/** * \file rastpos.c * Raster position operations. */ /* * Mesa 3-D graphics library * Version: 5.1 * * Copyright (C) 1999-2003 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "glheader.h" /*#include "clip.h"*/ #include "colormac.h" #include "context.h" #include "feedback.h" #include "light.h" #include "macros.h" #include "rastpos.h" #include "state.h" #include "simple_list.h" #include "mtypes.h" #include "math/m_matrix.h" /** * Clip a point against the view volume. * * \param v vertex vector describing the point to clip. * * \return zero if outside view volume, or one if inside. */ static GLuint viewclip_point( const GLfloat v[] ) { if ( v[0] > v[3] || v[0] < -v[3] || v[1] > v[3] || v[1] < -v[3] || v[2] > v[3] || v[2] < -v[3] ) { return 0; } else { return 1; } } /** * Clip a point against the far/near Z clipping planes. * * \param v vertex vector describing the point to clip. * * \return zero if outside view volume, or one if inside. */ static GLuint viewclip_point_z( const GLfloat v[] ) { if (v[2] > v[3] || v[2] < -v[3] ) { return 0; } else { return 1; } } /** * Clip a point against the user clipping planes. * * \param ctx GL context. * \param v vertex vector describing the point to clip. * * \return zero if the point was clipped, or one otherwise. */ static GLuint userclip_point( GLcontext *ctx, const GLfloat v[] ) { GLuint p; for (p = 0; p < ctx->Const.MaxClipPlanes; p++) { if (ctx->Transform.ClipPlanesEnabled & (1 << p)) { GLfloat dot = v[0] * ctx->Transform._ClipUserPlane[p][0] + v[1] * ctx->Transform._ClipUserPlane[p][1] + v[2] * ctx->Transform._ClipUserPlane[p][2] + v[3] * ctx->Transform._ClipUserPlane[p][3]; if (dot < 0.0F) { return 0; } } } return 1; } /** * This has been split off to allow the normal shade routines to * get a little closer to the vertex buffer, and to use the * GLvector objects directly. * \param ctx the context * \param vertex vertex location * \param normal normal vector * \param Rcolor returned color * \param Rspec returned specular color (if separate specular enabled) * \param Rindex returned color index */ static void shade_rastpos(GLcontext *ctx, const GLfloat vertex[4], const GLfloat normal[3], GLfloat Rcolor[4], GLfloat Rspec[4], GLfloat *Rindex) { GLfloat (*base)[3] = ctx->Light._BaseColor; struct gl_light *light; GLfloat diffuseColor[4], specularColor[4]; GLfloat diffuse = 0, specular = 0; if (!ctx->_ShineTable[0] || !ctx->_ShineTable[1]) _mesa_validate_all_lighting_tables( ctx ); COPY_3V(diffuseColor, base[0]); diffuseColor[3] = CLAMP( ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3], 0.0F, 1.0F ); ASSIGN_4V(specularColor, 0.0, 0.0, 0.0, 0.0); foreach (light, &ctx->Light.EnabledList) { GLfloat n_dot_h; GLfloat attenuation = 1.0; GLfloat VP[3]; GLfloat n_dot_VP; GLfloat *h; GLfloat diffuseContrib[3], specularContrib[3]; GLboolean normalized; if (!(light->_Flags & LIGHT_POSITIONAL)) { COPY_3V(VP, light->_VP_inf_norm); attenuation = light->_VP_inf_spot_attenuation; } else { GLfloat d; SUB_3V(VP, light->_Position, vertex); d = (GLfloat) LEN_3FV( VP ); if ( d > 1e-6) { GLfloat invd = 1.0F / d; SELF_SCALE_SCALAR_3V(VP, invd); } attenuation = 1.0F / (light->ConstantAttenuation + d * (light->LinearAttenuation + d * light->QuadraticAttenuation)); if (light->_Flags & LIGHT_SPOT) { GLfloat PV_dot_dir = - DOT3(VP, light->_NormDirection); if (PV_dot_dir_CosCutoff) { continue; } else { double x = PV_dot_dir * (EXP_TABLE_SIZE-1); int k = (int) x; GLfloat spot = (GLfloat) (light->_SpotExpTable[k][0] + (x-k)*light->_SpotExpTable[k][1]); attenuation *= spot; } } } if (attenuation < 1e-3) continue; n_dot_VP = DOT3( normal, VP ); if (n_dot_VP < 0.0F) { ACC_SCALE_SCALAR_3V(diffuseColor, attenuation, light->_MatAmbient[0]); continue; } COPY_3V(diffuseContrib, light->_MatAmbient[0]); ACC_SCALE_SCALAR_3V(diffuseContrib, n_dot_VP, light->_MatDiffuse[0]); diffuse += n_dot_VP * light->_dli * attenuation; ASSIGN_3V(specularContrib, 0.0, 0.0, 0.0); { if (ctx->Light.Model.LocalViewer) { GLfloat v[3]; COPY_3V(v, vertex); NORMALIZE_3FV(v); SUB_3V(VP, VP, v); h = VP; normalized = 0; } else if (light->_Flags & LIGHT_POSITIONAL) { h = VP; ACC_3V(h, ctx->_EyeZDir); normalized = 0; } else { h = light->_h_inf_norm; normalized = 1; } n_dot_h = DOT3(normal, h); if (n_dot_h > 0.0F) { GLfloat (*mat)[4] = ctx->Light.Material.Attrib; GLfloat spec_coef; GLfloat shininess = mat[MAT_ATTRIB_FRONT_SHININESS][0]; if (!normalized) { n_dot_h *= n_dot_h; n_dot_h /= LEN_SQUARED_3FV( h ); shininess *= .5; } GET_SHINE_TAB_ENTRY( ctx->_ShineTable[0], n_dot_h, spec_coef ); if (spec_coef > 1.0e-10) { if (ctx->Light.Model.ColorControl==GL_SEPARATE_SPECULAR_COLOR) { ACC_SCALE_SCALAR_3V( specularContrib, spec_coef, light->_MatSpecular[0]); } else { ACC_SCALE_SCALAR_3V( diffuseContrib, spec_coef, light->_MatSpecular[0]); } specular += spec_coef * light->_sli * attenuation; } } } ACC_SCALE_SCALAR_3V( diffuseColor, attenuation, diffuseContrib ); ACC_SCALE_SCALAR_3V( specularColor, attenuation, specularContrib ); } if (ctx->Visual.rgbMode) { Rcolor[0] = CLAMP(diffuseColor[0], 0.0F, 1.0F); Rcolor[1] = CLAMP(diffuseColor[1], 0.0F, 1.0F); Rcolor[2] = CLAMP(diffuseColor[2], 0.0F, 1.0F); Rcolor[3] = CLAMP(diffuseColor[3], 0.0F, 1.0F); Rspec[0] = CLAMP(specularColor[0], 0.0F, 1.0F); Rspec[1] = CLAMP(specularColor[1], 0.0F, 1.0F); Rspec[2] = CLAMP(specularColor[2], 0.0F, 1.0F); Rspec[3] = CLAMP(specularColor[3], 0.0F, 1.0F); } else { GLfloat *ind = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_INDEXES]; GLfloat d_a = ind[MAT_INDEX_DIFFUSE] - ind[MAT_INDEX_AMBIENT]; GLfloat s_a = ind[MAT_INDEX_SPECULAR] - ind[MAT_INDEX_AMBIENT]; GLfloat i = (ind[MAT_INDEX_AMBIENT] + diffuse * (1.0F-specular) * d_a + specular * s_a); if (i > ind[MAT_INDEX_SPECULAR]) { i = ind[MAT_INDEX_SPECULAR]; } *Rindex = i; } } /** * Set the raster position for pixel operations. * * All glRasterPos command call this function to update the current * raster position. * * \param ctx GL context. * \param x x coordinate for the raster position. * \param y y coordinate for the raster position. * \param z z coordinate for the raster position. * \param w w coordinate for the raster position. * * \sa Called by _mesa_RasterPos4f(). * * Flushes the vertices, transforms and clips the vertex coordinates, and * finally sets the current raster position and associated data in * __GLcontextRec::Current. When in selection mode calls * _mesa_update_hitflag() with the current raster position. */ static void raster_pos4f(GLcontext *ctx, GLfloat x, GLfloat y, GLfloat z, GLfloat w) { GLfloat v[4], eye[4], clip[4], ndc[3], d; ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); FLUSH_CURRENT(ctx, 0); if (ctx->NewState) _mesa_update_state( ctx ); if (ctx->VertexProgram.Enabled) { /* XXX implement this */ _mesa_problem(ctx, "Vertex programs not implemented for glRasterPos"); return; } else { ASSIGN_4V( v, x, y, z, w ); TRANSFORM_POINT( eye, ctx->ModelviewMatrixStack.Top->m, v ); /* raster color */ if (ctx->Light.Enabled) { GLfloat *norm, eyenorm[3]; GLfloat *objnorm = ctx->Current.Attrib[VERT_ATTRIB_NORMAL]; if (ctx->_NeedEyeCoords) { GLfloat *inv = ctx->ModelviewMatrixStack.Top->inv; TRANSFORM_NORMAL( eyenorm, objnorm, inv ); norm = eyenorm; } else { norm = objnorm; } shade_rastpos( ctx, v, norm, ctx->Current.RasterColor, ctx->Current.RasterSecondaryColor, &ctx->Current.RasterIndex ); } else { /* use current color or index */ if (ctx->Visual.rgbMode) { COPY_4FV(ctx->Current.RasterColor, ctx->Current.Attrib[VERT_ATTRIB_COLOR0]); COPY_4FV(ctx->Current.RasterSecondaryColor, ctx->Current.Attrib[VERT_ATTRIB_COLOR1]); } else { ctx->Current.RasterIndex = ctx->Current.Index; } } /* compute raster distance */ if (ctx->Fog.FogCoordinateSource == GL_FOG_COORDINATE_EXT) ctx->Current.RasterDistance = ctx->Current.Attrib[VERT_ATTRIB_FOG][0]; else ctx->Current.RasterDistance = SQRTF( eye[0]*eye[0] + eye[1]*eye[1] + eye[2]*eye[2] ); /* apply projection matrix: clip = Proj * eye */ TRANSFORM_POINT( clip, ctx->ProjectionMatrixStack.Top->m, eye ); /* clip to view volume */ if (ctx->Transform.RasterPositionUnclipped) { /* GL_IBM_rasterpos_clip: only clip against Z */ if (viewclip_point_z(clip) == 0) { ctx->Current.RasterPosValid = GL_FALSE; return; } } else if (viewclip_point(clip) == 0) { /* Normal OpenGL behaviour */ ctx->Current.RasterPosValid = GL_FALSE; return; } /* clip to user clipping planes */ if (ctx->Transform.ClipPlanesEnabled && !userclip_point(ctx, clip)) { ctx->Current.RasterPosValid = GL_FALSE; return; } /* ndc = clip / W */ d = (clip[3] == 0.0F) ? 1.0F : 1.0F / clip[3]; ndc[0] = clip[0] * d; ndc[1] = clip[1] * d; ndc[2] = clip[2] * d; ctx->Current.RasterPos[0] = (ndc[0] * ctx->Viewport._WindowMap.m[MAT_SX] + ctx->Viewport._WindowMap.m[MAT_TX]); ctx->Current.RasterPos[1] = (ndc[1] * ctx->Viewport._WindowMap.m[MAT_SY] + ctx->Viewport._WindowMap.m[MAT_TY]); ctx->Current.RasterPos[2] = (ndc[2] * ctx->Viewport._WindowMap.m[MAT_SZ] + ctx->Viewport._WindowMap.m[MAT_TZ]) / ctx->DepthMaxF; ctx->Current.RasterPos[3] = clip[3]; ctx->Current.RasterPosValid = GL_TRUE; { GLuint texSet; for (texSet = 0; texSet < ctx->Const.MaxTextureCoordUnits; texSet++) { COPY_4FV( ctx->Current.RasterTexCoords[texSet], ctx->Current.Attrib[VERT_ATTRIB_TEX0 + texSet] ); } } } if (ctx->RenderMode==GL_SELECT) { _mesa_update_hitflag( ctx, ctx->Current.RasterPos[2] ); } } /** Calls _mesa_RasterPos4f() */ void GLAPIENTRY _mesa_RasterPos2d(GLdouble x, GLdouble y) { _mesa_RasterPos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F); } /** Calls _mesa_RasterPos4f() */ void GLAPIENTRY _mesa_RasterPos2f(GLfloat x, GLfloat y) { _mesa_RasterPos4f(x, y, 0.0F, 1.0F); } /** Calls _mesa_RasterPos4f() */ void GLAPIENTRY _mesa_RasterPos2i(GLint x, GLint y) { _mesa_RasterPos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F); } /** Calls _mesa_RasterPos4f() */ void GLAPIENTRY _mesa_RasterPos2s(GLshort x, GLshort y) { _mesa_RasterPos4f(x, y, 0.0F, 1.0F); } /** Calls _mesa_RasterPos4f() */ void GLAPIENTRY _mesa_RasterPos3d(GLdouble x, GLdouble y, GLdouble z) { _mesa_RasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F); } /** Calls _mesa_RasterPos4f() */ void GLAPIENTRY _mesa_RasterPos3f(GLfloat x, GLfloat y, GLfloat z) { _mesa_RasterPos4f(x, y, z, 1.0F); } /** Calls _mesa_RasterPos4f() */ void GLAPIENTRY _mesa_RasterPos3i(GLint x, GLint y, GLint z) { _mesa_RasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F); } /** Calls _mesa_RasterPos4f() */ void GLAPIENTRY _mesa_RasterPos3s(GLshort x, GLshort y, GLshort z) { _mesa_RasterPos4f(x, y, z, 1.0F); } /** Calls _mesa_RasterPos4f() */ void GLAPIENTRY _mesa_RasterPos4d(GLdouble x, GLdouble y, GLdouble z, GLdouble w) { _mesa_RasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w); } /** Calls raster_pos4f() */ void GLAPIENTRY _mesa_RasterPos4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w) { GET_CURRENT_CONTEXT(ctx); raster_pos4f(ctx, x, y, z, w); } /** Calls _mesa_RasterPos4f() */ void GLAPIENTRY _mesa_RasterPos4i(GLint x, GLint y, GLint z, GLint w) { _mesa_RasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w); } /** Calls _mesa_RasterPos4f() */ void GLAPIENTRY _mesa_RasterPos4s(GLshort x, GLshort y, GLshort z, GLshort w) { _mesa_RasterPos4f(x, y, z, w); } /** Calls _mesa_RasterPos4f() */ void GLAPIENTRY _mesa_RasterPos2dv(const GLdouble *v) { _mesa_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F); } /** Calls _mesa_RasterPos4f() */ void GLAPIENTRY _mesa_RasterPos2fv(const GLfloat *v) { _mesa_RasterPos4f(v[0], v[1], 0.0F, 1.0F); } /** Calls _mesa_RasterPos4f() */ void GLAPIENTRY _mesa_RasterPos2iv(const GLint *v) { _mesa_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F); } /** Calls _mesa_RasterPos4f() */ void GLAPIENTRY _mesa_RasterPos2sv(const GLshort *v) { _mesa_RasterPos4f(v[0], v[1], 0.0F, 1.0F); } /** Calls _mesa_RasterPos4f() */ void GLAPIENTRY _mesa_RasterPos3dv(const GLdouble *v) { _mesa_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F); } /** Calls _mesa_RasterPos4f() */ void GLAPIENTRY _mesa_RasterPos3fv(const GLfloat *v) { _mesa_RasterPos4f(v[0], v[1], v[2], 1.0F); } /** Calls _mesa_RasterPos4f() */ void GLAPIENTRY _mesa_RasterPos3iv(const GLint *v) { _mesa_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F); } /** Calls _mesa_RasterPos4f() */ void GLAPIENTRY _mesa_RasterPos3sv(const GLshort *v) { _mesa_RasterPos4f(v[0], v[1], v[2], 1.0F); } /** Calls _mesa_RasterPos4f() */ void GLAPIENTRY _mesa_RasterPos4dv(const GLdouble *v) { _mesa_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], (GLfloat) v[3]); } /** Calls _mesa_RasterPos4f() */ void GLAPIENTRY _mesa_RasterPos4fv(const GLfloat *v) { _mesa_RasterPos4f(v[0], v[1], v[2], v[3]); } /** Calls _mesa_RasterPos4f() */ void GLAPIENTRY _mesa_RasterPos4iv(const GLint *v) { _mesa_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], (GLfloat) v[3]); } /** Calls _mesa_RasterPos4f() */ void GLAPIENTRY _mesa_RasterPos4sv(const GLshort *v) { _mesa_RasterPos4f(v[0], v[1], v[2], v[3]); } /**********************************************************************/ /*** GL_ARB_window_pos / GL_MESA_window_pos ***/ /**********************************************************************/ #if FEATURE_windowpos /** * All glWindowPosMESA and glWindowPosARB commands call this function to * update the current raster position. */ static void window_pos3f(GLfloat x, GLfloat y, GLfloat z) { GET_CURRENT_CONTEXT(ctx); GLfloat z2; ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); FLUSH_CURRENT(ctx, 0); z2 = CLAMP(z, 0.0F, 1.0F) * (ctx->Viewport.Far - ctx->Viewport.Near) + ctx->Viewport.Near; /* set raster position */ ctx->Current.RasterPos[0] = x; ctx->Current.RasterPos[1] = y; ctx->Current.RasterPos[2] = z2; ctx->Current.RasterPos[3] = 1.0F; ctx->Current.RasterPosValid = GL_TRUE; if (ctx->Fog.FogCoordinateSource == GL_FOG_COORDINATE_EXT) ctx->Current.RasterDistance = ctx->Current.Attrib[VERT_ATTRIB_FOG][0]; else ctx->Current.RasterDistance = 0.0; /* raster color = current color or index */ if (ctx->Visual.rgbMode) { ctx->Current.RasterColor[0] = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][0], 0.0F, 1.0F); ctx->Current.RasterColor[1] = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][1], 0.0F, 1.0F); ctx->Current.RasterColor[2] = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][2], 0.0F, 1.0F); ctx->Current.RasterColor[3] = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][3], 0.0F, 1.0F); ctx->Current.RasterSecondaryColor[0] = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][0], 0.0F, 1.0F); ctx->Current.RasterSecondaryColor[1] = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][1], 0.0F, 1.0F); ctx->Current.RasterSecondaryColor[2] = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][2], 0.0F, 1.0F); ctx->Current.RasterSecondaryColor[3] = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][3], 0.0F, 1.0F); } else { ctx->Current.RasterIndex = ctx->Current.Index; } /* raster texcoord = current texcoord */ { GLuint texSet; for (texSet = 0; texSet < ctx->Const.MaxTextureCoordUnits; texSet++) { COPY_4FV( ctx->Current.RasterTexCoords[texSet], ctx->Current.Attrib[VERT_ATTRIB_TEX0 + texSet] ); } } if (ctx->RenderMode==GL_SELECT) { _mesa_update_hitflag( ctx, ctx->Current.RasterPos[2] ); } } /* This is just to support the GL_MESA_window_pos version */ static void window_pos4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w) { GET_CURRENT_CONTEXT(ctx); window_pos3f(x, y, z); ctx->Current.RasterPos[3] = w; } void GLAPIENTRY _mesa_WindowPos2dMESA(GLdouble x, GLdouble y) { window_pos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F); } void GLAPIENTRY _mesa_WindowPos2fMESA(GLfloat x, GLfloat y) { window_pos4f(x, y, 0.0F, 1.0F); } void GLAPIENTRY _mesa_WindowPos2iMESA(GLint x, GLint y) { window_pos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F); } void GLAPIENTRY _mesa_WindowPos2sMESA(GLshort x, GLshort y) { window_pos4f(x, y, 0.0F, 1.0F); } void GLAPIENTRY _mesa_WindowPos3dMESA(GLdouble x, GLdouble y, GLdouble z) { window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F); } void GLAPIENTRY _mesa_WindowPos3fMESA(GLfloat x, GLfloat y, GLfloat z) { window_pos4f(x, y, z, 1.0F); } void GLAPIENTRY _mesa_WindowPos3iMESA(GLint x, GLint y, GLint z) { window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F); } void GLAPIENTRY _mesa_WindowPos3sMESA(GLshort x, GLshort y, GLshort z) { window_pos4f(x, y, z, 1.0F); } void GLAPIENTRY _mesa_WindowPos4dMESA(GLdouble x, GLdouble y, GLdouble z, GLdouble w) { window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w); } void GLAPIENTRY _mesa_WindowPos4fMESA(GLfloat x, GLfloat y, GLfloat z, GLfloat w) { window_pos4f(x, y, z, w); } void GLAPIENTRY _mesa_WindowPos4iMESA(GLint x, GLint y, GLint z, GLint w) { window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w); } void GLAPIENTRY _mesa_WindowPos4sMESA(GLshort x, GLshort y, GLshort z, GLshort w) { window_pos4f(x, y, z, w); } void GLAPIENTRY _mesa_WindowPos2dvMESA(const GLdouble *v) { window_pos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F); } void GLAPIENTRY _mesa_WindowPos2fvMESA(const GLfloat *v) { window_pos4f(v[0], v[1], 0.0F, 1.0F); } void GLAPIENTRY _mesa_WindowPos2ivMESA(const GLint *v) { window_pos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F); } void GLAPIENTRY _mesa_WindowPos2svMESA(const GLshort *v) { window_pos4f(v[0], v[1], 0.0F, 1.0F); } void GLAPIENTRY _mesa_WindowPos3dvMESA(const GLdouble *v) { window_pos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F); } void GLAPIENTRY _mesa_WindowPos3fvMESA(const GLfloat *v) { window_pos4f(v[0], v[1], v[2], 1.0); } void GLAPIENTRY _mesa_WindowPos3ivMESA(const GLint *v) { window_pos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F); } void GLAPIENTRY _mesa_WindowPos3svMESA(const GLshort *v) { window_pos4f(v[0], v[1], v[2], 1.0F); } void GLAPIENTRY _mesa_WindowPos4dvMESA(const GLdouble *v) { window_pos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], (GLfloat) v[3]); } void GLAPIENTRY _mesa_WindowPos4fvMESA(const GLfloat *v) { window_pos4f(v[0], v[1], v[2], v[3]); } void GLAPIENTRY _mesa_WindowPos4ivMESA(const GLint *v) { window_pos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], (GLfloat) v[3]); } void GLAPIENTRY _mesa_WindowPos4svMESA(const GLshort *v) { window_pos4f(v[0], v[1], v[2], v[3]); } #endif #if 0 /* * OpenGL implementation of glWindowPos*MESA() */ void glWindowPos4fMESA( GLfloat x, GLfloat y, GLfloat z, GLfloat w ) { GLfloat fx, fy; /* Push current matrix mode and viewport attributes */ glPushAttrib( GL_TRANSFORM_BIT | GL_VIEWPORT_BIT ); /* Setup projection parameters */ glMatrixMode( GL_PROJECTION ); glPushMatrix(); glLoadIdentity(); glMatrixMode( GL_MODELVIEW ); glPushMatrix(); glLoadIdentity(); glDepthRange( z, z ); glViewport( (int) x - 1, (int) y - 1, 2, 2 ); /* set the raster (window) position */ fx = x - (int) x; fy = y - (int) y; glRasterPos4f( fx, fy, 0.0, w ); /* restore matrices, viewport and matrix mode */ glPopMatrix(); glMatrixMode( GL_PROJECTION ); glPopMatrix(); glPopAttrib(); } #endif /**********************************************************************/ /** \name Initialization */ /**********************************************************************/ /*@{*/ /** * Initialize the context current raster position information. * * \param ctx GL context. * * Initialize the current raster position information in * __GLcontextRec::Current, and adds the extension entry points to the * dispatcher. */ void _mesa_init_rastpos( GLcontext * ctx ) { int i; ASSIGN_4V( ctx->Current.RasterPos, 0.0, 0.0, 0.0, 1.0 ); ctx->Current.RasterDistance = 0.0; ASSIGN_4V( ctx->Current.RasterColor, 1.0, 1.0, 1.0, 1.0 ); ctx->Current.RasterIndex = 1.0; for (i=0; iCurrent.RasterTexCoords[i], 0.0, 0.0, 0.0, 1.0 ); ctx->Current.RasterPosValid = GL_TRUE; /* * For XFree86/DRI: tell libGL to add these functions to the dispatcher. * Basically, we should add all extension functions above offset 577. * This enables older libGL libraries to work with newer drivers that * have newer extensions. */ /* GL_ARB_window_pos aliases with GL_MESA_window_pos */ _glapi_add_entrypoint("glWindowPos2dARB", 513); _glapi_add_entrypoint("glWindowPos2dvARB", 514); _glapi_add_entrypoint("glWindowPos2fARB", 515); _glapi_add_entrypoint("glWindowPos2fvARB", 516); _glapi_add_entrypoint("glWindowPos2iARB", 517); _glapi_add_entrypoint("glWindowPos2ivARB", 518); _glapi_add_entrypoint("glWindowPos2sARB", 519); _glapi_add_entrypoint("glWindowPos2svARB", 520); _glapi_add_entrypoint("glWindowPos3dARB", 521); _glapi_add_entrypoint("glWindowPos3dvARB", 522); _glapi_add_entrypoint("glWindowPos3fARB", 523); _glapi_add_entrypoint("glWindowPos3fvARB", 524); _glapi_add_entrypoint("glWindowPos3iARB", 525); _glapi_add_entrypoint("glWindowPos3ivARB", 526); _glapi_add_entrypoint("glWindowPos3sARB", 527); _glapi_add_entrypoint("glWindowPos3svARB", 528); } /*@}*/