/* * Mesa 3-D graphics library * * Copyright 2012 Intel Corporation * Copyright 2013 Google * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Authors: * Chad Versace * Frank Henigman */ #include #include "util/macros.h" #include "brw_context.h" #include "intel_tiled_memcpy.h" #if defined(__SSSE3__) #include #elif defined(__SSE2__) #include #endif #define FILE_DEBUG_FLAG DEBUG_TEXTURE #define ALIGN_DOWN(a, b) ROUND_DOWN_TO(a, b) #define ALIGN_UP(a, b) ALIGN(a, b) /* Tile dimensions. Width and span are in bytes, height is in pixels (i.e. * unitless). A "span" is the most number of bytes we can copy from linear * to tiled without needing to calculate a new destination address. */ static const uint32_t xtile_width = 512; static const uint32_t xtile_height = 8; static const uint32_t xtile_span = 64; static const uint32_t ytile_width = 128; static const uint32_t ytile_height = 32; static const uint32_t ytile_span = 16; static inline uint32_t ror(uint32_t n, uint32_t d) { return (n >> d) | (n << (32 - d)); } static inline uint32_t bswap32(uint32_t n) { #if defined(HAVE___BUILTIN_BSWAP32) return __builtin_bswap32(n); #else return (n >> 24) | ((n >> 8) & 0x0000ff00) | ((n << 8) & 0x00ff0000) | (n << 24); #endif } /** * Copy RGBA to BGRA - swap R and B. */ static inline void * rgba8_copy(void *dst, const void *src, size_t bytes) { uint32_t *d = dst; uint32_t const *s = src; assert(bytes % 4 == 0); while (bytes >= 4) { *d = ror(bswap32(*s), 8); d += 1; s += 1; bytes -= 4; } return dst; } #ifdef __SSSE3__ static const uint8_t rgba8_permutation[16] = { 2,1,0,3, 6,5,4,7, 10,9,8,11, 14,13,12,15 }; static inline void rgba8_copy_16_aligned_dst(void *dst, const void *src) { _mm_store_si128(dst, _mm_shuffle_epi8(_mm_loadu_si128(src), *(__m128i *)rgba8_permutation)); } static inline void rgba8_copy_16_aligned_src(void *dst, const void *src) { _mm_storeu_si128(dst, _mm_shuffle_epi8(_mm_load_si128(src), *(__m128i *)rgba8_permutation)); } #elif defined(__SSE2__) static inline void rgba8_copy_16_aligned_dst(void *dst, const void *src) { __m128i srcreg, dstreg, agmask, ag, rb, br; agmask = _mm_set1_epi32(0xFF00FF00); srcreg = _mm_loadu_si128((__m128i *)src); rb = _mm_andnot_si128(agmask, srcreg); ag = _mm_and_si128(agmask, srcreg); br = _mm_shufflehi_epi16(_mm_shufflelo_epi16(rb, _MM_SHUFFLE(2, 3, 0, 1)), _MM_SHUFFLE(2, 3, 0, 1)); dstreg = _mm_or_si128(ag, br); _mm_store_si128((__m128i *)dst, dstreg); } static inline void rgba8_copy_16_aligned_src(void *dst, const void *src) { __m128i srcreg, dstreg, agmask, ag, rb, br; agmask = _mm_set1_epi32(0xFF00FF00); srcreg = _mm_load_si128((__m128i *)src); rb = _mm_andnot_si128(agmask, srcreg); ag = _mm_and_si128(agmask, srcreg); br = _mm_shufflehi_epi16(_mm_shufflelo_epi16(rb, _MM_SHUFFLE(2, 3, 0, 1)), _MM_SHUFFLE(2, 3, 0, 1)); dstreg = _mm_or_si128(ag, br); _mm_storeu_si128((__m128i *)dst, dstreg); } #endif /** * Copy RGBA to BGRA - swap R and B, with the destination 16-byte aligned. */ static inline void * rgba8_copy_aligned_dst(void *dst, const void *src, size_t bytes) { assert(bytes == 0 || !(((uintptr_t)dst) & 0xf)); #if defined(__SSSE3__) || defined(__SSE2__) if (bytes == 64) { rgba8_copy_16_aligned_dst(dst + 0, src + 0); rgba8_copy_16_aligned_dst(dst + 16, src + 16); rgba8_copy_16_aligned_dst(dst + 32, src + 32); rgba8_copy_16_aligned_dst(dst + 48, src + 48); return dst; } while (bytes >= 16) { rgba8_copy_16_aligned_dst(dst, src); src += 16; dst += 16; bytes -= 16; } #endif rgba8_copy(dst, src, bytes); return dst; } /** * Copy RGBA to BGRA - swap R and B, with the source 16-byte aligned. */ static inline void * rgba8_copy_aligned_src(void *dst, const void *src, size_t bytes) { assert(bytes == 0 || !(((uintptr_t)src) & 0xf)); #if defined(__SSSE3__) || defined(__SSE2__) if (bytes == 64) { rgba8_copy_16_aligned_src(dst + 0, src + 0); rgba8_copy_16_aligned_src(dst + 16, src + 16); rgba8_copy_16_aligned_src(dst + 32, src + 32); rgba8_copy_16_aligned_src(dst + 48, src + 48); return dst; } while (bytes >= 16) { rgba8_copy_16_aligned_src(dst, src); src += 16; dst += 16; bytes -= 16; } #endif rgba8_copy(dst, src, bytes); return dst; } /** * Each row from y0 to y1 is copied in three parts: [x0,x1), [x1,x2), [x2,x3). * These ranges are in bytes, i.e. pixels * bytes-per-pixel. * The first and last ranges must be shorter than a "span" (the longest linear * stretch within a tile) and the middle must equal a whole number of spans. * Ranges may be empty. The region copied must land entirely within one tile. * 'dst' is the start of the tile and 'src' is the corresponding * address to copy from, though copying begins at (x0, y0). * To enable swizzling 'swizzle_bit' must be 1<<6, otherwise zero. * Swizzling flips bit 6 in the copy destination offset, when certain other * bits are set in it. */ typedef void (*tile_copy_fn)(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3, uint32_t y0, uint32_t y1, char *dst, const char *src, int32_t linear_pitch, uint32_t swizzle_bit, mem_copy_fn mem_copy); /** * Copy texture data from linear to X tile layout. * * \copydoc tile_copy_fn * * The mem_copy parameters allow the user to specify an alternative mem_copy * function that, for instance, may do RGBA -> BGRA swizzling. The first * function must handle any memory alignment while the second function must * only handle 16-byte alignment in whichever side (source or destination) is * tiled. */ static inline void linear_to_xtiled(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3, uint32_t y0, uint32_t y1, char *dst, const char *src, int32_t src_pitch, uint32_t swizzle_bit, mem_copy_fn mem_copy, mem_copy_fn mem_copy_align16) { /* The copy destination offset for each range copied is the sum of * an X offset 'x0' or 'xo' and a Y offset 'yo.' */ uint32_t xo, yo; src += (ptrdiff_t)y0 * src_pitch; for (yo = y0 * xtile_width; yo < y1 * xtile_width; yo += xtile_width) { /* Bits 9 and 10 of the copy destination offset control swizzling. * Only 'yo' contributes to those bits in the total offset, * so calculate 'swizzle' just once per row. * Move bits 9 and 10 three and four places respectively down * to bit 6 and xor them. */ uint32_t swizzle = ((yo >> 3) ^ (yo >> 4)) & swizzle_bit; mem_copy(dst + ((x0 + yo) ^ swizzle), src + x0, x1 - x0); for (xo = x1; xo < x2; xo += xtile_span) { mem_copy_align16(dst + ((xo + yo) ^ swizzle), src + xo, xtile_span); } mem_copy_align16(dst + ((xo + yo) ^ swizzle), src + x2, x3 - x2); src += src_pitch; } } /** * Copy texture data from linear to Y tile layout. * * \copydoc tile_copy_fn */ static inline void linear_to_ytiled(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3, uint32_t y0, uint32_t y3, char *dst, const char *src, int32_t src_pitch, uint32_t swizzle_bit, mem_copy_fn mem_copy, mem_copy_fn mem_copy_align16) { /* Y tiles consist of columns that are 'ytile_span' wide (and the same height * as the tile). Thus the destination offset for (x,y) is the sum of: * (x % column_width) // position within column * (x / column_width) * bytes_per_column // column number * bytes per column * y * column_width * * The copy destination offset for each range copied is the sum of * an X offset 'xo0' or 'xo' and a Y offset 'yo.' */ const uint32_t column_width = ytile_span; const uint32_t bytes_per_column = column_width * ytile_height; uint32_t y1 = MIN2(y3, ALIGN_UP(y0, 4)); uint32_t y2 = MAX2(y1, ALIGN_DOWN(y3, 4)); uint32_t xo0 = (x0 % ytile_span) + (x0 / ytile_span) * bytes_per_column; uint32_t xo1 = (x1 % ytile_span) + (x1 / ytile_span) * bytes_per_column; /* Bit 9 of the destination offset control swizzling. * Only the X offset contributes to bit 9 of the total offset, * so swizzle can be calculated in advance for these X positions. * Move bit 9 three places down to bit 6. */ uint32_t swizzle0 = (xo0 >> 3) & swizzle_bit; uint32_t swizzle1 = (xo1 >> 3) & swizzle_bit; uint32_t x, yo; src += (ptrdiff_t)y0 * src_pitch; if (y0 != y1) { for (yo = y0 * column_width; yo < y1 * column_width; yo += column_width) { uint32_t xo = xo1; uint32_t swizzle = swizzle1; mem_copy(dst + ((xo0 + yo) ^ swizzle0), src + x0, x1 - x0); /* Step by spans/columns. As it happens, the swizzle bit flips * at each step so we don't need to calculate it explicitly. */ for (x = x1; x < x2; x += ytile_span) { mem_copy_align16(dst + ((xo + yo) ^ swizzle), src + x, ytile_span); xo += bytes_per_column; swizzle ^= swizzle_bit; } mem_copy_align16(dst + ((xo + yo) ^ swizzle), src + x2, x3 - x2); src += src_pitch; } } for (yo = y1 * column_width; yo < y2 * column_width; yo += 4 * column_width) { uint32_t xo = xo1; uint32_t swizzle = swizzle1; if (x0 != x1) { mem_copy(dst + ((xo0 + yo + 0 * column_width) ^ swizzle0), src + x0 + 0 * src_pitch, x1 - x0); mem_copy(dst + ((xo0 + yo + 1 * column_width) ^ swizzle0), src + x0 + 1 * src_pitch, x1 - x0); mem_copy(dst + ((xo0 + yo + 2 * column_width) ^ swizzle0), src + x0 + 2 * src_pitch, x1 - x0); mem_copy(dst + ((xo0 + yo + 3 * column_width) ^ swizzle0), src + x0 + 3 * src_pitch, x1 - x0); } /* Step by spans/columns. As it happens, the swizzle bit flips * at each step so we don't need to calculate it explicitly. */ for (x = x1; x < x2; x += ytile_span) { mem_copy_align16(dst + ((xo + yo + 0 * column_width) ^ swizzle), src + x + 0 * src_pitch, ytile_span); mem_copy_align16(dst + ((xo + yo + 1 * column_width) ^ swizzle), src + x + 1 * src_pitch, ytile_span); mem_copy_align16(dst + ((xo + yo + 2 * column_width) ^ swizzle), src + x + 2 * src_pitch, ytile_span); mem_copy_align16(dst + ((xo + yo + 3 * column_width) ^ swizzle), src + x + 3 * src_pitch, ytile_span); xo += bytes_per_column; swizzle ^= swizzle_bit; } if (x2 != x3) { mem_copy_align16(dst + ((xo + yo + 0 * column_width) ^ swizzle), src + x2 + 0 * src_pitch, x3 - x2); mem_copy_align16(dst + ((xo + yo + 1 * column_width) ^ swizzle), src + x2 + 1 * src_pitch, x3 - x2); mem_copy_align16(dst + ((xo + yo + 2 * column_width) ^ swizzle), src + x2 + 2 * src_pitch, x3 - x2); mem_copy_align16(dst + ((xo + yo + 3 * column_width) ^ swizzle), src + x2 + 3 * src_pitch, x3 - x2); } src += 4 * src_pitch; } if (y2 != y3) { for (yo = y2 * column_width; yo < y3 * column_width; yo += column_width) { uint32_t xo = xo1; uint32_t swizzle = swizzle1; mem_copy(dst + ((xo0 + yo) ^ swizzle0), src + x0, x1 - x0); /* Step by spans/columns. As it happens, the swizzle bit flips * at each step so we don't need to calculate it explicitly. */ for (x = x1; x < x2; x += ytile_span) { mem_copy_align16(dst + ((xo + yo) ^ swizzle), src + x, ytile_span); xo += bytes_per_column; swizzle ^= swizzle_bit; } mem_copy_align16(dst + ((xo + yo) ^ swizzle), src + x2, x3 - x2); src += src_pitch; } } } /** * Copy texture data from X tile layout to linear. * * \copydoc tile_copy_fn */ static inline void xtiled_to_linear(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3, uint32_t y0, uint32_t y1, char *dst, const char *src, int32_t dst_pitch, uint32_t swizzle_bit, mem_copy_fn mem_copy, mem_copy_fn mem_copy_align16) { /* The copy destination offset for each range copied is the sum of * an X offset 'x0' or 'xo' and a Y offset 'yo.' */ uint32_t xo, yo; dst += (ptrdiff_t)y0 * dst_pitch; for (yo = y0 * xtile_width; yo < y1 * xtile_width; yo += xtile_width) { /* Bits 9 and 10 of the copy destination offset control swizzling. * Only 'yo' contributes to those bits in the total offset, * so calculate 'swizzle' just once per row. * Move bits 9 and 10 three and four places respectively down * to bit 6 and xor them. */ uint32_t swizzle = ((yo >> 3) ^ (yo >> 4)) & swizzle_bit; mem_copy(dst + x0, src + ((x0 + yo) ^ swizzle), x1 - x0); for (xo = x1; xo < x2; xo += xtile_span) { mem_copy_align16(dst + xo, src + ((xo + yo) ^ swizzle), xtile_span); } mem_copy_align16(dst + x2, src + ((xo + yo) ^ swizzle), x3 - x2); dst += dst_pitch; } } /** * Copy texture data from Y tile layout to linear. * * \copydoc tile_copy_fn */ static inline void ytiled_to_linear(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3, uint32_t y0, uint32_t y3, char *dst, const char *src, int32_t dst_pitch, uint32_t swizzle_bit, mem_copy_fn mem_copy, mem_copy_fn mem_copy_align16) { /* Y tiles consist of columns that are 'ytile_span' wide (and the same height * as the tile). Thus the destination offset for (x,y) is the sum of: * (x % column_width) // position within column * (x / column_width) * bytes_per_column // column number * bytes per column * y * column_width * * The copy destination offset for each range copied is the sum of * an X offset 'xo0' or 'xo' and a Y offset 'yo.' */ const uint32_t column_width = ytile_span; const uint32_t bytes_per_column = column_width * ytile_height; uint32_t y1 = MIN2(y3, ALIGN_UP(y0, 4)); uint32_t y2 = MAX2(y1, ALIGN_DOWN(y3, 4)); uint32_t xo0 = (x0 % ytile_span) + (x0 / ytile_span) * bytes_per_column; uint32_t xo1 = (x1 % ytile_span) + (x1 / ytile_span) * bytes_per_column; /* Bit 9 of the destination offset control swizzling. * Only the X offset contributes to bit 9 of the total offset, * so swizzle can be calculated in advance for these X positions. * Move bit 9 three places down to bit 6. */ uint32_t swizzle0 = (xo0 >> 3) & swizzle_bit; uint32_t swizzle1 = (xo1 >> 3) & swizzle_bit; uint32_t x, yo; dst += (ptrdiff_t)y0 * dst_pitch; if (y0 != y1) { for (yo = y0 * column_width; yo < y1 * column_width; yo += column_width) { uint32_t xo = xo1; uint32_t swizzle = swizzle1; mem_copy(dst + x0, src + ((xo0 + yo) ^ swizzle0), x1 - x0); /* Step by spans/columns. As it happens, the swizzle bit flips * at each step so we don't need to calculate it explicitly. */ for (x = x1; x < x2; x += ytile_span) { mem_copy_align16(dst + x, src + ((xo + yo) ^ swizzle), ytile_span); xo += bytes_per_column; swizzle ^= swizzle_bit; } mem_copy_align16(dst + x2, src + ((xo + yo) ^ swizzle), x3 - x2); dst += dst_pitch; } } for (yo = y1 * column_width; yo < y2 * column_width; yo += 4 * column_width) { uint32_t xo = xo1; uint32_t swizzle = swizzle1; if (x0 != x1) { mem_copy(dst + x0 + 0 * dst_pitch, src + ((xo0 + yo + 0 * column_width) ^ swizzle0), x1 - x0); mem_copy(dst + x0 + 1 * dst_pitch, src + ((xo0 + yo + 1 * column_width) ^ swizzle0), x1 - x0); mem_copy(dst + x0 + 2 * dst_pitch, src + ((xo0 + yo + 2 * column_width) ^ swizzle0), x1 - x0); mem_copy(dst + x0 + 3 * dst_pitch, src + ((xo0 + yo + 3 * column_width) ^ swizzle0), x1 - x0); } /* Step by spans/columns. As it happens, the swizzle bit flips * at each step so we don't need to calculate it explicitly. */ for (x = x1; x < x2; x += ytile_span) { mem_copy_align16(dst + x + 0 * dst_pitch, src + ((xo + yo + 0 * column_width) ^ swizzle), ytile_span); mem_copy_align16(dst + x + 1 * dst_pitch, src + ((xo + yo + 1 * column_width) ^ swizzle), ytile_span); mem_copy_align16(dst + x + 2 * dst_pitch, src + ((xo + yo + 2 * column_width) ^ swizzle), ytile_span); mem_copy_align16(dst + x + 3 * dst_pitch, src + ((xo + yo + 3 * column_width) ^ swizzle), ytile_span); xo += bytes_per_column; swizzle ^= swizzle_bit; } if (x2 != x3) { mem_copy_align16(dst + x2 + 0 * dst_pitch, src + ((xo + yo + 0 * column_width) ^ swizzle), x3 - x2); mem_copy_align16(dst + x2 + 1 * dst_pitch, src + ((xo + yo + 1 * column_width) ^ swizzle), x3 - x2); mem_copy_align16(dst + x2 + 2 * dst_pitch, src + ((xo + yo + 2 * column_width) ^ swizzle), x3 - x2); mem_copy_align16(dst + x2 + 3 * dst_pitch, src + ((xo + yo + 3 * column_width) ^ swizzle), x3 - x2); } dst += 4 * dst_pitch; } if (y2 != y3) { for (yo = y2 * column_width; yo < y3 * column_width; yo += column_width) { uint32_t xo = xo1; uint32_t swizzle = swizzle1; mem_copy(dst + x0, src + ((xo0 + yo) ^ swizzle0), x1 - x0); /* Step by spans/columns. As it happens, the swizzle bit flips * at each step so we don't need to calculate it explicitly. */ for (x = x1; x < x2; x += ytile_span) { mem_copy_align16(dst + x, src + ((xo + yo) ^ swizzle), ytile_span); xo += bytes_per_column; swizzle ^= swizzle_bit; } mem_copy_align16(dst + x2, src + ((xo + yo) ^ swizzle), x3 - x2); dst += dst_pitch; } } } /** * Copy texture data from linear to X tile layout, faster. * * Same as \ref linear_to_xtiled but faster, because it passes constant * parameters for common cases, allowing the compiler to inline code * optimized for those cases. * * \copydoc tile_copy_fn */ static FLATTEN void linear_to_xtiled_faster(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3, uint32_t y0, uint32_t y1, char *dst, const char *src, int32_t src_pitch, uint32_t swizzle_bit, mem_copy_fn mem_copy) { if (x0 == 0 && x3 == xtile_width && y0 == 0 && y1 == xtile_height) { if (mem_copy == memcpy) return linear_to_xtiled(0, 0, xtile_width, xtile_width, 0, xtile_height, dst, src, src_pitch, swizzle_bit, memcpy, memcpy); else if (mem_copy == rgba8_copy) return linear_to_xtiled(0, 0, xtile_width, xtile_width, 0, xtile_height, dst, src, src_pitch, swizzle_bit, rgba8_copy, rgba8_copy_aligned_dst); else unreachable("not reached"); } else { if (mem_copy == memcpy) return linear_to_xtiled(x0, x1, x2, x3, y0, y1, dst, src, src_pitch, swizzle_bit, memcpy, memcpy); else if (mem_copy == rgba8_copy) return linear_to_xtiled(x0, x1, x2, x3, y0, y1, dst, src, src_pitch, swizzle_bit, rgba8_copy, rgba8_copy_aligned_dst); else unreachable("not reached"); } linear_to_xtiled(x0, x1, x2, x3, y0, y1, dst, src, src_pitch, swizzle_bit, mem_copy, mem_copy); } /** * Copy texture data from linear to Y tile layout, faster. * * Same as \ref linear_to_ytiled but faster, because it passes constant * parameters for common cases, allowing the compiler to inline code * optimized for those cases. * * \copydoc tile_copy_fn */ static FLATTEN void linear_to_ytiled_faster(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3, uint32_t y0, uint32_t y1, char *dst, const char *src, int32_t src_pitch, uint32_t swizzle_bit, mem_copy_fn mem_copy) { if (x0 == 0 && x3 == ytile_width && y0 == 0 && y1 == ytile_height) { if (mem_copy == memcpy) return linear_to_ytiled(0, 0, ytile_width, ytile_width, 0, ytile_height, dst, src, src_pitch, swizzle_bit, memcpy, memcpy); else if (mem_copy == rgba8_copy) return linear_to_ytiled(0, 0, ytile_width, ytile_width, 0, ytile_height, dst, src, src_pitch, swizzle_bit, rgba8_copy, rgba8_copy_aligned_dst); else unreachable("not reached"); } else { if (mem_copy == memcpy) return linear_to_ytiled(x0, x1, x2, x3, y0, y1, dst, src, src_pitch, swizzle_bit, memcpy, memcpy); else if (mem_copy == rgba8_copy) return linear_to_ytiled(x0, x1, x2, x3, y0, y1, dst, src, src_pitch, swizzle_bit, rgba8_copy, rgba8_copy_aligned_dst); else unreachable("not reached"); } linear_to_ytiled(x0, x1, x2, x3, y0, y1, dst, src, src_pitch, swizzle_bit, mem_copy, mem_copy); } /** * Copy texture data from X tile layout to linear, faster. * * Same as \ref xtile_to_linear but faster, because it passes constant * parameters for common cases, allowing the compiler to inline code * optimized for those cases. * * \copydoc tile_copy_fn */ static FLATTEN void xtiled_to_linear_faster(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3, uint32_t y0, uint32_t y1, char *dst, const char *src, int32_t dst_pitch, uint32_t swizzle_bit, mem_copy_fn mem_copy) { if (x0 == 0 && x3 == xtile_width && y0 == 0 && y1 == xtile_height) { if (mem_copy == memcpy) return xtiled_to_linear(0, 0, xtile_width, xtile_width, 0, xtile_height, dst, src, dst_pitch, swizzle_bit, memcpy, memcpy); else if (mem_copy == rgba8_copy) return xtiled_to_linear(0, 0, xtile_width, xtile_width, 0, xtile_height, dst, src, dst_pitch, swizzle_bit, rgba8_copy, rgba8_copy_aligned_src); else unreachable("not reached"); } else { if (mem_copy == memcpy) return xtiled_to_linear(x0, x1, x2, x3, y0, y1, dst, src, dst_pitch, swizzle_bit, memcpy, memcpy); else if (mem_copy == rgba8_copy) return xtiled_to_linear(x0, x1, x2, x3, y0, y1, dst, src, dst_pitch, swizzle_bit, rgba8_copy, rgba8_copy_aligned_src); else unreachable("not reached"); } xtiled_to_linear(x0, x1, x2, x3, y0, y1, dst, src, dst_pitch, swizzle_bit, mem_copy, mem_copy); } /** * Copy texture data from Y tile layout to linear, faster. * * Same as \ref ytile_to_linear but faster, because it passes constant * parameters for common cases, allowing the compiler to inline code * optimized for those cases. * * \copydoc tile_copy_fn */ static FLATTEN void ytiled_to_linear_faster(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3, uint32_t y0, uint32_t y1, char *dst, const char *src, int32_t dst_pitch, uint32_t swizzle_bit, mem_copy_fn mem_copy) { if (x0 == 0 && x3 == ytile_width && y0 == 0 && y1 == ytile_height) { if (mem_copy == memcpy) return ytiled_to_linear(0, 0, ytile_width, ytile_width, 0, ytile_height, dst, src, dst_pitch, swizzle_bit, memcpy, memcpy); else if (mem_copy == rgba8_copy) return ytiled_to_linear(0, 0, ytile_width, ytile_width, 0, ytile_height, dst, src, dst_pitch, swizzle_bit, rgba8_copy, rgba8_copy_aligned_src); else unreachable("not reached"); } else { if (mem_copy == memcpy) return ytiled_to_linear(x0, x1, x2, x3, y0, y1, dst, src, dst_pitch, swizzle_bit, memcpy, memcpy); else if (mem_copy == rgba8_copy) return ytiled_to_linear(x0, x1, x2, x3, y0, y1, dst, src, dst_pitch, swizzle_bit, rgba8_copy, rgba8_copy_aligned_src); else unreachable("not reached"); } ytiled_to_linear(x0, x1, x2, x3, y0, y1, dst, src, dst_pitch, swizzle_bit, mem_copy, mem_copy); } /** * Copy from linear to tiled texture. * * Divide the region given by X range [xt1, xt2) and Y range [yt1, yt2) into * pieces that do not cross tile boundaries and copy each piece with a tile * copy function (\ref tile_copy_fn). * The X range is in bytes, i.e. pixels * bytes-per-pixel. * The Y range is in pixels (i.e. unitless). * 'dst' is the address of (0, 0) in the destination tiled texture. * 'src' is the address of (xt1, yt1) in the source linear texture. */ void linear_to_tiled(uint32_t xt1, uint32_t xt2, uint32_t yt1, uint32_t yt2, char *dst, const char *src, uint32_t dst_pitch, int32_t src_pitch, bool has_swizzling, enum isl_tiling tiling, mem_copy_fn mem_copy) { tile_copy_fn tile_copy; uint32_t xt0, xt3; uint32_t yt0, yt3; uint32_t xt, yt; uint32_t tw, th, span; uint32_t swizzle_bit = has_swizzling ? 1<<6 : 0; if (tiling == ISL_TILING_X) { tw = xtile_width; th = xtile_height; span = xtile_span; tile_copy = linear_to_xtiled_faster; } else if (tiling == ISL_TILING_Y0) { tw = ytile_width; th = ytile_height; span = ytile_span; tile_copy = linear_to_ytiled_faster; } else { unreachable("unsupported tiling"); } /* Round out to tile boundaries. */ xt0 = ALIGN_DOWN(xt1, tw); xt3 = ALIGN_UP (xt2, tw); yt0 = ALIGN_DOWN(yt1, th); yt3 = ALIGN_UP (yt2, th); /* Loop over all tiles to which we have something to copy. * 'xt' and 'yt' are the origin of the destination tile, whether copying * copying a full or partial tile. * tile_copy() copies one tile or partial tile. * Looping x inside y is the faster memory access pattern. */ for (yt = yt0; yt < yt3; yt += th) { for (xt = xt0; xt < xt3; xt += tw) { /* The area to update is [x0,x3) x [y0,y1). * May not want the whole tile, hence the min and max. */ uint32_t x0 = MAX2(xt1, xt); uint32_t y0 = MAX2(yt1, yt); uint32_t x3 = MIN2(xt2, xt + tw); uint32_t y1 = MIN2(yt2, yt + th); /* [x0,x3) is split into [x0,x1), [x1,x2), [x2,x3) such that * the middle interval is the longest span-aligned part. * The sub-ranges could be empty. */ uint32_t x1, x2; x1 = ALIGN_UP(x0, span); if (x1 > x3) x1 = x2 = x3; else x2 = ALIGN_DOWN(x3, span); assert(x0 <= x1 && x1 <= x2 && x2 <= x3); assert(x1 - x0 < span && x3 - x2 < span); assert(x3 - x0 <= tw); assert((x2 - x1) % span == 0); /* Translate by (xt,yt) for single-tile copier. */ tile_copy(x0-xt, x1-xt, x2-xt, x3-xt, y0-yt, y1-yt, dst + (ptrdiff_t)xt * th + (ptrdiff_t)yt * dst_pitch, src + (ptrdiff_t)xt - xt1 + ((ptrdiff_t)yt - yt1) * src_pitch, src_pitch, swizzle_bit, mem_copy); } } } /** * Copy from tiled to linear texture. * * Divide the region given by X range [xt1, xt2) and Y range [yt1, yt2) into * pieces that do not cross tile boundaries and copy each piece with a tile * copy function (\ref tile_copy_fn). * The X range is in bytes, i.e. pixels * bytes-per-pixel. * The Y range is in pixels (i.e. unitless). * 'dst' is the address of (xt1, yt1) in the destination linear texture. * 'src' is the address of (0, 0) in the source tiled texture. */ void tiled_to_linear(uint32_t xt1, uint32_t xt2, uint32_t yt1, uint32_t yt2, char *dst, const char *src, int32_t dst_pitch, uint32_t src_pitch, bool has_swizzling, enum isl_tiling tiling, mem_copy_fn mem_copy) { tile_copy_fn tile_copy; uint32_t xt0, xt3; uint32_t yt0, yt3; uint32_t xt, yt; uint32_t tw, th, span; uint32_t swizzle_bit = has_swizzling ? 1<<6 : 0; if (tiling == ISL_TILING_X) { tw = xtile_width; th = xtile_height; span = xtile_span; tile_copy = xtiled_to_linear_faster; } else if (tiling == ISL_TILING_Y0) { tw = ytile_width; th = ytile_height; span = ytile_span; tile_copy = ytiled_to_linear_faster; } else { unreachable("unsupported tiling"); } /* Round out to tile boundaries. */ xt0 = ALIGN_DOWN(xt1, tw); xt3 = ALIGN_UP (xt2, tw); yt0 = ALIGN_DOWN(yt1, th); yt3 = ALIGN_UP (yt2, th); /* Loop over all tiles to which we have something to copy. * 'xt' and 'yt' are the origin of the destination tile, whether copying * copying a full or partial tile. * tile_copy() copies one tile or partial tile. * Looping x inside y is the faster memory access pattern. */ for (yt = yt0; yt < yt3; yt += th) { for (xt = xt0; xt < xt3; xt += tw) { /* The area to update is [x0,x3) x [y0,y1). * May not want the whole tile, hence the min and max. */ uint32_t x0 = MAX2(xt1, xt); uint32_t y0 = MAX2(yt1, yt); uint32_t x3 = MIN2(xt2, xt + tw); uint32_t y1 = MIN2(yt2, yt + th); /* [x0,x3) is split into [x0,x1), [x1,x2), [x2,x3) such that * the middle interval is the longest span-aligned part. * The sub-ranges could be empty. */ uint32_t x1, x2; x1 = ALIGN_UP(x0, span); if (x1 > x3) x1 = x2 = x3; else x2 = ALIGN_DOWN(x3, span); assert(x0 <= x1 && x1 <= x2 && x2 <= x3); assert(x1 - x0 < span && x3 - x2 < span); assert(x3 - x0 <= tw); assert((x2 - x1) % span == 0); /* Translate by (xt,yt) for single-tile copier. */ tile_copy(x0-xt, x1-xt, x2-xt, x3-xt, y0-yt, y1-yt, dst + (ptrdiff_t)xt - xt1 + ((ptrdiff_t)yt - yt1) * dst_pitch, src + (ptrdiff_t)xt * th + (ptrdiff_t)yt * src_pitch, dst_pitch, swizzle_bit, mem_copy); } } } /** * Determine which copy function to use for the given format combination * * The only two possible copy functions which are ever returned are a * direct memcpy and a RGBA <-> BGRA copy function. Since RGBA -> BGRA and * BGRA -> RGBA are exactly the same operation (and memcpy is obviously * symmetric), it doesn't matter whether the copy is from the tiled image * to the untiled or vice versa. The copy function required is the same in * either case so this function can be used. * * \param[in] tiledFormat The format of the tiled image * \param[in] format The GL format of the client data * \param[in] type The GL type of the client data * \param[out] mem_copy Will be set to one of either the standard * library's memcpy or a different copy function * that performs an RGBA to BGRA conversion * \param[out] cpp Number of bytes per channel * * \return true if the format and type combination are valid */ bool intel_get_memcpy(mesa_format tiledFormat, GLenum format, GLenum type, mem_copy_fn *mem_copy, uint32_t *cpp) { if (type == GL_UNSIGNED_INT_8_8_8_8_REV && !(format == GL_RGBA || format == GL_BGRA)) return false; /* Invalid type/format combination */ if ((tiledFormat == MESA_FORMAT_L_UNORM8 && format == GL_LUMINANCE) || (tiledFormat == MESA_FORMAT_A_UNORM8 && format == GL_ALPHA)) { *cpp = 1; *mem_copy = memcpy; } else if ((tiledFormat == MESA_FORMAT_B8G8R8A8_UNORM) || (tiledFormat == MESA_FORMAT_B8G8R8X8_UNORM) || (tiledFormat == MESA_FORMAT_B8G8R8A8_SRGB) || (tiledFormat == MESA_FORMAT_B8G8R8X8_SRGB)) { *cpp = 4; if (format == GL_BGRA) { *mem_copy = memcpy; } else if (format == GL_RGBA) { *mem_copy = rgba8_copy; } } else if ((tiledFormat == MESA_FORMAT_R8G8B8A8_UNORM) || (tiledFormat == MESA_FORMAT_R8G8B8X8_UNORM) || (tiledFormat == MESA_FORMAT_R8G8B8A8_SRGB) || (tiledFormat == MESA_FORMAT_R8G8B8X8_SRGB)) { *cpp = 4; if (format == GL_BGRA) { /* Copying from RGBA to BGRA is the same as BGRA to RGBA so we can * use the same function. */ *mem_copy = rgba8_copy; } else if (format == GL_RGBA) { *mem_copy = memcpy; } } if (!(*mem_copy)) return false; return true; }