top-down max-to-min */ sy = srcy + height - 1; dy = desty + height - 1; stepy = -1; } else { /* bottom-up min-to-max */ sy = srcy; dy = desty; stepy = 1; } if (ctx->DrawBuffer == ctx->ReadBuffer) { overlapping = regions_overlap(srcx, srcy, destx, desty, width, height, ctx->Pixel.ZoomX, ctx->Pixel.ZoomY); } else { overlapping = GL_FALSE; } if (overlapping) { GLint ssy = sy; tmpImage = (GLstencil *) MALLOC(width * height * sizeof(GLstencil)); if (!tmpImage) { _mesa_error( ctx, GL_OUT_OF_MEMORY, "glCopyPixels" ); return; } p = tmpImage; for (j = 0; j < height; j++, ssy += stepy) { _swrast_read_stencil_span( ctx, rb, width, srcx, ssy, p ); p += width; } p = tmpImage; } else { tmpImage = NULL; /* silence compiler warning */ p = NULL; } for (j = 0; j < height; j++, sy += stepy, dy += stepy) { GLstencil stencil[MAX_WIDTH]; /* Get stencil values */ if (overlapping) { MEMCPY(stencil, p, width * sizeof(GLstencil)); p += width; } else { _swrast_read_stencil_span( ctx, rb, width, srcx, sy, stencil ); } /* Apply shift, offset, look-up table */ if (shift_or_offset) { _mesa_shift_and_offset_stencil( ctx, width, stencil ); } if (ctx->Pixel.MapStencilFlag) { _mesa_map_stencil( ctx, width, stencil ); } /* Write stencil values */ if (zoom) { _swrast_write_zoomed_stencil_span( ctx, width, destx, dy, stencil, desty, 0 ); } else { _swrast_write_stencil_span( ctx, width, destx, dy, stencil ); } } if (overlapping) FREE(tmpImage); } void _swrast_CopyPixels( GLcontext *ctx, GLint srcx, GLint srcy, GLsizei width, GLsizei height, GLint destx, GLint desty, GLenum type ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); RENDER_START(swrast,ctx); if (swrast->NewState) _swrast_validate_derived( ctx ); if (type == GL_COLOR && ctx->Visual.rgbMode) { copy_rgba_pixels( ctx, srcx, srcy, width, height, destx, desty ); } else if (type == GL_COLOR && !ctx->Visual.rgbMode) { copy_ci_pixels( ctx, srcx, srcy, width, height, destx, desty ); } else if (type == GL_DEPTH) { copy_depth_pixels( ctx, srcx, srcy, width, height, destx, desty ); } else if (type == GL_STENCIL) { copy_stencil_pixels( ctx, srcx, srcy, width, height, destx, desty ); } else { _mesa_error( ctx, GL_INVALID_ENUM, "glCopyPixels" ); } RENDER_FINISH(swrast,ctx); }