/************************************************************************** * * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas. * Copyright 2012 Marek Olšák * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /* * This converts the VBO's vertex attribute/array information into * Gallium vertex state and binds it. * * Authors: * Keith Whitwell * Marek Olšák */ #include "st_context.h" #include "st_atom.h" #include "st_cb_bufferobjects.h" #include "st_draw.h" #include "st_program.h" #include "cso_cache/cso_context.h" #include "util/u_math.h" #include "main/bufferobj.h" #include "main/glformats.h" static GLuint double_types[4] = { PIPE_FORMAT_R64_FLOAT, PIPE_FORMAT_R64G64_FLOAT, PIPE_FORMAT_R64G64B64_FLOAT, PIPE_FORMAT_R64G64B64A64_FLOAT }; static GLuint float_types[4] = { PIPE_FORMAT_R32_FLOAT, PIPE_FORMAT_R32G32_FLOAT, PIPE_FORMAT_R32G32B32_FLOAT, PIPE_FORMAT_R32G32B32A32_FLOAT }; static GLuint half_float_types[4] = { PIPE_FORMAT_R16_FLOAT, PIPE_FORMAT_R16G16_FLOAT, PIPE_FORMAT_R16G16B16_FLOAT, PIPE_FORMAT_R16G16B16A16_FLOAT }; static GLuint uint_types_norm[4] = { PIPE_FORMAT_R32_UNORM, PIPE_FORMAT_R32G32_UNORM, PIPE_FORMAT_R32G32B32_UNORM, PIPE_FORMAT_R32G32B32A32_UNORM }; static GLuint uint_types_scale[4] = { PIPE_FORMAT_R32_USCALED, PIPE_FORMAT_R32G32_USCALED, PIPE_FORMAT_R32G32B32_USCALED, PIPE_FORMAT_R32G32B32A32_USCALED }; static GLuint uint_types_int[4] = { PIPE_FORMAT_R32_UINT, PIPE_FORMAT_R32G32_UINT, PIPE_FORMAT_R32G32B32_UINT, PIPE_FORMAT_R32G32B32A32_UINT }; static GLuint int_types_norm[4] = { PIPE_FORMAT_R32_SNORM, PIPE_FORMAT_R32G32_SNORM, PIPE_FORMAT_R32G32B32_SNORM, PIPE_FORMAT_R32G32B32A32_SNORM }; static GLuint int_types_scale[4] = { PIPE_FORMAT_R32_SSCALED, PIPE_FORMAT_R32G32_SSCALED, PIPE_FORMAT_R32G32B32_SSCALED, PIPE_FORMAT_R32G32B32A32_SSCALED }; static GLuint int_types_int[4] = { PIPE_FORMAT_R32_SINT, PIPE_FORMAT_R32G32_SINT, PIPE_FORMAT_R32G32B32_SINT, PIPE_FORMAT_R32G32B32A32_SINT }; static GLuint ushort_types_norm[4] = { PIPE_FORMAT_R16_UNORM, PIPE_FORMAT_R16G16_UNORM, PIPE_FORMAT_R16G16B16_UNORM, PIPE_FORMAT_R16G16B16A16_UNORM }; static GLuint ushort_types_scale[4] = { PIPE_FORMAT_R16_USCALED, PIPE_FORMAT_R16G16_USCALED, PIPE_FORMAT_R16G16B16_USCALED, PIPE_FORMAT_R16G16B16A16_USCALED }; static GLuint ushort_types_int[4] = { PIPE_FORMAT_R16_UINT, PIPE_FORMAT_R16G16_UINT, PIPE_FORMAT_R16G16B16_UINT, PIPE_FORMAT_R16G16B16A16_UINT }; static GLuint short_types_norm[4] = { PIPE_FORMAT_R16_SNORM, PIPE_FORMAT_R16G16_SNORM, PIPE_FORMAT_R16G16B16_SNORM, PIPE_FORMAT_R16G16B16A16_SNORM }; static GLuint short_types_scale[4] = { PIPE_FORMAT_R16_SSCALED, PIPE_FORMAT_R16G16_SSCALED, PIPE_FORMAT_R16G16B16_SSCALED, PIPE_FORMAT_R16G16B16A16_SSCALED }; static GLuint short_types_int[4] = { PIPE_FORMAT_R16_SINT, PIPE_FORMAT_R16G16_SINT, PIPE_FORMAT_R16G16B16_SINT, PIPE_FORMAT_R16G16B16A16_SINT }; static GLuint ubyte_types_norm[4] = { PIPE_FORMAT_R8_UNORM, PIPE_FORMAT_R8G8_UNORM, PIPE_FORMAT_R8G8B8_UNORM, PIPE_FORMAT_R8G8B8A8_UNORM }; static GLuint ubyte_types_scale[4] = { PIPE_FORMAT_R8_USCALED, PIPE_FORMAT_R8G8_USCALED, PIPE_FORMAT_R8G8B8_USCALED, PIPE_FORMAT_R8G8B8A8_USCALED }; static GLuint ubyte_types_int[4] = { PIPE_FORMAT_R8_UINT, PIPE_FORMAT_R8G8_UINT, PIPE_FORMAT_R8G8B8_UINT, PIPE_FORMAT_R8G8B8A8_UINT }; static GLuint byte_types_norm[4] = { PIPE_FORMAT_R8_SNORM, PIPE_FORMAT_R8G8_SNORM, PIPE_FORMAT_R8G8B8_SNORM, PIPE_FORMAT_R8G8B8A8_SNORM }; static GLuint byte_types_scale[4] = { PIPE_FORMAT_R8_SSCALED, PIPE_FORMAT_R8G8_SSCALED, PIPE_FORMAT_R8G8B8_SSCALED, PIPE_FORMAT_R8G8B8A8_SSCALED }; static GLuint byte_types_int[4] = { PIPE_FORMAT_R8_SINT, PIPE_FORMAT_R8G8_SINT, PIPE_FORMAT_R8G8B8_SINT, PIPE_FORMAT_R8G8B8A8_SINT }; static GLuint fixed_types[4] = { PIPE_FORMAT_R32_FIXED, PIPE_FORMAT_R32G32_FIXED, PIPE_FORMAT_R32G32B32_FIXED, PIPE_FORMAT_R32G32B32A32_FIXED }; /** * Return a PIPE_FORMAT_x for the given GL datatype and size. */ enum pipe_format st_pipe_vertex_format(GLenum type, GLuint size, GLenum format, GLboolean normalized, GLboolean integer) { assert((type >= GL_BYTE && type <= GL_DOUBLE) || type == GL_FIXED || type == GL_HALF_FLOAT || type == GL_INT_2_10_10_10_REV || type == GL_UNSIGNED_INT_2_10_10_10_REV || type == GL_UNSIGNED_INT_10F_11F_11F_REV); assert(size >= 1); assert(size <= 4); assert(format == GL_RGBA || format == GL_BGRA); if (type == GL_INT_2_10_10_10_REV || type == GL_UNSIGNED_INT_2_10_10_10_REV) { assert(size == 4); assert(!integer); if (format == GL_BGRA) { if (type == GL_INT_2_10_10_10_REV) { if (normalized) return PIPE_FORMAT_B10G10R10A2_SNORM; else return PIPE_FORMAT_B10G10R10A2_SSCALED; } else { if (normalized) return PIPE_FORMAT_B10G10R10A2_UNORM; else return PIPE_FORMAT_B10G10R10A2_USCALED; } } else { if (type == GL_INT_2_10_10_10_REV) { if (normalized) return PIPE_FORMAT_R10G10B10A2_SNORM; else return PIPE_FORMAT_R10G10B10A2_SSCALED; } else { if (normalized) return PIPE_FORMAT_R10G10B10A2_UNORM; else return PIPE_FORMAT_R10G10B10A2_USCALED; } } } if (type == GL_UNSIGNED_INT_10F_11F_11F_REV) { assert(size == 3); assert(!integer); assert(format == GL_RGBA); return PIPE_FORMAT_R11G11B10_FLOAT; } if (format == GL_BGRA) { /* this is an odd-ball case */ assert(type == GL_UNSIGNED_BYTE); assert(normalized); return PIPE_FORMAT_B8G8R8A8_UNORM; } if (integer) { switch (type) { case GL_INT: return int_types_int[size-1]; case GL_SHORT: return short_types_int[size-1]; case GL_BYTE: return byte_types_int[size-1]; case GL_UNSIGNED_INT: return uint_types_int[size-1]; case GL_UNSIGNED_SHORT: return ushort_types_int[size-1]; case GL_UNSIGNED_BYTE: return ubyte_types_int[size-1]; default: assert(0); return 0; } } else if (normalized) { switch (type) { case GL_DOUBLE: return double_types[size-1]; case GL_FLOAT: return float_types[size-1]; case GL_HALF_FLOAT: return half_float_types[size-1]; case GL_INT: return int_types_norm[size-1]; case GL_SHORT: return short_types_norm[size-1]; case GL_BYTE: return byte_types_norm[size-1]; case GL_UNSIGNED_INT: return uint_types_norm[size-1]; case GL_UNSIGNED_SHORT: return ushort_types_norm[size-1]; case GL_UNSIGNED_BYTE: return ubyte_types_norm[size-1]; case GL_FIXED: return fixed_types[size-1]; default: assert(0); return 0; } } else { switch (type) { case GL_DOUBLE: return double_types[size-1]; case GL_FLOAT: return float_types[size-1]; case GL_HALF_FLOAT: return half_float_types[size-1]; case GL_INT: return int_types_scale[size-1]; case GL_SHORT: return short_types_scale[size-1]; case GL_BYTE: return byte_types_scale[size-1]; case GL_UNSIGNED_INT: return uint_types_scale[size-1]; case GL_UNSIGNED_SHORT: return ushort_types_scale[size-1]; case GL_UNSIGNED_BYTE: return ubyte_types_scale[size-1]; case GL_FIXED: return fixed_types[size-1]; default: assert(0); return 0; } } return PIPE_FORMAT_NONE; /* silence compiler warning */ } /** * Examine the active arrays to determine if we have interleaved * vertex arrays all living in one VBO, or all living in user space. */ static GLboolean is_interleaved_arrays(const struct st_vertex_program *vp, const struct st_vp_variant *vpv, const struct gl_client_array **arrays) { GLuint attr; const struct gl_buffer_object *firstBufObj = NULL; GLint firstStride = -1; const GLubyte *firstPtr = NULL; GLboolean userSpaceBuffer = GL_FALSE; for (attr = 0; attr < vpv->num_inputs; attr++) { const GLuint mesaAttr = vp->index_to_input[attr]; const struct gl_client_array *array = arrays[mesaAttr]; const struct gl_buffer_object *bufObj = array->BufferObj; const GLsizei stride = array->StrideB; /* in bytes */ if (attr == 0) { /* save info about the first array */ firstStride = stride; firstPtr = array->Ptr; firstBufObj = bufObj; userSpaceBuffer = !bufObj || !bufObj->Name; } else { /* check if other arrays interleave with the first, in same buffer */ if (stride != firstStride) return GL_FALSE; /* strides don't match */ if (bufObj != firstBufObj) return GL_FALSE; /* arrays in different VBOs */ if (abs(array->Ptr - firstPtr) > firstStride) return GL_FALSE; /* arrays start too far apart */ if ((!_mesa_is_bufferobj(bufObj)) != userSpaceBuffer) return GL_FALSE; /* mix of VBO and user-space arrays */ } } return GL_TRUE; } /** * Set up for drawing interleaved arrays that all live in one VBO * or all live in user space. * \param vbuffer returns vertex buffer info * \param velements returns vertex element info */ static boolean setup_interleaved_attribs(const struct st_vertex_program *vp, const struct st_vp_variant *vpv, const struct gl_client_array **arrays, struct pipe_vertex_buffer *vbuffer, struct pipe_vertex_element velements[]) { GLuint attr; const GLubyte *low_addr = NULL; GLboolean usingVBO; /* all arrays in a VBO? */ struct gl_buffer_object *bufobj; GLsizei stride; /* Find the lowest address of the arrays we're drawing, * Init bufobj and stride. */ if (vpv->num_inputs) { const GLuint mesaAttr0 = vp->index_to_input[0]; const struct gl_client_array *array = arrays[mesaAttr0]; /* Since we're doing interleaved arrays, we know there'll be at most * one buffer object and the stride will be the same for all arrays. * Grab them now. */ bufobj = array->BufferObj; stride = array->StrideB; low_addr = arrays[vp->index_to_input[0]]->Ptr; for (attr = 1; attr < vpv->num_inputs; attr++) { const GLubyte *start = arrays[vp->index_to_input[attr]]->Ptr; low_addr = MIN2(low_addr, start); } } else { /* not sure we'll ever have zero inputs, but play it safe */ bufobj = NULL; stride = 0; low_addr = 0; } /* are the arrays in user space? */ usingVBO = _mesa_is_bufferobj(bufobj); for (attr = 0; attr < vpv->num_inputs; attr++) { const GLuint mesaAttr = vp->index_to_input[attr]; const struct gl_client_array *array = arrays[mesaAttr]; unsigned src_offset = (unsigned) (array->Ptr - low_addr); assert(array->_ElementSize == _mesa_bytes_per_vertex_attrib(array->Size, array->Type)); velements[attr].src_offset = src_offset; velements[attr].instance_divisor = array->InstanceDivisor; velements[attr].vertex_buffer_index = 0; velements[attr].src_format = st_pipe_vertex_format(array->Type, array->Size, array->Format, array->Normalized, array->Integer); assert(velements[attr].src_format); } /* * Return the vbuffer info and setup user-space attrib info, if needed. */ if (vpv->num_inputs == 0) { /* just defensive coding here */ vbuffer->buffer = NULL; vbuffer->user_buffer = NULL; vbuffer->buffer_offset = 0; vbuffer->stride = 0; } else if (usingVBO) { /* all interleaved arrays in a VBO */ struct st_buffer_object *stobj = st_buffer_object(bufobj); if (!stobj || !stobj->buffer) { return FALSE; /* out-of-memory error probably */ } vbuffer->buffer = stobj->buffer; vbuffer->user_buffer = NULL; vbuffer->buffer_offset = pointer_to_offset(low_addr); vbuffer->stride = stride; } else { /* all interleaved arrays in user memory */ vbuffer->buffer = NULL; vbuffer->user_buffer = low_addr; vbuffer->buffer_offset = 0; vbuffer->stride = stride; } return TRUE; } /** * Set up a separate pipe_vertex_buffer and pipe_vertex_element for each * vertex attribute. * \param vbuffer returns vertex buffer info * \param velements returns vertex element info */ static boolean setup_non_interleaved_attribs(struct st_context *st, const struct st_vertex_program *vp, const struct st_vp_variant *vpv, const struct gl_client_array **arrays, struct pipe_vertex_buffer vbuffer[], struct pipe_vertex_element velements[]) { struct gl_context *ctx = st->ctx; GLuint attr; for (attr = 0; attr < vpv->num_inputs; attr++) { const GLuint mesaAttr = vp->index_to_input[attr]; const struct gl_client_array *array = arrays[mesaAttr]; struct gl_buffer_object *bufobj = array->BufferObj; GLsizei stride = array->StrideB; assert(array->_ElementSize == _mesa_bytes_per_vertex_attrib(array->Size, array->Type)); if (_mesa_is_bufferobj(bufobj)) { /* Attribute data is in a VBO. * Recall that for VBOs, the gl_client_array->Ptr field is * really an offset from the start of the VBO, not a pointer. */ struct st_buffer_object *stobj = st_buffer_object(bufobj); if (!stobj || !stobj->buffer) { return FALSE; /* out-of-memory error probably */ } vbuffer[attr].buffer = stobj->buffer; vbuffer[attr].user_buffer = NULL; vbuffer[attr].buffer_offset = pointer_to_offset(array->Ptr); } else { /* wrap user data */ void *ptr; if (array->Ptr) { ptr = (void *) array->Ptr; } else { /* no array, use ctx->Current.Attrib[] value */ ptr = (void *) ctx->Current.Attrib[mesaAttr]; stride = 0; } assert(ptr); vbuffer[attr].buffer = NULL; vbuffer[attr].user_buffer = ptr; vbuffer[attr].buffer_offset = 0; } /* common-case setup */ vbuffer[attr].stride = stride; /* in bytes */ velements[attr].src_offset = 0; velements[attr].instance_divisor = array->InstanceDivisor; velements[attr].vertex_buffer_index = attr; velements[attr].src_format = st_pipe_vertex_format(array->Type, array->Size, array->Format, array->Normalized, array->Integer); assert(velements[attr].src_format); } return TRUE; } static void update_array(struct st_context *st) { struct gl_context *ctx = st->ctx; const struct gl_client_array **arrays = ctx->Array._DrawArrays; const struct st_vertex_program *vp; const struct st_vp_variant *vpv; struct pipe_vertex_buffer vbuffer[PIPE_MAX_SHADER_INPUTS]; struct pipe_vertex_element velements[PIPE_MAX_ATTRIBS]; unsigned num_vbuffers, num_velements; st->vertex_array_out_of_memory = FALSE; /* No drawing has been done yet, so do nothing. */ if (!arrays) return; /* vertex program validation must be done before this */ vp = st->vp; vpv = st->vp_variant; memset(velements, 0, sizeof(struct pipe_vertex_element) * vpv->num_inputs); /* * Setup the vbuffer[] and velements[] arrays. */ if (is_interleaved_arrays(vp, vpv, arrays)) { if (!setup_interleaved_attribs(vp, vpv, arrays, vbuffer, velements)) { st->vertex_array_out_of_memory = TRUE; return; } num_vbuffers = 1; num_velements = vpv->num_inputs; if (num_velements == 0) num_vbuffers = 0; } else { if (!setup_non_interleaved_attribs(st, vp, vpv, arrays, vbuffer, velements)) { st->vertex_array_out_of_memory = TRUE; return; } num_vbuffers = vpv->num_inputs; num_velements = vpv->num_inputs; } cso_set_vertex_buffers(st->cso_context, 0, num_vbuffers, vbuffer); if (st->last_num_vbuffers > num_vbuffers) { /* Unbind remaining buffers, if any. */ cso_set_vertex_buffers(st->cso_context, num_vbuffers, st->last_num_vbuffers - num_vbuffers, NULL); } st->last_num_vbuffers = num_vbuffers; cso_set_vertex_elements(st->cso_context, num_velements, velements); } const struct st_tracked_state st_update_array = { "st_update_array", /* name */ { /* dirty */ 0, /* mesa */ ST_NEW_VERTEX_ARRAYS | ST_NEW_VERTEX_PROGRAM, /* st */ }, update_array /* update */ };