/* * Mesa 3-D graphics library * Version: 6.3 * * Copyright (C) 1999-2005 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /** * \file matrix.c * Matrix operations. * * \note * -# 4x4 transformation matrices are stored in memory in column major order. * -# Points/vertices are to be thought of as column vectors. * -# Transformation of a point p by a matrix M is: p' = M * p */ #include "glheader.h" #include "imports.h" #include "context.h" #include "enums.h" #include "macros.h" #include "matrix.h" #include "mtypes.h" #include "math/m_matrix.h" #include "math/m_xform.h" /** * Apply a perspective projection matrix. * * \param left left clipping plane coordinate. * \param right right clipping plane coordinate. * \param bottom bottom clipping plane coordinate. * \param top top clipping plane coordinate. * \param nearval distance to the near clipping plane. * \param farval distance to the far clipping plane. * * \sa glFrustum(). * * Flushes vertices and validates parameters. Calls _math_matrix_frustum() with * the top matrix of the current matrix stack and sets * __GLcontextRec::NewState. */ void GLAPIENTRY _mesa_Frustum( GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble nearval, GLdouble farval ) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); if (nearval <= 0.0 || farval <= 0.0 || nearval == farval || left == right || top == bottom) { _mesa_error( ctx, GL_INVALID_VALUE, "glFrustum" ); return; } _math_matrix_frustum( ctx->CurrentStack->Top, (GLfloat) left, (GLfloat) right, (GLfloat) bottom, (GLfloat) top, (GLfloat) nearval, (GLfloat) farval ); ctx->NewState |= ctx->CurrentStack->DirtyFlag; } /** * Apply an orthographic projection matrix. * * \param left left clipping plane coordinate. * \param right right clipping plane coordinate. * \param bottom bottom clipping plane coordinate. * \param top top clipping plane coordinate. * \param nearval distance to the near clipping plane. * \param farval distance to the far clipping plane. * * \sa glOrtho(). * * Flushes vertices and validates parameters. Calls _math_matrix_ortho() with * the top matrix of the current matrix stack and sets * __GLcontextRec::NewState. */ void GLAPIENTRY _mesa_Ortho( GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble nearval, GLdouble farval ) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); if (MESA_VERBOSE & VERBOSE_API) _mesa_debug(ctx, "glOrtho(%f, %f, %f, %f, %f, %f)\n", left, right, bottom, top, nearval, farval); if (left == right || bottom == top || nearval == farval) { _mesa_error( ctx, GL_INVALID_VALUE, "glOrtho" ); return; } _math_matrix_ortho( ctx->CurrentStack->Top, (GLfloat) left, (GLfloat) right, (GLfloat) bottom, (GLfloat) top, (GLfloat) nearval, (GLfloat) farval ); ctx->NewState |= ctx->CurrentStack->DirtyFlag; } /** * Set the current matrix stack. * * \param mode matrix stack. * * \sa glMatrixMode(). * * Flushes the vertices, validates the parameter and updates * __GLcontextRec::CurrentStack and gl_transform_attrib::MatrixMode with the * specified matrix stack. */ void GLAPIENTRY _mesa_MatrixMode( GLenum mode ) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END(ctx); if (ctx->Transform.MatrixMode == mode && mode != GL_TEXTURE) return; FLUSH_VERTICES(ctx, _NEW_TRANSFORM); switch (mode) { case GL_MODELVIEW: ctx->CurrentStack = &ctx->ModelviewMatrixStack; break; case GL_PROJECTION: ctx->CurrentStack = &ctx->ProjectionMatrixStack; break; case GL_TEXTURE: ctx->CurrentStack = &ctx->TextureMatrixStack[ctx->Texture.CurrentUnit]; break; case GL_COLOR: ctx->CurrentStack = &ctx->ColorMatrixStack; break; case GL_MATRIX0_NV: case GL_MATRIX1_NV: case GL_MATRIX2_NV: case GL_MATRIX3_NV: case GL_MATRIX4_NV: case GL_MATRIX5_NV: case GL_MATRIX6_NV: case GL_MATRIX7_NV: if (ctx->Extensions.NV_vertex_program) { ctx->CurrentStack = &ctx->ProgramMatrixStack[mode - GL_MATRIX0_NV]; } else { _mesa_error( ctx, GL_INVALID_ENUM, "glMatrixMode(mode)" ); return; } break; case GL_MATRIX0_ARB: case GL_MATRIX1_ARB: case GL_MATRIX2_ARB: case GL_MATRIX3_ARB: case GL_MATRIX4_ARB: case GL_MATRIX5_ARB: case GL_MATRIX6_ARB: case GL_MATRIX7_ARB: if (ctx->Extensions.ARB_vertex_program || ctx->Extensions.ARB_fragment_program) { const GLuint m = mode - GL_MATRIX0_ARB; if (m > ctx->Const.MaxProgramMatrices) { _mesa_error(ctx, GL_INVALID_ENUM, "glMatrixMode(GL_MATRIX%d_ARB)", m); return; } ctx->CurrentStack = &ctx->ProgramMatrixStack[m]; } else { _mesa_error( ctx, GL_INVALID_ENUM, "glMatrixMode(mode)" ); return; } break; default: _mesa_error( ctx, GL_INVALID_ENUM, "glMatrixMode(mode)" ); return; } ctx->Transform.MatrixMode = mode; } /** * Push the current matrix stack. * * \sa glPushMatrix(). * * Verifies the current matrix stack is not full, and duplicates the top-most * matrix in the stack. Marks __GLcontextRec::NewState with the stack dirty * flag. */ void GLAPIENTRY _mesa_PushMatrix( void ) { GET_CURRENT_CONTEXT(ctx); struct matrix_stack *stack = ctx->CurrentStack; ASSERT_OUTSIDE_BEGIN_END(ctx); if (MESA_VERBOSE&VERBOSE_API) _mesa_debug(ctx, "glPushMatrix %s\n", _mesa_lookup_enum_by_nr(ctx->Transform.MatrixMode)); if (stack->Depth + 1 >= stack->MaxDepth) { if (ctx->Transform.MatrixMode == GL_TEXTURE) { _mesa_error(ctx, GL_STACK_OVERFLOW, "glPushMatrix(mode=GL_TEXTURE, unit=%d)", ctx->Texture.CurrentUnit); } else { _mesa_error(ctx, GL_STACK_OVERFLOW, "glPushMatrix(mode=%s)", _mesa_lookup_enum_by_nr(ctx->Transform.MatrixMode)); } return; } _math_matrix_copy( &stack->Stack[stack->Depth + 1], &stack->Stack[stack->Depth] ); stack->Depth++; stack->Top = &(stack->Stack[stack->Depth]); ctx->NewState |= stack->DirtyFlag; } /** * Pop the current matrix stack. * * \sa glPopMatrix(). * * Flushes the vertices, verifies the current matrix stack is not empty, and * moves the stack head down. Marks __GLcontextRec::NewState with the dirty * stack flag. */ void GLAPIENTRY _mesa_PopMatrix( void ) { GET_CURRENT_CONTEXT(ctx); struct matrix_stack *stack = ctx->CurrentStack; ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); if (MESA_VERBOSE&VERBOSE_API) _mesa_debug(ctx, "glPopMatrix %s\n", _mesa_lookup_enum_by_nr(ctx->Transform.MatrixMode)); if (stack->Depth == 0) { if (ctx->Transform.MatrixMode == GL_TEXTURE) { _mesa_error(ctx, GL_STACK_UNDERFLOW, "glPopMatrix(mode=GL_TEXTURE, unit=%d)", ctx->Texture.CurrentUnit); } else { _mesa_error(ctx, GL_STACK_UNDERFLOW, "glPopMatrix(mode=%s)", _mesa_lookup_enum_by_nr(ctx->Transform.MatrixMode)); } return; } stack->Depth--; stack->Top = &(stack->Stack[stack->Depth]); ctx->NewState |= stack->DirtyFlag; } /** * Replace the current matrix with the identity matrix. * * \sa glLoadIdentity(). * * Flushes the vertices and calls _math_matrix_set_identity() with the top-most * matrix in the current stack. Marks __GLcontextRec::NewState with the stack * dirty flag. */ void GLAPIENTRY _mesa_LoadIdentity( void ) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); if (MESA_VERBOSE & VERBOSE_API) _mesa_debug(ctx, "glLoadIdentity()"); _math_matrix_set_identity( ctx->CurrentStack->Top ); ctx->NewState |= ctx->CurrentStack->DirtyFlag; } /** * Replace the current matrix with a given matrix. * * \param m matrix. * * \sa glLoadMatrixf(). * * Flushes the vertices and calls _math_matrix_loadf() with the top-most matrix * in the current stack and the given matrix. Marks __GLcontextRec::NewState * with the dirty stack flag. */ void GLAPIENTRY _mesa_LoadMatrixf( const GLfloat *m ) { GET_CURRENT_CONTEXT(ctx); if (!m) return; if (MESA_VERBOSE & VERBOSE_API) _mesa_debug(ctx, "glLoadMatrix(%f %f %f %f, %f %f %f %f, %f %f %f %f, %f %f %f %f\n", m[0], m[4], m[8], m[12], m[1], m[5], m[9], m[13], m[2], m[6], m[10], m[14], m[3], m[7], m[11], m[15]); ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); _math_matrix_loadf( ctx->CurrentStack->Top, m ); ctx->NewState |= ctx->CurrentStack->DirtyFlag; } /** * Multiply the current matrix with a given matrix. * * \param m matrix. * * \sa glMultMatrixf(). * * Flushes the vertices and calls _math_matrix_mul_floats() with the top-most * matrix in the current stack and the given matrix. Marks * __GLcontextRec::NewState with the dirty stack flag. */ void GLAPIENTRY _mesa_MultMatrixf( const GLfloat *m ) { GET_CURRENT_CONTEXT(ctx); if (!m) return; if (MESA_VERBOSE & VERBOSE_API) _mesa_debug(ctx, "glMultMatrix(%f %f %f %f, %f %f %f %f, %f %f %f %f, %f %f %f %f\n", m[0], m[4], m[8], m[12], m[1], m[5], m[9], m[13], m[2], m[6], m[10], m[14], m[3], m[7], m[11], m[15]); ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); _math_matrix_mul_floats( ctx->CurrentStack->Top, m ); ctx->NewState |= ctx->CurrentStack->DirtyFlag; } /** * Multiply the current matrix with a rotation matrix. * * \param angle angle of rotation, in degrees. * \param x rotation vector x coordinate. * \param y rotation vector y coordinate. * \param z rotation vector z coordinate. * * \sa glRotatef(). * * Flushes the vertices and calls _math_matrix_rotate() with the top-most * matrix in the current stack and the given parameters. Marks * __GLcontextRec::NewState with the dirty stack flag. */ void GLAPIENTRY _mesa_Rotatef( GLfloat angle, GLfloat x, GLfloat y, GLfloat z ) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); if (angle != 0.0F) { _math_matrix_rotate( ctx->CurrentStack->Top, angle, x, y, z); ctx->NewState |= ctx->CurrentStack->DirtyFlag; } } /** * Multiply the current matrix with a general scaling matrix. * * \param x x axis scale factor. * \param y y axis scale factor. * \param z z axis scale factor. * * \sa glScalef(). * * Flushes the vertices and calls _math_matrix_scale() with the top-most * matrix in the current stack and the given parameters. Marks * __GLcontextRec::NewState with the dirty stack flag. */ void GLAPIENTRY _mesa_Scalef( GLfloat x, GLfloat y, GLfloat z ) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); _math_matrix_scale( ctx->CurrentStack->Top, x, y, z); ctx->NewState |= ctx->CurrentStack->DirtyFlag; } /** * Multiply the current matrix with a general scaling matrix. * * \param x translation vector x coordinate. * \param y translation vector y coordinate. * \param z translation vector z coordinate. * * \sa glTranslatef(). * * Flushes the vertices and calls _math_matrix_translate() with the top-most * matrix in the current stack and the given parameters. Marks * __GLcontextRec::NewState with the dirty stack flag. */ void GLAPIENTRY _mesa_Translatef( GLfloat x, GLfloat y, GLfloat z ) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); _math_matrix_translate( ctx->CurrentStack->Top, x, y, z); ctx->NewState |= ctx->CurrentStack->DirtyFlag; } #if _HAVE_FULL_GL void GLAPIENTRY _mesa_LoadMatrixd( const GLdouble *m ) { GLint i; GLfloat f[16]; if (!m) return; for (i = 0; i < 16; i++) f[i] = (GLfloat) m[i]; _mesa_LoadMatrixf(f); } void GLAPIENTRY _mesa_MultMatrixd( const GLdouble *m ) { GLint i; GLfloat f[16]; if (!m) return; for (i = 0; i < 16; i++) f[i] = (GLfloat) m[i]; _mesa_MultMatrixf( f ); } void GLAPIENTRY _mesa_Rotated( GLdouble angle, GLdouble x, GLdouble y, GLdouble z ) { _mesa_Rotatef((GLfloat) angle, (GLfloat) x, (GLfloat) y, (GLfloat) z); } void GLAPIENTRY _mesa_Scaled( GLdouble x, GLdouble y, GLdouble z ) { _mesa_Scalef((GLfloat) x, (GLfloat) y, (GLfloat) z); } void GLAPIENTRY _mesa_Translated( GLdouble x, GLdouble y, GLdouble z ) { _mesa_Translatef((GLfloat) x, (GLfloat) y, (GLfloat) z); } #endif #if _HAVE_FULL_GL void GLAPIENTRY _mesa_LoadTransposeMatrixfARB( const GLfloat *m ) { GLfloat tm[16]; if (!m) return; _math_transposef(tm, m); _mesa_LoadMatrixf(tm); } void GLAPIENTRY _mesa_LoadTransposeMatrixdARB( const GLdouble *m ) { GLfloat tm[16]; if (!m) return; _math_transposefd(tm, m); _mesa_LoadMatrixf(tm); } void GLAPIENTRY _mesa_MultTransposeMatrixfARB( const GLfloat *m ) { GLfloat tm[16]; if (!m) return; _math_transposef(tm, m); _mesa_MultMatrixf(tm); } void GLAPIENTRY _mesa_MultTransposeMatrixdARB( const GLdouble *m ) { GLfloat tm[16]; if (!m) return; _math_transposefd(tm, m); _mesa_MultMatrixf(tm); } #endif /** * Set the viewport. * * \param x, y coordinates of the lower-left corner of the viewport rectangle. * \param width width of the viewport rectangle. * \param height height of the viewport rectangle. * * \sa Called via glViewport() or display list execution. * * Flushes the vertices and calls _mesa_set_viewport() with the given * parameters. */ void GLAPIENTRY _mesa_Viewport( GLint x, GLint y, GLsizei width, GLsizei height ) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); _mesa_set_viewport(ctx, x, y, width, height); } /** * Set new viewport parameters and update derived state (the _WindowMap * matrix). Usually called from _mesa_Viewport(). * * \param ctx GL context. * \param x, y coordinates of the lower left corner of the viewport rectangle. * \param width width of the viewport rectangle. * \param height height of the viewport rectangle. * * Verifies the parameters, clamps them to the implementation dependent range * and updates __GLcontextRec::Viewport. Computes the scale and bias values for * the drivers and notifies the driver via the dd_function_table::Viewport * callback. */ void _mesa_set_viewport( GLcontext *ctx, GLint x, GLint y, GLsizei width, GLsizei height ) { const GLfloat depthMax = ctx->DrawBuffer->_DepthMaxF; const GLfloat n = ctx->Viewport.Near; const GLfloat f = ctx->Viewport.Far; ASSERT(depthMax > 0); if (MESA_VERBOSE & VERBOSE_API) _mesa_debug(ctx, "glViewport %d %d %d %d\n", x, y, width, height); if (width < 0 || height < 0) { _mesa_error( ctx, GL_INVALID_VALUE, "glViewport(%d, %d, %d, %d)", x, y, width, height ); return; } /* clamp width, and height to implementation dependent range */ width = CLAMP( width, 1, ctx->Const.MaxViewportWidth ); height = CLAMP( height, 1, ctx->Const.MaxViewportHeight ); /* Save viewport */ ctx->Viewport.X = x; ctx->Viewport.Width = width; ctx->Viewport.Y = y; ctx->Viewport.Height = height; /* XXX send transposed width/height to Driver.Viewport() below??? */ if (ctx->_RotateMode) { GLint tmp, tmps; tmp = x; x = y; y = tmp; tmps = width; width = height; height = tmps; } /* Compute scale and bias values. This is really driver-specific * and should be maintained elsewhere if at all. * NOTE: RasterPos uses this. */ _math_matrix_viewport(&ctx->Viewport._WindowMap, x, y, width, height, n, f, depthMax); ctx->NewState |= _NEW_VIEWPORT; if (ctx->Driver.Viewport) { /* Many drivers will use this call to check for window size changes * and reallocate the z/stencil/accum/etc buffers if needed. */ (*ctx->Driver.Viewport)( ctx, x, y, width, height ); } } #if _HAVE_FULL_GL void GLAPIENTRY _mesa_DepthRange( GLclampd nearval, GLclampd farval ) { /* * nearval - specifies mapping of the near clipping plane to window * coordinates, default is 0 * farval - specifies mapping of the far clipping plane to window * coordinates, default is 1 * * After clipping and div by w, z coords are in -1.0 to 1.0, * corresponding to near and far clipping planes. glDepthRange * specifies a linear mapping of the normalized z coords in * this range to window z coords. */ GLfloat depthMax; GLfloat n, f; GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx); depthMax = ctx->DrawBuffer->_DepthMaxF; if (MESA_VERBOSE&VERBOSE_API) _mesa_debug(ctx, "glDepthRange %f %f\n", nearval, farval); n = (GLfloat) CLAMP( nearval, 0.0, 1.0 ); f = (GLfloat) CLAMP( farval, 0.0, 1.0 ); ctx->Viewport.Near = n; ctx->Viewport.Far = f; ctx->Viewport._WindowMap.m[MAT_SZ] = depthMax * ((f - n) / 2.0F); ctx->Viewport._WindowMap.m[MAT_TZ] = depthMax * ((f - n) / 2.0F + n); ctx->NewState |= _NEW_VIEWPORT; if (ctx->Driver.DepthRange) { (*ctx->Driver.DepthRange)( ctx, nearval, farval ); } } #endif /**********************************************************************/ /** \name State management */ /*@{*/ /** * Update the projection matrix stack. * * \param ctx GL context. * * Calls _math_matrix_analyse() with the top-matrix of the projection matrix * stack, and recomputes user clip positions if necessary. * * \note This routine references __GLcontextRec::Tranform attribute values to * compute userclip positions in clip space, but is only called on * _NEW_PROJECTION. The _mesa_ClipPlane() function keeps these values up to * date across changes to the __GLcontextRec::Transform attributes. */ static void update_projection( GLcontext *ctx ) { _math_matrix_analyse( ctx->ProjectionMatrixStack.Top ); #if FEATURE_userclip /* Recompute clip plane positions in clipspace. This is also done * in _mesa_ClipPlane(). */ if (ctx->Transform.ClipPlanesEnabled) { GLuint p; for (p = 0; p < ctx->Const.MaxClipPlanes; p++) { if (ctx->Transform.ClipPlanesEnabled & (1 << p)) { _mesa_transform_vector( ctx->Transform._ClipUserPlane[p], ctx->Transform.EyeUserPlane[p], ctx->ProjectionMatrixStack.Top->inv ); } } } #endif } /** * Calculate the combined modelview-projection matrix. * * \param ctx GL context. * * Multiplies the top matrices of the projection and model view stacks into * __GLcontextRec::_ModelProjectMatrix via _math_matrix_mul_matrix() and * analyzes the resulting matrix via _math_matrix_analyse(). */ static void calculate_model_project_matrix( GLcontext *ctx ) { _math_matrix_mul_matrix( &ctx->_ModelProjectMatrix, ctx->ProjectionMatrixStack.Top, ctx->ModelviewMatrixStack.Top ); _math_matrix_analyse( &ctx->_ModelProjectMatrix ); } /** * Updates the combined modelview-projection matrix. * * \param ctx GL context. * \param new_state new state bit mask. * * If there is a new model view matrix then analyzes it. If there is a new * projection matrix, updates it. Finally calls * calculate_model_project_matrix() to recalculate the modelview-projection * matrix. */ void _mesa_update_modelview_project( GLcontext *ctx, GLuint new_state ) { if (new_state & _NEW_MODELVIEW) { _math_matrix_analyse( ctx->ModelviewMatrixStack.Top ); /* Bring cull position uptodate. */ TRANSFORM_POINT3( ctx->Transform.CullObjPos, ctx->ModelviewMatrixStack.Top->inv, ctx->Transform.CullEyePos ); } if (new_state & _NEW_PROJECTION) update_projection( ctx ); /* Keep ModelviewProject uptodate always to allow tnl * implementations that go model->clip even when eye is required. */ calculate_model_project_matrix(ctx); } /*@}*/ /**********************************************************************/ /** Matrix stack initialization */ /*@{*/ /** * Initialize a matrix stack. * * \param stack matrix stack. * \param maxDepth maximum stack depth. * \param dirtyFlag dirty flag. * * Allocates an array of \p maxDepth elements for the matrix stack and calls * _math_matrix_ctr() and _math_matrix_alloc_inv() for each element to * initialize it. */ static void init_matrix_stack( struct matrix_stack *stack, GLuint maxDepth, GLuint dirtyFlag ) { GLuint i; stack->Depth = 0; stack->MaxDepth = maxDepth; stack->DirtyFlag = dirtyFlag; /* The stack */ stack->Stack = (GLmatrix *) CALLOC(maxDepth * sizeof(GLmatrix)); for (i = 0; i < maxDepth; i++) { _math_matrix_ctr(&stack->Stack[i]); _math_matrix_alloc_inv(&stack->Stack[i]); } stack->Top = stack->Stack; } /** * Free matrix stack. * * \param stack matrix stack. * * Calls _math_matrix_dtr() for each element of the matrix stack and * frees the array. */ static void free_matrix_stack( struct matrix_stack *stack ) { GLuint i; for (i = 0; i < stack->MaxDepth; i++) { _math_matrix_dtr(&stack->Stack[i]); } FREE(stack->Stack); stack->Stack = stack->Top = NULL; } /*@}*/ /**********************************************************************/ /** \name Initialization */ /*@{*/ /** * Initialize the context matrix data. * * \param ctx GL context. * * Initializes each of the matrix stacks and the combined modelview-projection * matrix. */ void _mesa_init_matrix( GLcontext * ctx ) { GLint i; /* Initialize matrix stacks */ init_matrix_stack(&ctx->ModelviewMatrixStack, MAX_MODELVIEW_STACK_DEPTH, _NEW_MODELVIEW); init_matrix_stack(&ctx->ProjectionMatrixStack, MAX_PROJECTION_STACK_DEPTH, _NEW_PROJECTION); init_matrix_stack(&ctx->ColorMatrixStack, MAX_COLOR_STACK_DEPTH, _NEW_COLOR_MATRIX); for (i = 0; i < MAX_TEXTURE_UNITS; i++) init_matrix_stack(&ctx->TextureMatrixStack[i], MAX_TEXTURE_STACK_DEPTH, _NEW_TEXTURE_MATRIX); for (i = 0; i < MAX_PROGRAM_MATRICES; i++) init_matrix_stack(&ctx->ProgramMatrixStack[i], MAX_PROGRAM_MATRIX_STACK_DEPTH, _NEW_TRACK_MATRIX); ctx->CurrentStack = &ctx->ModelviewMatrixStack; /* Init combined Modelview*Projection matrix */ _math_matrix_ctr( &ctx->_ModelProjectMatrix ); } /** * Free the context matrix data. * * \param ctx GL context. * * Frees each of the matrix stacks and the combined modelview-projection * matrix. */ void _mesa_free_matrix_data( GLcontext *ctx ) { GLint i; free_matrix_stack(&ctx->ModelviewMatrixStack); free_matrix_stack(&ctx->ProjectionMatrixStack); free_matrix_stack(&ctx->ColorMatrixStack); for (i = 0; i < MAX_TEXTURE_UNITS; i++) free_matrix_stack(&ctx->TextureMatrixStack[i]); for (i = 0; i < MAX_PROGRAM_MATRICES; i++) free_matrix_stack(&ctx->ProgramMatrixStack[i]); /* combined Modelview*Projection matrix */ _math_matrix_dtr( &ctx->_ModelProjectMatrix ); } /** * Initialize the context transform attribute group. * * \param ctx GL context. * * \todo Move this to a new file with other 'transform' routines. */ void _mesa_init_transform( GLcontext *ctx ) { GLint i; /* Transformation group */ ctx->Transform.MatrixMode = GL_MODELVIEW; ctx->Transform.Normalize = GL_FALSE; ctx->Transform.RescaleNormals = GL_FALSE; ctx->Transform.RasterPositionUnclipped = GL_FALSE; for (i=0;iTransform.EyeUserPlane[i], 0.0, 0.0, 0.0, 0.0 ); } ctx->Transform.ClipPlanesEnabled = 0; ASSIGN_4V( ctx->Transform.CullObjPos, 0.0, 0.0, 1.0, 0.0 ); ASSIGN_4V( ctx->Transform.CullEyePos, 0.0, 0.0, 1.0, 0.0 ); } /** * Initialize the context viewport attribute group. * * \param ctx GL context. * * \todo Move this to a new file with other 'viewport' routines. */ void _mesa_init_viewport( GLcontext *ctx ) { GLfloat depthMax = 65535.0F; /* sorf of arbitrary */ /* Viewport group */ ctx->Viewport.X = 0; ctx->Viewport.Y = 0; ctx->Viewport.Width = 0; ctx->Viewport.Height = 0; ctx->Viewport.Near = 0.0; ctx->Viewport.Far = 1.0; _math_matrix_ctr(&ctx->Viewport._WindowMap); _math_matrix_viewport(&ctx->Viewport._WindowMap, 0, 0, 0, 0, 0.0F, 1.0F, depthMax); } /** * Free the context viewport attribute group data. * * \param ctx GL context. * * \todo Move this to a new file with other 'viewport' routines. */ void _mesa_free_viewport_data( GLcontext *ctx ) { _math_matrix_dtr(&ctx->Viewport._WindowMap); } /*@}*/