/* * Mesa 3-D graphics library * * Copyright (C) 1999-2001 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ /* * eval.c was written by * Bernd Barsuhn (bdbarsuh@cip.informatik.uni-erlangen.de) and * Volker Weiss (vrweiss@cip.informatik.uni-erlangen.de). * * My original implementation of evaluators was simplistic and didn't * compute surface normal vectors properly. Bernd and Volker applied * used more sophisticated methods to get better results. * * Thanks guys! */ #include "main/glheader.h" #include "main/config.h" #include "m_eval.h" static GLfloat inv_tab[MAX_EVAL_ORDER]; /* * Horner scheme for Bezier curves * * Bezier curves can be computed via a Horner scheme. * Horner is numerically less stable than the de Casteljau * algorithm, but it is faster. For curves of degree n * the complexity of Horner is O(n) and de Casteljau is O(n^2). * Since stability is not important for displaying curve * points I decided to use the Horner scheme. * * A cubic Bezier curve with control points b0, b1, b2, b3 can be * written as * * (([3] [3] ) [3] ) [3] * c(t) = (([0]*s*b0 + [1]*t*b1)*s + [2]*t^2*b2)*s + [3]*t^2*b3 * * [n] * where s=1-t and the binomial coefficients [i]. These can * be computed iteratively using the identity: * * [n] [n ] [n] * [i] = (n-i+1)/i * [i-1] and [0] = 1 */ void _math_horner_bezier_curve(const GLfloat * cp, GLfloat * out, GLfloat t, GLuint dim, GLuint order) { GLfloat s, powert, bincoeff; GLuint i, k; if (order >= 2) { bincoeff = (GLfloat) (order - 1); s = 1.0F - t; for (k = 0; k < dim; k++) out[k] = s * cp[k] + bincoeff * t * cp[dim + k]; for (i = 2, cp += 2 * dim, powert = t * t; i < order; i++, powert *= t, cp += dim) { bincoeff *= (GLfloat) (order - i); bincoeff *= inv_tab[i]; for (k = 0; k < dim; k++) out[k] = s * out[k] + bincoeff * powert * cp[k]; } } else { /* order=1 -> constant curve */ for (k = 0; k < dim; k++) out[k] = cp[k]; } } /* * Tensor product Bezier surfaces * * Again the Horner scheme is used to compute a point on a * TP Bezier surface. First a control polygon for a curve * on the surface in one parameter direction is computed, * then the point on the curve for the other parameter * direction is evaluated. * * To store the curve control polygon additional storage * for max(uorder,vorder) points is needed in the * control net cn. */ void _math_horner_bezier_surf(GLfloat * cn, GLfloat * out, GLfloat u, GLfloat v, GLuint dim, GLuint uorder, GLuint vorder) { GLfloat *cp = cn + uorder * vorder * dim; GLuint i, uinc = vorder * dim; if (vorder > uorder) { if (uorder >= 2) { GLfloat s, poweru, bincoeff; GLuint j, k; /* Compute the control polygon for the surface-curve in u-direction */ for (j = 0; j < vorder; j++) { GLfloat *ucp = &cn[j * dim]; /* Each control point is the point for parameter u on a */ /* curve defined by the control polygons in u-direction */ bincoeff = (GLfloat) (uorder - 1); s = 1.0F - u; for (k = 0; k < dim; k++) cp[j * dim + k] = s * ucp[k] + bincoeff * u * ucp[uinc + k]; for (i = 2, ucp += 2 * uinc, poweru = u * u; i < uorder; i++, poweru *= u, ucp += uinc) { bincoeff *= (GLfloat) (uorder - i); bincoeff *= inv_tab[i]; for (k = 0; k < dim; k++) cp[j * dim + k] = s * cp[j * dim + k] + bincoeff * poweru * ucp[k]; } } /* Evaluate curve point in v */ _math_horner_bezier_curve(cp, out, v, dim, vorder); } else /* uorder=1 -> cn defines a curve in v */ _math_horner_bezier_curve(cn, out, v, dim, vorder); } else { /* vorder <= uorder */ if (vorder > 1) { GLuint i; /* Compute the control polygon for the surface-curve in u-direction */ for (i = 0; i < uorder; i++, cn += uinc) { /* For constant i all cn[i][j] (j=0..vorder) are located */ /* on consecutive memory locations, so we can use */ /* horner_bezier_curve to compute the control points */ _math_horner_bezier_curve(cn, &cp[i * dim], v, dim, vorder); } /* Evaluate curve point in u */ _math_horner_bezier_curve(cp, out, u, dim, uorder); } else /* vorder=1 -> cn defines a curve in u */ _math_horner_bezier_curve(cn, out, u, dim, uorder); } } /* * The direct de Casteljau algorithm is used when a point on the * surface and the tangent directions spanning the tangent plane * should be computed (this is needed to compute normals to the * surface). In this case the de Casteljau algorithm approach is * nicer because a point and the partial derivatives can be computed * at the same time. To get the correct tangent length du and dv * must be multiplied with the (u2-u1)/uorder-1 and (v2-v1)/vorder-1. * Since only the directions are needed, this scaling step is omitted. * * De Casteljau needs additional storage for uorder*vorder * values in the control net cn. */ void _math_de_casteljau_surf(GLfloat * cn, GLfloat * out, GLfloat * du, GLfloat * dv, GLfloat u, GLfloat v, GLuint dim, GLuint uorder, GLuint vorder) { GLfloat *dcn = cn + uorder * vorder * dim; GLfloat us = 1.0F - u, vs = 1.0F - v; GLuint h, i, j, k; GLuint minorder = uorder < vorder ? uorder : vorder; GLuint uinc = vorder * dim; GLuint dcuinc = vorder; /* Each component is evaluated separately to save buffer space */ /* This does not drasticaly decrease the performance of the */ /* algorithm. If additional storage for (uorder-1)*(vorder-1) */ /* points would be available, the components could be accessed */ /* in the innermost loop which could lead to less cache misses. */ #define CN(I,J,K) cn[(I)*uinc+(J)*dim+(K)] #define DCN(I, J) dcn[(I)*dcuinc+(J)] if (minorder < 3) { if (uorder == vorder) { for (k = 0; k < dim; k++) { /* Derivative direction in u */ du[k] = vs * (CN(1, 0, k) - CN(0, 0, k)) + v * (CN(1, 1, k) - CN(0, 1, k)); /* Derivative direction in v */ dv[k] = us * (CN(0, 1, k) - CN(0, 0, k)) + u * (CN(1, 1, k) - CN(1, 0, k)); /* bilinear de Casteljau step */ out[k] = us * (vs * CN(0, 0, k) + v * CN(0, 1, k)) + u * (vs * CN(1, 0, k) + v * CN(1, 1, k)); } } else if (minorder == uorder) { for (k = 0; k < dim; k++) { /* bilinear de Casteljau step */ DCN(1, 0) = CN(1, 0, k) - CN(0, 0, k); DCN(0, 0) = us * CN(0, 0, k) + u * CN(1, 0, k); for (j = 0; j < vorder - 1; j++) { /* for the derivative in u */ DCN(1, j + 1) = CN(1, j + 1, k) - CN(0, j + 1, k); DCN(1, j) = vs * DCN(1, j) + v * DCN(1, j + 1); /* for the `point' */ DCN(0, j + 1) = us * CN(0, j + 1, k) + u * CN(1, j + 1, k); DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1); } /* remaining linear de Casteljau steps until the second last step */ for (h = minorder; h < vorder - 1; h++) for (j = 0; j < vorder - h; j++) { /* for the derivative in u */ DCN(1, j) = vs * DCN(1, j) + v * DCN(1, j + 1); /* for the `point' */ DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1); } /* derivative direction in v */ dv[k] = DCN(0, 1) - DCN(0, 0); /* derivative direction in u */ du[k] = vs * DCN(1, 0) + v * DCN(1, 1); /* last linear de Casteljau step */ out[k] = vs * DCN(0, 0) + v * DCN(0, 1); } } else { /* minorder == vorder */ for (k = 0; k < dim; k++) { /* bilinear de Casteljau step */ DCN(0, 1) = CN(0, 1, k) - CN(0, 0, k); DCN(0, 0) = vs * CN(0, 0, k) + v * CN(0, 1, k); for (i = 0; i < uorder - 1; i++) { /* for the derivative in v */ DCN(i + 1, 1) = CN(i + 1, 1, k) - CN(i + 1, 0, k); DCN(i, 1) = us * DCN(i, 1) + u * DCN(i + 1, 1); /* for the `point' */ DCN(i + 1, 0) = vs * CN(i + 1, 0, k) + v * CN(i + 1, 1, k); DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0); } /* remaining linear de Casteljau steps until the second last step */ for (h = minorder; h < uorder - 1; h++) for (i = 0; i < uorder - h; i++) { /* for the derivative in v */ DCN(i, 1) = us * DCN(i, 1) + u * DCN(i + 1, 1); /* for the `point' */ DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0); } /* derivative direction in u */ du[k] = DCN(1, 0) - DCN(0, 0); /* derivative direction in v */ dv[k] = us * DCN(0, 1) + u * DCN(1, 1); /* last linear de Casteljau step */ out[k] = us * DCN(0, 0) + u * DCN(1, 0); } } } else if (uorder == vorder) { for (k = 0; k < dim; k++) { /* first bilinear de Casteljau step */ for (i = 0; i < uorder - 1; i++) { DCN(i, 0) = us * CN(i, 0, k) + u * CN(i + 1, 0, k); for (j = 0; j < vorder - 1; j++) { DCN(i, j + 1) = us * CN(i, j + 1, k) + u * CN(i + 1, j + 1, k); DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1); } } /* remaining bilinear de Casteljau steps until the second last step */ for (h = 2; h < minorder - 1; h++) for (i = 0; i < uorder - h; i++) { DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0); for (j = 0; j < vorder - h; j++) { DCN(i, j + 1) = us * DCN(i, j + 1) + u * DCN(i + 1, j + 1); DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1); } } /* derivative direction in u */ du[k] = vs * (DCN(1, 0) - DCN(0, 0)) + v * (DCN(1, 1) - DCN(0, 1)); /* derivative direction in v */ dv[k] = us * (DCN(0, 1) - DCN(0, 0)) + u * (DCN(1, 1) - DCN(1, 0)); /* last bilinear de Casteljau step */ out[k] = us * (vs * DCN(0, 0) + v * DCN(0, 1)) + u * (vs * DCN(1, 0) + v * DCN(1, 1)); } } else if (minorder == uorder) { for (k = 0; k < dim; k++) { /* first bilinear de Casteljau step */ for (i = 0; i < uorder - 1; i++) { DCN(i, 0) = us * CN(i, 0, k) + u * CN(i + 1, 0, k); for (j = 0; j < vorder - 1; j++) { DCN(i, j + 1) = us * CN(i, j + 1, k) + u * CN(i + 1, j + 1, k); DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1); } } /* remaining bilinear de Casteljau steps until the second last step */ for (h = 2; h < minorder - 1; h++) for (i = 0; i < uorder - h; i++) { DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0); for (j = 0; j < vorder - h; j++) { DCN(i, j + 1) = us * DCN(i, j + 1) + u * DCN(i + 1, j + 1); DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1); } } /* last bilinear de Casteljau step */ DCN(2, 0) = DCN(1, 0) - DCN(0, 0); DCN(0, 0) = us * DCN(0, 0) + u * DCN(1, 0); for (j = 0; j < vorder - 1; j++) { /* for the derivative in u */ DCN(2, j + 1) = DCN(1, j + 1) - DCN(0, j + 1); DCN(2, j) = vs * DCN(2, j) + v * DCN(2, j + 1); /* for the `point' */ DCN(0, j + 1) = us * DCN(0, j + 1) + u * DCN(1, j + 1); DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1); } /* remaining linear de Casteljau steps until the second last step */ for (h = minorder; h < vorder - 1; h++) for (j = 0; j < vorder - h; j++) { /* for the derivative in u */ DCN(2, j) = vs * DCN(2, j) + v * DCN(2, j + 1); /* for the `point' */ DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1); } /* derivative direction in v */ dv[k] = DCN(0, 1) - DCN(0, 0); /* derivative direction in u */ du[k] = vs * DCN(2, 0) + v * DCN(2, 1); /* last linear de Casteljau step */ out[k] = vs * DCN(0, 0) + v * DCN(0, 1); } } else { /* minorder == vorder */ for (k = 0; k < dim; k++) { /* first bilinear de Casteljau step */ for (i = 0; i < uorder - 1; i++) { DCN(i, 0) = us * CN(i, 0, k) + u * CN(i + 1, 0, k); for (j = 0; j < vorder - 1; j++) { DCN(i, j + 1) = us * CN(i, j + 1, k) + u * CN(i + 1, j + 1, k); DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1); } } /* remaining bilinear de Casteljau steps until the second last step */ for (h = 2; h < minorder - 1; h++) for (i = 0; i < uorder - h; i++) { DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0); for (j = 0; j < vorder - h; j++) { DCN(i, j + 1) = us * DCN(i, j + 1) + u * DCN(i + 1, j + 1); DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1); } } /* last bilinear de Casteljau step */ DCN(0, 2) = DCN(0, 1) - DCN(0, 0); DCN(0, 0) = vs * DCN(0, 0) + v * DCN(0, 1); for (i = 0; i < uorder - 1; i++) { /* for the derivative in v */ DCN(i + 1, 2) = DCN(i + 1, 1) - DCN(i + 1, 0); DCN(i, 2) = us * DCN(i, 2) + u * DCN(i + 1, 2); /* for the `point' */ DCN(i + 1, 0) = vs * DCN(i + 1, 0) + v * DCN(i + 1, 1); DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0); } /* remaining linear de Casteljau steps until the second last step */ for (h = minorder; h < uorder - 1; h++) for (i = 0; i < uorder - h; i++) { /* for the derivative in v */ DCN(i, 2) = us * DCN(i, 2) + u * DCN(i + 1, 2); /* for the `point' */ DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0); } /* derivative direction in u */ du[k] = DCN(1, 0) - DCN(0, 0); /* derivative direction in v */ dv[k] = us * DCN(0, 2) + u * DCN(1, 2); /* last linear de Casteljau step */ out[k] = us * DCN(0, 0) + u * DCN(1, 0); } } #undef DCN #undef CN } /* * Do one-time initialization for evaluators. */ void _math_init_eval(void) { GLuint i; /* KW: precompute 1/x for useful x. */ for (i = 1; i < MAX_EVAL_ORDER; i++) inv_tab[i] = 1.0F / i; }