/* * Copyright (C) Intel Corp. 2006. All Rights Reserved. * Intel funded Tungsten Graphics to * develop this 3D driver. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial * portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "brw_context.h" #include "brw_wm.h" #include "brw_state.h" #include "main/enums.h" #include "main/formats.h" #include "main/fbobject.h" #include "main/samplerobj.h" #include "main/framebuffer.h" #include "program/prog_parameter.h" #include "program/program.h" #include "intel_mipmap_tree.h" #include "intel_image.h" #include "intel_fbo.h" #include "compiler/brw_nir.h" #include "brw_program.h" #include "util/ralloc.h" #include "util/u_math.h" static void assign_fs_binding_table_offsets(const struct gen_device_info *devinfo, const struct gl_program *prog, const struct brw_wm_prog_key *key, struct brw_wm_prog_data *prog_data) { /* Render targets implicitly start at surface index 0. Even if there are * no color regions, we still perform an FB write to a null render target, * which will be surface 0. */ uint32_t next_binding_table_offset = MAX2(key->nr_color_regions, 1); next_binding_table_offset = brw_assign_common_binding_table_offsets(devinfo, prog, &prog_data->base, next_binding_table_offset); if (prog->nir->info.outputs_read && !key->coherent_fb_fetch) { prog_data->binding_table.render_target_read_start = next_binding_table_offset; next_binding_table_offset += key->nr_color_regions; } /* Update the binding table size */ prog_data->base.binding_table.size_bytes = next_binding_table_offset * 4; } static bool brw_codegen_wm_prog(struct brw_context *brw, struct brw_program *fp, struct brw_wm_prog_key *key, struct brw_vue_map *vue_map) { const struct gen_device_info *devinfo = &brw->screen->devinfo; void *mem_ctx = ralloc_context(NULL); struct brw_wm_prog_data prog_data; const GLuint *program; bool start_busy = false; double start_time = 0; nir_shader *nir = nir_shader_clone(mem_ctx, fp->program.nir); memset(&prog_data, 0, sizeof(prog_data)); /* Use ALT floating point mode for ARB programs so that 0^0 == 1. */ if (fp->program.is_arb_asm) prog_data.base.use_alt_mode = true; assign_fs_binding_table_offsets(devinfo, &fp->program, key, &prog_data); if (!fp->program.is_arb_asm) { brw_nir_setup_glsl_uniforms(mem_ctx, nir, &fp->program, &prog_data.base, true); brw_nir_analyze_ubo_ranges(brw->screen->compiler, nir, NULL, prog_data.base.ubo_ranges); } else { brw_nir_setup_arb_uniforms(mem_ctx, nir, &fp->program, &prog_data.base); if (INTEL_DEBUG & DEBUG_WM) brw_dump_arb_asm("fragment", &fp->program); } if (unlikely(brw->perf_debug)) { start_busy = (brw->batch.last_bo && brw_bo_busy(brw->batch.last_bo)); start_time = get_time(); } int st_index8 = -1, st_index16 = -1, st_index32 = -1; if (INTEL_DEBUG & DEBUG_SHADER_TIME) { st_index8 = brw_get_shader_time_index(brw, &fp->program, ST_FS8, !fp->program.is_arb_asm); st_index16 = brw_get_shader_time_index(brw, &fp->program, ST_FS16, !fp->program.is_arb_asm); st_index32 = brw_get_shader_time_index(brw, &fp->program, ST_FS32, !fp->program.is_arb_asm); } char *error_str = NULL; program = brw_compile_fs(brw->screen->compiler, brw, mem_ctx, key, &prog_data, nir, st_index8, st_index16, st_index32, true, false, vue_map, NULL, &error_str); if (program == NULL) { if (!fp->program.is_arb_asm) { fp->program.sh.data->LinkStatus = LINKING_FAILURE; ralloc_strcat(&fp->program.sh.data->InfoLog, error_str); } _mesa_problem(NULL, "Failed to compile fragment shader: %s\n", error_str); ralloc_free(mem_ctx); return false; } if (unlikely(brw->perf_debug)) { if (fp->compiled_once) { brw_debug_recompile(brw, MESA_SHADER_FRAGMENT, fp->program.Id, &key->base); } fp->compiled_once = true; if (start_busy && !brw_bo_busy(brw->batch.last_bo)) { perf_debug("FS compile took %.03f ms and stalled the GPU\n", (get_time() - start_time) * 1000); } } brw_alloc_stage_scratch(brw, &brw->wm.base, prog_data.base.total_scratch); if (((INTEL_DEBUG & DEBUG_WM) && fp->program.is_arb_asm)) fprintf(stderr, "\n"); /* The param and pull_param arrays will be freed by the shader cache. */ ralloc_steal(NULL, prog_data.base.param); ralloc_steal(NULL, prog_data.base.pull_param); brw_upload_cache(&brw->cache, BRW_CACHE_FS_PROG, key, sizeof(struct brw_wm_prog_key), program, prog_data.base.program_size, &prog_data, sizeof(prog_data), &brw->wm.base.prog_offset, &brw->wm.base.prog_data); ralloc_free(mem_ctx); return true; } static uint8_t gen6_gather_workaround(GLenum internalformat) { switch (internalformat) { case GL_R8I: return WA_SIGN | WA_8BIT; case GL_R8UI: return WA_8BIT; case GL_R16I: return WA_SIGN | WA_16BIT; case GL_R16UI: return WA_16BIT; default: /* Note that even though GL_R32I and GL_R32UI have format overrides in * the surface state, there is no shader w/a required. */ return 0; } } static void brw_populate_sampler_prog_key_data(struct gl_context *ctx, const struct gl_program *prog, struct brw_sampler_prog_key_data *key) { struct brw_context *brw = brw_context(ctx); const struct gen_device_info *devinfo = &brw->screen->devinfo; GLbitfield mask = prog->SamplersUsed; while (mask) { const int s = u_bit_scan(&mask); key->swizzles[s] = SWIZZLE_NOOP; key->scale_factors[s] = 0.0f; int unit_id = prog->SamplerUnits[s]; const struct gl_texture_unit *unit = &ctx->Texture.Unit[unit_id]; if (unit->_Current && unit->_Current->Target != GL_TEXTURE_BUFFER) { const struct gl_texture_object *t = unit->_Current; const struct gl_texture_image *img = t->Image[0][t->BaseLevel]; struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, unit_id); const bool alpha_depth = t->DepthMode == GL_ALPHA && (img->_BaseFormat == GL_DEPTH_COMPONENT || img->_BaseFormat == GL_DEPTH_STENCIL); /* Haswell handles texture swizzling as surface format overrides * (except for GL_ALPHA); all other platforms need MOVs in the shader. */ if (alpha_depth || (devinfo->gen < 8 && !devinfo->is_haswell)) key->swizzles[s] = brw_get_texture_swizzle(ctx, t); if (devinfo->gen < 8 && sampler->MinFilter != GL_NEAREST && sampler->MagFilter != GL_NEAREST) { if (sampler->WrapS == GL_CLAMP) key->gl_clamp_mask[0] |= 1 << s; if (sampler->WrapT == GL_CLAMP) key->gl_clamp_mask[1] |= 1 << s; if (sampler->WrapR == GL_CLAMP) key->gl_clamp_mask[2] |= 1 << s; } /* gather4 for RG32* is broken in multiple ways on Gen7. */ if (devinfo->gen == 7 && prog->info.uses_texture_gather) { switch (img->InternalFormat) { case GL_RG32I: case GL_RG32UI: { /* We have to override the format to R32G32_FLOAT_LD. * This means that SCS_ALPHA and SCS_ONE will return 0x3f8 * (1.0) rather than integer 1. This needs shader hacks. * * On Ivybridge, we whack W (alpha) to ONE in our key's * swizzle. On Haswell, we look at the original texture * swizzle, and use XYZW with channels overridden to ONE, * leaving normal texture swizzling to SCS. */ unsigned src_swizzle = devinfo->is_haswell ? t->_Swizzle : key->swizzles[s]; for (int i = 0; i < 4; i++) { unsigned src_comp = GET_SWZ(src_swizzle, i); if (src_comp == SWIZZLE_ONE || src_comp == SWIZZLE_W) { key->swizzles[i] &= ~(0x7 << (3 * i)); key->swizzles[i] |= SWIZZLE_ONE << (3 * i); } } } /* fallthrough */ case GL_RG32F: /* The channel select for green doesn't work - we have to * request blue. Haswell can use SCS for this, but Ivybridge * needs a shader workaround. */ if (!devinfo->is_haswell) key->gather_channel_quirk_mask |= 1 << s; break; } } /* Gen6's gather4 is broken for UINT/SINT; we treat them as * UNORM/FLOAT instead and fix it in the shader. */ if (devinfo->gen == 6 && prog->info.uses_texture_gather) { key->gen6_gather_wa[s] = gen6_gather_workaround(img->InternalFormat); } /* If this is a multisample sampler, and uses the CMS MSAA layout, * then we need to emit slightly different code to first sample the * MCS surface. */ struct intel_texture_object *intel_tex = intel_texture_object((struct gl_texture_object *)t); /* From gen9 onwards some single sampled buffers can also be * compressed. These don't need ld2dms sampling along with mcs fetch. */ if (intel_tex->mt->aux_usage == ISL_AUX_USAGE_MCS) { assert(devinfo->gen >= 7); assert(intel_tex->mt->surf.samples > 1); assert(intel_tex->mt->aux_buf); assert(intel_tex->mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY); key->compressed_multisample_layout_mask |= 1 << s; if (intel_tex->mt->surf.samples >= 16) { assert(devinfo->gen >= 9); key->msaa_16 |= 1 << s; } } if (t->Target == GL_TEXTURE_EXTERNAL_OES && intel_tex->planar_format) { /* Setup possible scaling factor. */ key->scale_factors[s] = intel_tex->planar_format->scaling_factor; switch (intel_tex->planar_format->components) { case __DRI_IMAGE_COMPONENTS_Y_UV: key->y_uv_image_mask |= 1 << s; break; case __DRI_IMAGE_COMPONENTS_Y_U_V: key->y_u_v_image_mask |= 1 << s; break; case __DRI_IMAGE_COMPONENTS_Y_XUXV: key->yx_xuxv_image_mask |= 1 << s; break; case __DRI_IMAGE_COMPONENTS_Y_UXVX: key->xy_uxvx_image_mask |= 1 << s; break; case __DRI_IMAGE_COMPONENTS_AYUV: key->ayuv_image_mask |= 1 << s; break; case __DRI_IMAGE_COMPONENTS_XYUV: key->xyuv_image_mask |= 1 << s; break; default: break; } switch (intel_tex->yuv_color_space) { case __DRI_YUV_COLOR_SPACE_ITU_REC709: key->bt709_mask |= 1 << s; break; case __DRI_YUV_COLOR_SPACE_ITU_REC2020: key->bt2020_mask |= 1 << s; break; default: break; } } } } } void brw_populate_base_prog_key(struct gl_context *ctx, const struct brw_program *prog, struct brw_base_prog_key *key) { key->program_string_id = prog->id; key->subgroup_size_type = BRW_SUBGROUP_SIZE_UNIFORM; brw_populate_sampler_prog_key_data(ctx, &prog->program, &key->tex); } void brw_populate_default_base_prog_key(const struct gen_device_info *devinfo, const struct brw_program *prog, struct brw_base_prog_key *key) { key->program_string_id = prog->id; key->subgroup_size_type = BRW_SUBGROUP_SIZE_UNIFORM; brw_setup_tex_for_precompile(devinfo, &key->tex, &prog->program); } static bool brw_wm_state_dirty(const struct brw_context *brw) { return brw_state_dirty(brw, _NEW_BUFFERS | _NEW_COLOR | _NEW_DEPTH | _NEW_FRAG_CLAMP | _NEW_HINT | _NEW_LIGHT | _NEW_LINE | _NEW_MULTISAMPLE | _NEW_POLYGON | _NEW_STENCIL | _NEW_TEXTURE, BRW_NEW_FRAGMENT_PROGRAM | BRW_NEW_REDUCED_PRIMITIVE | BRW_NEW_STATS_WM | BRW_NEW_VUE_MAP_GEOM_OUT); } void brw_wm_populate_key(struct brw_context *brw, struct brw_wm_prog_key *key) { const struct gen_device_info *devinfo = &brw->screen->devinfo; struct gl_context *ctx = &brw->ctx; /* BRW_NEW_FRAGMENT_PROGRAM */ const struct gl_program *prog = brw->programs[MESA_SHADER_FRAGMENT]; const struct brw_program *fp = brw_program_const(prog); GLuint lookup = 0; GLuint line_aa; memset(key, 0, sizeof(*key)); /* Build the index for table lookup */ if (devinfo->gen < 6) { struct intel_renderbuffer *depth_irb = intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH); /* _NEW_COLOR */ if (prog->info.fs.uses_discard || ctx->Color.AlphaEnabled) { lookup |= BRW_WM_IZ_PS_KILL_ALPHATEST_BIT; } if (prog->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) { lookup |= BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT; } /* _NEW_DEPTH */ if (depth_irb && ctx->Depth.Test) { lookup |= BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT; if (brw_depth_writes_enabled(brw)) lookup |= BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT; } /* _NEW_STENCIL | _NEW_BUFFERS */ if (brw->stencil_enabled) { lookup |= BRW_WM_IZ_STENCIL_TEST_ENABLE_BIT; if (ctx->Stencil.WriteMask[0] || ctx->Stencil.WriteMask[ctx->Stencil._BackFace]) lookup |= BRW_WM_IZ_STENCIL_WRITE_ENABLE_BIT; } key->iz_lookup = lookup; } line_aa = BRW_WM_AA_NEVER; /* _NEW_LINE, _NEW_POLYGON, BRW_NEW_REDUCED_PRIMITIVE */ if (ctx->Line.SmoothFlag) { if (brw->reduced_primitive == GL_LINES) { line_aa = BRW_WM_AA_ALWAYS; } else if (brw->reduced_primitive == GL_TRIANGLES) { if (ctx->Polygon.FrontMode == GL_LINE) { line_aa = BRW_WM_AA_SOMETIMES; if (ctx->Polygon.BackMode == GL_LINE || (ctx->Polygon.CullFlag && ctx->Polygon.CullFaceMode == GL_BACK)) line_aa = BRW_WM_AA_ALWAYS; } else if (ctx->Polygon.BackMode == GL_LINE) { line_aa = BRW_WM_AA_SOMETIMES; if ((ctx->Polygon.CullFlag && ctx->Polygon.CullFaceMode == GL_FRONT)) line_aa = BRW_WM_AA_ALWAYS; } } } key->line_aa = line_aa; /* _NEW_HINT */ key->high_quality_derivatives = prog->info.uses_fddx_fddy && ctx->Hint.FragmentShaderDerivative == GL_NICEST; if (devinfo->gen < 6) key->stats_wm = brw->stats_wm; /* _NEW_LIGHT */ key->flat_shade = (prog->info.inputs_read & (VARYING_BIT_COL0 | VARYING_BIT_COL1)) && (ctx->Light.ShadeModel == GL_FLAT); /* _NEW_FRAG_CLAMP | _NEW_BUFFERS */ key->clamp_fragment_color = ctx->Color._ClampFragmentColor; /* _NEW_TEXTURE */ brw_populate_base_prog_key(ctx, fp, &key->base); /* _NEW_BUFFERS */ key->nr_color_regions = ctx->DrawBuffer->_NumColorDrawBuffers; /* _NEW_COLOR */ key->force_dual_color_blend = brw->dual_color_blend_by_location && (ctx->Color.BlendEnabled & 1) && ctx->Color.Blend[0]._UsesDualSrc; /* _NEW_MULTISAMPLE, _NEW_BUFFERS */ key->alpha_to_coverage = _mesa_is_alpha_to_coverage_enabled(ctx); /* _NEW_COLOR, _NEW_BUFFERS */ key->alpha_test_replicate_alpha = ctx->DrawBuffer->_NumColorDrawBuffers > 1 && _mesa_is_alpha_test_enabled(ctx); /* _NEW_BUFFERS _NEW_MULTISAMPLE */ /* Ignore sample qualifier while computing this flag. */ if (ctx->Multisample.Enabled) { key->persample_interp = ctx->Multisample.SampleShading && (ctx->Multisample.MinSampleShadingValue * _mesa_geometric_samples(ctx->DrawBuffer) > 1); key->multisample_fbo = _mesa_geometric_samples(ctx->DrawBuffer) > 1; } key->ignore_sample_mask_out = !key->multisample_fbo; /* BRW_NEW_VUE_MAP_GEOM_OUT */ if (devinfo->gen < 6 || util_bitcount64(prog->info.inputs_read & BRW_FS_VARYING_INPUT_MASK) > 16) { key->input_slots_valid = brw->vue_map_geom_out.slots_valid; } /* _NEW_COLOR | _NEW_BUFFERS */ /* Pre-gen6, the hardware alpha test always used each render * target's alpha to do alpha test, as opposed to render target 0's alpha * like GL requires. Fix that by building the alpha test into the * shader, and we'll skip enabling the fixed function alpha test. */ if (devinfo->gen < 6 && ctx->DrawBuffer->_NumColorDrawBuffers > 1 && ctx->Color.AlphaEnabled) { key->alpha_test_func = ctx->Color.AlphaFunc; key->alpha_test_ref = ctx->Color.AlphaRef; } /* Whether reads from the framebuffer should behave coherently. */ key->coherent_fb_fetch = ctx->Extensions.EXT_shader_framebuffer_fetch; } void brw_upload_wm_prog(struct brw_context *brw) { struct brw_wm_prog_key key; struct brw_program *fp = (struct brw_program *) brw->programs[MESA_SHADER_FRAGMENT]; if (!brw_wm_state_dirty(brw)) return; brw_wm_populate_key(brw, &key); if (brw_search_cache(&brw->cache, BRW_CACHE_FS_PROG, &key, sizeof(key), &brw->wm.base.prog_offset, &brw->wm.base.prog_data, true)) return; if (brw_disk_cache_upload_program(brw, MESA_SHADER_FRAGMENT)) return; fp = (struct brw_program *) brw->programs[MESA_SHADER_FRAGMENT]; fp->id = key.base.program_string_id; ASSERTED bool success = brw_codegen_wm_prog(brw, fp, &key, &brw->vue_map_geom_out); assert(success); } void brw_wm_populate_default_key(const struct brw_compiler *compiler, struct brw_wm_prog_key *key, struct gl_program *prog) { const struct gen_device_info *devinfo = compiler->devinfo; memset(key, 0, sizeof(*key)); brw_populate_default_base_prog_key(devinfo, brw_program(prog), &key->base); uint64_t outputs_written = prog->info.outputs_written; if (devinfo->gen < 6) { if (prog->info.fs.uses_discard) key->iz_lookup |= BRW_WM_IZ_PS_KILL_ALPHATEST_BIT; if (outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) key->iz_lookup |= BRW_WM_IZ_PS_COMPUTES_DEPTH_BIT; /* Just assume depth testing. */ key->iz_lookup |= BRW_WM_IZ_DEPTH_TEST_ENABLE_BIT; key->iz_lookup |= BRW_WM_IZ_DEPTH_WRITE_ENABLE_BIT; } if (devinfo->gen < 6 || util_bitcount64(prog->info.inputs_read & BRW_FS_VARYING_INPUT_MASK) > 16) { key->input_slots_valid = prog->info.inputs_read | VARYING_BIT_POS; } key->nr_color_regions = util_bitcount64(outputs_written & ~(BITFIELD64_BIT(FRAG_RESULT_DEPTH) | BITFIELD64_BIT(FRAG_RESULT_STENCIL) | BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK))); /* Whether reads from the framebuffer should behave coherently. */ key->coherent_fb_fetch = devinfo->gen >= 9; } bool brw_fs_precompile(struct gl_context *ctx, struct gl_program *prog) { struct brw_context *brw = brw_context(ctx); const struct gen_device_info *devinfo = &brw->screen->devinfo; struct brw_wm_prog_key key; struct brw_program *bfp = brw_program(prog); brw_wm_populate_default_key(brw->screen->compiler, &key, prog); /* check brw_wm_populate_default_key coherent_fb_fetch setting */ assert(key.coherent_fb_fetch == ctx->Extensions.EXT_shader_framebuffer_fetch); uint32_t old_prog_offset = brw->wm.base.prog_offset; struct brw_stage_prog_data *old_prog_data = brw->wm.base.prog_data; struct brw_vue_map vue_map; if (devinfo->gen < 6) { brw_compute_vue_map(&brw->screen->devinfo, &vue_map, prog->info.inputs_read | VARYING_BIT_POS, false, 1); } bool success = brw_codegen_wm_prog(brw, bfp, &key, &vue_map); brw->wm.base.prog_offset = old_prog_offset; brw->wm.base.prog_data = old_prog_data; return success; }