/* * (C) Copyright IBM Corporation 2004 * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * IBM AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ /** * \file via_texcombine.c * Calculate texture combine hardware state. * * \author Ian Romanick */ #include #include "glheader.h" #include "context.h" #include "macros.h" #include "colormac.h" #include "enums.h" #include "via_context.h" #include "via_state.h" #include "via_tex.h" #include "via_3d_reg.h" #define VIA_USE_ALPHA (HC_XTC_Adif - HC_XTC_Dif) #define INPUT_A_SHIFT 14 #define INPUT_B_SHIFT 7 #define INPUT_C_SHIFT 0 #define INPUT_CBias_SHIFT 14 #define CONST_ONE (HC_XTC_0 | HC_XTC_InvTOPC) static const unsigned color_operand_modifier[4] = { 0, HC_XTC_InvTOPC, VIA_USE_ALPHA, VIA_USE_ALPHA | HC_XTC_InvTOPC, }; static const unsigned alpha_operand_modifier[2] = { 0, HC_XTA_InvTOPA }; static const unsigned bias_alpha_operand_modifier[2] = { 0, HC_HTXnTBLAbias_Inv }; static const unsigned c_shift_table[3] = { HC_HTXnTBLCshift_No, HC_HTXnTBLCshift_1, HC_HTXnTBLCshift_2 }; static const unsigned a_shift_table[3] = { HC_HTXnTBLAshift_No, HC_HTXnTBLAshift_1, HC_HTXnTBLAshift_2 }; /** * Calculate the hardware state for the specified texture combine mode * * \bug * All forms of DOT3 bumpmapping are completely untested, and are most * likely wrong. KW: Looks like it will never be quite right as the * hardware seems to experience overflow in color calculation at the * 4x shift levels, which need to be programed for DOT3. Maybe newer * hardware fixes these issues. * * \bug * KW: needs attention to the case where texunit 1 is enabled but * texunit 0 is not. */ GLboolean viaTexCombineState( struct via_context *vmesa, const struct gl_tex_env_combine_state * combine, unsigned unit ) { unsigned color_arg[3]; unsigned alpha_arg[3]; unsigned bias_alpha_arg[3]; unsigned color = HC_HTXnTBLCsat_MASK; unsigned alpha = HC_HTXnTBLAsat_MASK; unsigned bias = 0; unsigned op = 0; unsigned a_shift = combine->ScaleShiftA; unsigned c_shift = combine->ScaleShiftRGB; unsigned i; unsigned constant_color[3]; unsigned ordered_constant_color[4]; unsigned constant_alpha[3]; unsigned bias_alpha = 0; unsigned abc_alpha = 0; const struct gl_texture_unit * texUnit = &vmesa->glCtx->Texture.Unit[unit]; unsigned env_color[4]; /* It seems that the color clamping can be overwhelmed at the 4x * scale settings, necessitating this fallback: */ if (c_shift == 2 || a_shift == 2) { return GL_FALSE; } CLAMPED_FLOAT_TO_UBYTE(env_color[0], texUnit->EnvColor[0]); CLAMPED_FLOAT_TO_UBYTE(env_color[1], texUnit->EnvColor[1]); CLAMPED_FLOAT_TO_UBYTE(env_color[2], texUnit->EnvColor[2]); CLAMPED_FLOAT_TO_UBYTE(env_color[3], texUnit->EnvColor[3]); (void) memset( constant_color, 0, sizeof( constant_color ) ); (void) memset( ordered_constant_color, 0, sizeof( ordered_constant_color ) ); (void) memset( constant_alpha, 0, sizeof( constant_alpha ) ); for ( i = 0 ; i < combine->_NumArgsRGB ; i++ ) { const GLint op = combine->OperandRGB[i] - GL_SRC_COLOR; switch ( combine->SourceRGB[i] ) { case GL_TEXTURE: color_arg[i] = HC_XTC_Tex; color_arg[i] += color_operand_modifier[op]; break; case GL_CONSTANT: color_arg[i] = HC_XTC_HTXnTBLRC; switch( op ) { case 0: /* GL_SRC_COLOR */ constant_color[i] = ((env_color[0] << 16) | (env_color[1] << 8) | env_color[2]); break; case 1: /* GL_ONE_MINUS_SRC_COLOR */ constant_color[i] = ~((env_color[0] << 16) | (env_color[1] << 8) | env_color[2]) & 0x00ffffff; break; case 2: /* GL_SRC_ALPHA */ constant_color[i] = ((env_color[3] << 16) | (env_color[3] << 8) | env_color[3]); break; case 3: /* GL_ONE_MINUS_SRC_ALPHA */ constant_color[i] = ~((env_color[3] << 16) | (env_color[3] << 8) | env_color[3]) & 0x00ffffff; break; } break; case GL_PRIMARY_COLOR: color_arg[i] = HC_XTC_Dif; color_arg[i] += color_operand_modifier[op]; break; case GL_PREVIOUS: color_arg[i] = (unit == 0) ? HC_XTC_Dif : HC_XTC_Cur; color_arg[i] += color_operand_modifier[op]; break; } } /* On the Unichrome, all combine operations take on some form of: * * (xA * (xB op xC) + xBias) << xShift * * 'op' can be selected as add, subtract, min, max, or mask. The min, max * and mask modes are currently unused. With the exception of DOT3, all * standard GL_COMBINE modes can be implemented simply by selecting the * correct inputs for A, B, C, and Bias and the correct operation for op. * * NOTE: xBias (when read from the constant registers) is signed, * and scaled to fit -255..255 in 8 bits, ie 0x1 == 2. */ switch( combine->ModeRGB ) { /* Ca = 1.0, Cb = arg0, Cc = 0, Cbias = 0 */ case GL_REPLACE: color |= ((CONST_ONE << INPUT_A_SHIFT) | (color_arg[0] << INPUT_B_SHIFT)); ordered_constant_color[1] = constant_color[0]; break; /* Ca = arg[0], Cb = arg[1], Cc = 0, Cbias = 0 */ case GL_MODULATE: color |= ((color_arg[0] << INPUT_A_SHIFT) | (color_arg[1] << INPUT_B_SHIFT)); ordered_constant_color[0] = constant_color[0]; ordered_constant_color[1] = constant_color[1]; break; /* Ca = 1.0, Cb = arg[0], Cc = arg[1], Cbias = 0 */ case GL_ADD: case GL_SUBTRACT: if ( combine->ModeRGB == GL_SUBTRACT ) { op |= HC_HTXnTBLCop_Sub; } color |= ((CONST_ONE << INPUT_A_SHIFT) | (color_arg[0] << INPUT_B_SHIFT) | (color_arg[1] << INPUT_C_SHIFT)); ordered_constant_color[1] = constant_color[0]; ordered_constant_color[2] = constant_color[1]; break; /* Ca = 1.0, Cb = arg[0], Cc = arg[1], Cbias = -0.5 */ case GL_ADD_SIGNED: color |= ((CONST_ONE << INPUT_A_SHIFT) | (color_arg[0] << INPUT_B_SHIFT) | (color_arg[1] << INPUT_C_SHIFT)); bias |= HC_HTXnTBLCbias_HTXnTBLRC; ordered_constant_color[1] = constant_color[0]; ordered_constant_color[2] = constant_color[1]; ordered_constant_color[3] = 0x00bfbfbf; /* -.5 */ break; /* Ca = arg[2], Cb = arg[0], Cc = arg[1], Cbias = arg[1] */ case GL_INTERPOLATE: op |= HC_HTXnTBLCop_Sub; color |= ((color_arg[2] << INPUT_A_SHIFT) | (color_arg[0] << INPUT_B_SHIFT) | (color_arg[1] << INPUT_C_SHIFT)); bias |= (color_arg[1] << INPUT_CBias_SHIFT); ordered_constant_color[0] = constant_color[2]; ordered_constant_color[1] = constant_color[0]; ordered_constant_color[2] = constant_color[1]; ordered_constant_color[3] = (constant_color[1] >> 1) & 0x7f7f7f; break; #if 0 /* At this point this code is completely untested. It appears that the * Unichrome has the same limitation as the Radeon R100. The only * supported post-scale when doing DOT3 bumpmapping is 1x. */ case GL_DOT3_RGB_EXT: case GL_DOT3_RGBA_EXT: case GL_DOT3_RGB: case GL_DOT3_RGBA: c_shift = 2; a_shift = 2; color |= ((color_arg[0] << INPUT_A_SHIFT) | (color_arg[1] << INPUT_B_SHIFT)); op |= HC_HTXnTBLDOT4; break; #endif default: assert(0); break; } /* The alpha blend stage has the annoying quirk of not having a * hard-wired 0 input, like the color stage. As a result, we have * to program the constant register with 0 and use that as our * 0 input. * * (xA * (xB op xC) + xBias) << xShift * */ for ( i = 0 ; i < combine->_NumArgsA ; i++ ) { const GLint op = combine->OperandA[i] - GL_SRC_ALPHA; switch ( combine->SourceA[i] ) { case GL_TEXTURE: alpha_arg[i] = HC_XTA_Atex; alpha_arg[i] += alpha_operand_modifier[op]; bias_alpha_arg[i] = HC_HTXnTBLAbias_Atex; bias_alpha_arg[i] += bias_alpha_operand_modifier[op]; break; case GL_CONSTANT: alpha_arg[i] = HC_XTA_HTXnTBLRA; bias_alpha_arg[i] = HC_HTXnTBLAbias_HTXnTBLRAbias; constant_alpha[i] = (op == 0) ? env_color[3] : (~env_color[3] & 0xff); break; case GL_PRIMARY_COLOR: alpha_arg[i] = HC_XTA_Adif; alpha_arg[i] += alpha_operand_modifier[op]; bias_alpha_arg[i] = HC_HTXnTBLAbias_Adif; bias_alpha_arg[i] += bias_alpha_operand_modifier[op]; break; case GL_PREVIOUS: alpha_arg[i] = (unit == 0) ? HC_XTA_Adif : HC_XTA_Acur; alpha_arg[i] += alpha_operand_modifier[op]; bias_alpha_arg[i] = (unit == 0 ? HC_HTXnTBLAbias_Adif : HC_HTXnTBLAbias_Acur); bias_alpha_arg[i] += bias_alpha_operand_modifier[op]; break; } } switch( combine->ModeA ) { /* Aa = 0, Ab = 0, Ac = 0, Abias = arg0 */ case GL_REPLACE: alpha |= ((HC_XTA_HTXnTBLRA << INPUT_A_SHIFT) | (HC_XTA_HTXnTBLRA << INPUT_B_SHIFT) | (HC_XTA_HTXnTBLRA << INPUT_C_SHIFT)); abc_alpha = 0; bias |= bias_alpha_arg[0]; bias_alpha = constant_alpha[0] >> 1; break; /* Aa = arg[0], Ab = arg[1], Ac = 0, Abias = 0 */ case GL_MODULATE: alpha |= ((alpha_arg[1] << INPUT_A_SHIFT) | (alpha_arg[0] << INPUT_B_SHIFT) | (HC_XTA_HTXnTBLRA << INPUT_C_SHIFT)); abc_alpha = ((constant_alpha[1] << HC_HTXnTBLRAa_SHIFT) | (constant_alpha[0] << HC_HTXnTBLRAb_SHIFT) | (0 << HC_HTXnTBLRAc_SHIFT)); bias |= HC_HTXnTBLAbias_HTXnTBLRAbias; bias_alpha = 0; break; /* Aa = 1.0, Ab = arg[0], Ac = arg[1], Abias = 0 */ case GL_ADD: case GL_SUBTRACT: if ( combine->ModeA == GL_SUBTRACT ) { op |= HC_HTXnTBLAop_Sub; } alpha |= ((HC_XTA_HTXnTBLRA << INPUT_A_SHIFT) | (alpha_arg[0] << INPUT_B_SHIFT) | (alpha_arg[1] << INPUT_C_SHIFT)); abc_alpha = ((0xff << HC_HTXnTBLRAa_SHIFT) | (constant_alpha[0] << HC_HTXnTBLRAb_SHIFT) | (constant_alpha[1] << HC_HTXnTBLRAc_SHIFT)); bias |= HC_HTXnTBLAbias_HTXnTBLRAbias; bias_alpha = 0; break; /* Aa = 1.0, Ab = arg[0], Ac = arg[1], Abias = -0.5 */ case GL_ADD_SIGNED: alpha |= ((HC_XTA_HTXnTBLRA << INPUT_A_SHIFT) | (alpha_arg[0] << INPUT_B_SHIFT) | (alpha_arg[1] << INPUT_C_SHIFT)); abc_alpha = ((0xff << HC_HTXnTBLRAa_SHIFT) | (constant_alpha[0] << HC_HTXnTBLRAb_SHIFT) | (constant_alpha[1] << HC_HTXnTBLRAc_SHIFT)); bias |= HC_HTXnTBLAbias_HTXnTBLRAbias; bias_alpha = 0xbf; break; /* Aa = arg[2], Ab = arg[0], Ac = arg[1], Abias = arg[1] */ case GL_INTERPOLATE: op |= HC_HTXnTBLAop_Sub; alpha |= ((alpha_arg[2] << INPUT_A_SHIFT) | (alpha_arg[0] << INPUT_B_SHIFT) | (alpha_arg[1] << INPUT_C_SHIFT)); abc_alpha = ((constant_alpha[2] << HC_HTXnTBLRAa_SHIFT) | (constant_alpha[0] << HC_HTXnTBLRAb_SHIFT) | (constant_alpha[1] << HC_HTXnTBLRAc_SHIFT)); bias |= bias_alpha_arg[1]; bias_alpha = constant_alpha[1] >> 1; break; } op |= c_shift_table[ c_shift ] | a_shift_table[ a_shift ]; vmesa->regHTXnTBLMPfog[unit] = HC_HTXnTBLMPfog_Fog; vmesa->regHTXnTBLCsat[unit] = color; vmesa->regHTXnTBLAsat[unit] = alpha; vmesa->regHTXnTBLCop[unit] = op | bias; vmesa->regHTXnTBLRAa[unit] = abc_alpha; vmesa->regHTXnTBLRFog[unit] = bias_alpha; vmesa->regHTXnTBLRCa[unit] = ordered_constant_color[0]; vmesa->regHTXnTBLRCb[unit] = ordered_constant_color[1]; vmesa->regHTXnTBLRCc[unit] = ordered_constant_color[2]; vmesa->regHTXnTBLRCbias[unit] = ordered_constant_color[3]; return GL_TRUE; }